Skip to main content

Advertisement

Log in

Ethanol-induced small heat shock protein genes in the differentiation of mouse embryonic neural stem cells

  • Toxicogenomics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Neural stem cells (NSCs) of the neuroepithelium differentiate into one of three central nervous system (CNS) cell lineages: neurons, astrocytes, or oligodendrocytes. In this study, the differentiation potential of NSCs from the forebrain of embryonic day 15 (E15) mouse embryos was analyzed using immunocytochemistry. NSCs were differentiated early in the presence or absence of ethanol (50 mM), and gene expression patterns among NSCs, differentiated cells and ethanol-treated differentiated cells were assessed by microarray and real-time PCR analysis. Genes that were up-regulated in differentiated cells both in the presence and in the absence of ethanol when compared to NSCs were related to the Wnt signaling pathway, including Ctnna1, Wnt5a, Wnt5b, Wnt7a, Fzd3, and Fzd2; genes related to cell adhesion, including Cadm1, Ncam1, and Ncam2; and genes encoding small heat shock proteins, including HspB2, HspB7, and HspB8. In particular, the expression levels of HspB2 and HspB7 were elevated in ethanol-treated differentiated cells compared to non-treated differentiated cells. The gene expression patterns of various heat shock transcription factors (HSFs), proteins that regulate the transcription of heat shock genes, were also analyzed. The expression levels of HSF2 and HSF5 increased in differentiated cells in the presence and absence of ethanol when compared to NSCs. Of these two genes, HSF5 demonstrated an enhanced up-regulation, particularly in ethanol-treated differentiated cells compared to cells that were differentiated in the absence of ethanol. These results imply that HspB2 and HspB7, which are small heat shock proteins with tissue-restricted expression profiles, might be up-regulated by ethanol during the short-term differentiation of NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abney ER, Bartlett PP, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Akerfelt M, Henriksson E, Laiho A, Vihervaara A, Rautoma K, Kotaja N, Sistonen L (2008) Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci USA 105:11224–11229

    Article  PubMed  CAS  Google Scholar 

  • An JJ, Lee YP, Kim SY, Lee SH, Lee MJ, Jeong MS, Kim DW, Jang SH, Yoo KY, Won MH, Kang TC, Kwon OS, Cho SW, Lee KS, Park J, Eum WS, Choi SY (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J 275:1296–1308

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Paul C, Ducasse C, Manero F, Kretz-Remy C, Virot S, Javouhey E, Mounier N, Diaz-Latoud C (2002) Small stress proteins: novel negative modulators of apoptosis induced independently of reactive oxygen species. Prog Mol Subcell Biol 28:185–204

    PubMed  CAS  Google Scholar 

  • Baik SY, Jung KH, Choi MR, Yang BH, Kim SH, Lee JS, Oh DY, Choi IG, Chung H, Chai YG (2005) Fluoxetine-induced up-regulation of 14-3-3zeta and tryptophan hydroxylase levels in RBL-2H3 cells. Neurosci Lett 374:53–57

    Article  PubMed  CAS  Google Scholar 

  • Bonthius DJ, Goodlett CR, West JR (1988) Blood alcohol concentration and severity of microencephaly in neonatal rats depend on the pattern of alcohol administration. Alcohol 5:209–214

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V (2006) Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20:836–847

    Article  PubMed  CAS  Google Scholar 

  • Chowdary TK, Raman B, Ramakrishna T, Rao CH (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 381:379–387

    Article  PubMed  CAS  Google Scholar 

  • Coles CD, Brown RT, Smith IE, Platman KA, Erickson S, Falek A (1991) Effects of prenatal alcohol exposure at school age; l. Physical and cognitive development. Neurotoxicol Teratol 13:357–367

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Nixon K (2003) Alcohol, neural stem cells, and adult neurogenesis. Alcohol Res Health 27:197–204

    PubMed  Google Scholar 

  • Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266

    Article  PubMed  CAS  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the α-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, Kim SJ, Vatner DE, Topper JN, Vatner SF (2001) Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci USA 98:9336–9341

    Article  PubMed  CAS  Google Scholar 

  • Doran P, Gannon J, O’Connell K, Ohlendieck K (2005) Aging skeletal muscle shows a drastic increase in the small heat shock proteins αB-crystallin/HspB5 and cvHsp/HspB7. Eur J Cell Biol 84:867–883

    Article  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Fadda F, Rossetti ZL (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56:385–431

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Gutala R, Wang J, Kadapakkam S, Hwang Y, Ticku M, Li MD (2004) Microarray analysis of ethanol-treated cortical neurons reveals disruption of genes related to the ubiquitin-proteasome pathway and protein synthesis. Alcohol Clin Exp Res 28:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Heaton MB, Moore DB, Paiva M, Madorsky I, Mayer J, Shaw G (2003) The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcohol Clin Exp Res 27:657–669

    Google Scholar 

  • Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev I, Hilton-Jones D, Talbot K, Kremensky I, Van Den Bosch L, Robberecht W, Van Vandekerckhove J, Van Broeckhoven C, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36:597–601

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JS, Miller MW (2001) Proliferation and death of cultured fetal neocortical neurons: effects of ethanol on the dynamics of cell growth. J Neurocytol 30:391–401

    Article  PubMed  CAS  Google Scholar 

  • Jacobson M (1991) Neuroglial ontogeny. In: Developmental neurobiology, 3rd edn. Plenum, New York, pp 95–142

  • Johnson VP, Swayze VW II, Sato Y, Andreasen NC (1996) Fetal alcohol syndrome: craniofacial and central nervous system manifestations. Am J Med Genet 61:329–339

