Skip to main content
Log in

Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Three differently sized, highly dispersed platinum nanoparticle (Pt-NP) preparations were generated by supercritical fluid reactive deposition (SFRD) and deposited on a β-cyclodextrin matrix. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations of <20, <100 and >100 nm as characterised by TEM and SEM. As reported previously, these Pt-NPs were found to cause DNA strand breaks in human colon carcinoma cells (HT29) in a concentration- and time-dependent manner and a distinct size dependency. Here, we addressed the question whether Pt-NPs might affect directly DNA integrity in these cells and thus behave analogous to platinum-based chemotherapeutics such as cisplatin. Therefore, DNA-associated Pt as well as the translocation of Pt-NPs through a Caco-2 monolayer was quantified by ICP-MS. STEM imaging demonstrated that Pt-NPs were taken up into HT29 cells in their particulate and aggregated form, but appear not to translocate into the nucleus or interact with mitochondria. The platinum content of the DNA of HT29 cells was found to increase in a time- and concentration-dependent manner with a maximal effect at 1,000 ng/cm2. ICP-MS analysis of the cell culture medium indicated the formation of soluble Pt species, although to a limited extent. The observations suggest that DNA strand breaks mediated by metallic Pt-NPs are caused by Pt ions forming during the incubation of cells with these nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BF:

Bright field

Caco-2:

Human colon carcinoma cell line

Cisplatin:

Cis-diaminedichloridoplatinum

DMEM:

Dulbecco’s modified Eagle medium

FCS:

Foetal calf serum

GIT:

Gastrointestinal tract

HBSS:

Hanks’ balanced salt solution

HT29:

Human colon carcinoma cell line

ICP-MS:

Inductively coupled plasma mass spectrometry

INT:

2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium

LDH:

Lactate dehydrogenase

LOD:

Limit of detection

LOQ:

Limit of quantification

PSD:

Particle size distribution

Pt:

Platinum

PBS:

Phosphate-buffered saline

Pt(COD)Me2 :

1,5-(cyclooctadiene)dimethylplatinum(II)

Pt-NP:

Platinum nanoparticle

P/S:

Penicillin/streptomycin

ROS:

Reactive oxygen species

sc-CO2 :

Supercritical carbon dioxide

SFRD:

Supercritical fluid reactive deposition

SOD:

Superoxide dismutase

SOP:

Standard operating procedure

SRB:

Sulforhodamine B

STEM:

Scanning transmission electron microscopy

TEM:

Transmission electron microscopy

WST:

Water-soluble tetrazolium salt

References

  • Alt F, Eschnauer HR, Mergler B, Messerschmidt J, Tölg G (1997) A contribution to the ecology and enology of platinum. Fresenius J Anal Chem 357:1013–1019. doi:10.1007/s002160050296

    Article  CAS  Google Scholar 

  • Artelt S, Creutzenberg O, Kock H, Levsen K, Nachtigall D, Heinrich U, Rühle T, Schlögl R (1999) Bioavailability of fine dispersed platinum as emitted from automotive catalytic converters: a model study. Sci Total Environ 228:219–242. doi:10.1016/S0048-9697(99)00049-2

    Article  PubMed  CAS  Google Scholar 

  • Asharani PV, Xinyi Ng, Prakash Hande M, Valiyaveettil S (2010) DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 5(1):51–64. doi:10.2217/nnm.09.85

    Article  PubMed  CAS  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbush T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Kademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. doi:10.1186/1743-8977-3-11

    Article  PubMed  Google Scholar 

  • Ciccarelli RB, Solomon MJ, Varshavsky A, Lippard SJ (1985) In vivo effects of cis- and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein cross-linking and inhibition of replication. Biochemistry 24:7533–7540. doi:10.1021/bi00347a005

    Article  PubMed  CAS  Google Scholar 

  • Columbo C, Monhemius JA, Plant JA (2008a) The estimation of the bioavailabilities of platinum, palladium and rhodium in vehicle exhaust catalysts and road dusts using a physiologically based extraction test. Sci Total Environ 389:46–51. doi:10.1016/j.scitotenv.2007.08.002

    Article  Google Scholar 

  • Columbo C, Monhemius JA, Plant JA (2008b) Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox Environ Safe 71:722–730. doi:10.1016/j.ecoenv.2007.11.011

    Article  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10. doi:10.1186/1743-8977-2-10

    Article  PubMed  Google Scholar 

  • Elder A, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G (2007) Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater 19:3124–3129. doi:10.100./adma.200701962

    Article  CAS  Google Scholar 

  • Grès M, Julian B, Bourriè M, Meunier V, Roques C, Berger M, Baulence X, Berger Y, Fabre G (1998) Correlation between oral drug absorption in humans and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharmaceut Res 15:726–733

    Article  Google Scholar 

  • Hoppstock K (2001) Platingruppenelemente in der Umwelt. Nachr Chem Tech 49(11):1305–1309. doi:10.1002/nadc.20010491111

    Article  CAS  Google Scholar 

  • Hoppstock K, Alt F (1999) Voltametrische Bestimmung von Platin und Rhodium in Umweltkompartimenten und biologischen Materialien. In: Zereini F, Alt F (eds) Emissionen von Platinmetallen. Springer, Berlin, Heidelberg, pp 230–257

    Google Scholar 

  • Jordan P, Carmo-Fonseca M (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci 57:1229–1235. doi:10.1007/PL00000762

    Article  PubMed  CAS  Google Scholar 

  • Kajita M, Hikosaka K, Litsuka M, Kanayama A, Toshima N, Miyamoto Y (2007) Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res 41(6):615–626. doi:10.1080/10715760601169679

    Article  PubMed  CAS  Google Scholar 

  • López T, Figueras F, Manjarrez J, Bustos J, Alvarez M, Silvestre-Albero J, Rodríguez-Reinoso F, Martínez-Ferre A, Martínez E (2010) Catalytic nanomedicine: a new field in antitumor treatment using supported platinum nanoparticles. In vitro DNA degradation and in vivo test with C6 animal model on Wistar rats. Eur J Med Chem 45(5):1982–1990. doi:10.1016/j.ejmech.2010.01.043

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839. doi:10.1289/ehp.7339

    Article  PubMed  Google Scholar 

  • Pelka J, Gehrke H, Esselen M, Türk M, Crone M, Bräse S, Muller T, Blank H, Send W, Zibat V, Brenner P, Schneider R, Gerthsen D, Marko D (2009) Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Tox 22:649–659. doi:10.1021/tx800354g

    Article  CAS  Google Scholar 

  • Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21(8):085103. doi:10.1088/0957-4484/21/8/085103

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112. doi:10.1093/jnci/82.13.1107

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Kajita M, Kim J, Kanayama A, Takahashi K, Mashino T, Miyamoto Y (2009) In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 20:455105

    Article  PubMed  Google Scholar 

  • Zample DB, Lippard SJ (1995) Cisplatin and DNA repair in cancer chemotherapy. Trends Biochem Sci 20:435–439. doi:10.1016/S0968-0004(00)89095-7

    Article  Google Scholar 

  • Zereini F, Alt F, Messerschmidt J, von Bohlen A, Liebl K, Puttmann W (2004) Concentration and distribution of platinum group elements (Pt, Pd, Rh) in airborne particulate matter in Frankfurt am Main, Germany. Environ Sci Technol 38:1686–1692

    Article  PubMed  CAS  Google Scholar 

  • Zereini F, Wiseman C, Puttmann W (2007) Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ Sci Technol 41:451–456

    Article  PubMed  CAS  Google Scholar 

  • Zhong CJ, Maye MM, Luo J, Kariuki N (2004) Nanoparticles in catalysis. In: Rotello V (ed) Nanoparticles: building blocks for nanotechnology. Kluwer Academics, Plenum Publishers, New York, pp 113–140

    Google Scholar 

Download references

Acknowledgments

This work has been partly performed within the project E1.1 of the DFG Research Center for Functional Nanostructures (CFN). It has been further supported by a grant from the Ministry of Science, Research and the Arts of Baden-Württemberg (Az: 7713.14-300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Marko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehrke, H., Pelka, J., Hartinger, C.G. et al. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch Toxicol 85, 799–812 (2011). https://doi.org/10.1007/s00204-010-0636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0636-3

Keywords

Navigation