    Article  PubMed  CAS  Google Scholar 

  • Jones KL, Smith DW, Ulleland CN, Streissguth AP (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1:1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  PubMed  CAS  Google Scholar 

  • Karaçay B, Li S, Bonthius DJ (2008) Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res 32:1439–1450

    Article  PubMed  Google Scholar 

  • Katoh M (2005) WNT/PCP signaling pathway and human cancer (review). Oncol Rep 14:1583–1588

    PubMed  CAS  Google Scholar 

  • Lewohl JM, Wang L, Miles MF, Zhang ML, Dodd PR, Harris A (2000) Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res 24:1873–1882

    Article  PubMed  CAS  Google Scholar 

  • Lindsley TA, Comstock LL, Rising LJ (2002) Morphologic and neurotoxic effects of ethanol vary with timing of exposure in vitro. Alcohol 28:197–203

    Article  PubMed  CAS  Google Scholar 

  • Livy DJ, Miller EK, Maier SE, West JR (2003) Fetal alcohol exposure and temporal vulnerability: effects of binge-like alcohol exposure on the developing rat hippocampus. Neurotoxicol Teratol 25:447–458

    Article  PubMed  CAS  Google Scholar 

  • Maier SE, Cramer JA, West JR, Sohrabji F (1999) Alcohol exposure during the first two trimesters equivalent alters granule cell number and neurotrophin expression in the developing rat olfactory bulb. J Neurobiol 41:414–423

    Google Scholar 

  • Mandrekar P, Catalano D, Jeliazkova V, Kodys K (2008) Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-alpha regulation. J Leukoc Biol 84:1335–1345

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17:469–481

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Nixon K, Crews FT (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 83:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K et al (2004) Complete sequencing and characterization of 21, 243 full-length human cDNAs. Nat Genet 36:40–45

    Article  PubMed  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80

    Article  PubMed  CAS  Google Scholar 

  • Quinlan R (2002) Cytoskeletal competence requires protein chaperones. Prog Mol Subcell Biol 28:219–233

    PubMed  CAS  Google Scholar 

  • Quraishe S, Asuni A, Boelens WC, O’connor V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: Differential anatomical and biochemical compartmentalization. Neuroscience 153:483–491

    Article  PubMed  CAS  Google Scholar 

  • Rallu M, Loones MT, Lallemand Y, Morimoto RI, Morange M, Mezger V (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci USA 94:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez FD, Simonsson P, Alling C (1992) A method for maintaining constant ethanol concentrations in cell culture media. Alcohol Alcohol 27:309–313

    PubMed  CAS  Google Scholar 

  • Sari Y, Zhang M, Mechref Y (2010) Differential expression of proteins in fetal brains of alcohol-treated prenatally C57BL/6 mice: a proteomic investigation. Electrophoresis 483–496

  • Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M (2009) In vitro neurogenesis from neural progenitor cells isolated from the hippocampus region of the brain of adult rats exposed to ethanol during early development through their alcohol-drinking mothers. Alcohol Alcohol 44:185–198

    PubMed  CAS  Google Scholar 

  • Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Sugiyama Y, Hayashi Y, Nyu-I N, Yoshida M, Nonaka I, Ishiura S, Arahata K, Ohno S (1998) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Tateno M, Ukai W, Yamamoto M, Hashimoto E, Ikeda H, Saito T (2005) The effect of ethanol on cell fate determination of neural stem cells. Alcohol Clin Exp Res 29:225S–229S

    Article  PubMed  Google Scholar 

  • Toth ME, Gonda S, Vigh L, Santha M (2010) Neuroprotective effect of small heat shock protein, Hsp27, after acute and chronic alcohol administration. Cell Stress Chaperones. doi:10.1007/s12192-010-0188-8

  • Treadwell JA, Singh SM (2004) Microarray analysis of mouse brain gene expression following acute ethanol treatment. Neurochem Res 29:357–369

    Article  PubMed  CAS  Google Scholar 

  • Uecker A, Nadel L (1998) Spatial but not object memory impairments in children with fetal alcohol syndrome. Am J Ment Retard 103:12–18

    Article  PubMed  CAS  Google Scholar 

  • Vemuri MC, Chetty CS (2005) Alcohol impairs astrogliogenesis by stem cells in rodent neurospheres. Neurochem Int 47:129–135

    Article  PubMed  CAS  Google Scholar 

  • Verschuure P, Tatard C, Boelens WC, Grognet J-F, David JC (2003) Expression of small heat shock proteins HspB2, HspB8, Hsp20 and cvHsp in different tissues of the perinatal developing pig. Eur J Cell Biol 82:523–530

    Article  PubMed  CAS  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K (2009) Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276:1962–1974

    Article  PubMed  CAS  Google Scholar 

  • Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, Reimers M, Stephens RM, Bryant D, Burt SK, Elnekave E, Hari DM, Wynn TA, Cunningham-Rundles C, Stewart DM, Nelson D, Weinstein JN (2005) High-Throughput GoMiner, an ‘industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics 6:168

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (A080906) from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea and Basic Science Research Program (2009-0075878) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Gyu Chai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 201 kb)

Supplementary material 2 (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, M.R., Jung, K.H., Park, J.H. et al. Ethanol-induced small heat shock protein genes in the differentiation of mouse embryonic neural stem cells. Arch Toxicol 85, 293–304 (2011). https://doi.org/10.1007/s00204-010-0591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0591-z

Keywords

Navigation