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Abstract
HMOs (Human milk oligosaccharide) has an impact on maternal and infant health. Colostrum samples of 70 breastfeeding 
women in China were collected and recorded clinical characteristics. The major oligosaccharides and microbiota were quan-
titated in colostrum. The concentration of fucosylated HMOs in primipara was higher than that of multipara (p = 0.030). The 
concentration of N-acetylated HMOs in vaginal delivery milk was less than that of cesarean (p = 0.038). Non-fucosylated 
HMOs of breastfeeding women were less than that of breast pump (p = 0.038). Meanwhile, the concentration of LNT was 
positively correlated with Lactobacillus (r = 0.250, p = 0.037). DS-LNT was negatively correlated with Staphylococcus 
(r = – 0.240, p = 0.045). There was a positive correlation of Streptococcus with LNFP II (r = 0.314, p = 0.011) and 3-SL 
(r = 0.322, p = 0.009). In addition, there was a negative correlation between 2'-FL and 3-FL (r = – 0.465, p = 0.001). There 
was a positive correlation between LNT and LNnT (r = 0.778, p = 0.001). Therefore, the concentration of HMOs is related 
to number of deliveries, delivery mode, lactation mode and perinatal antibiotic. The concentration of HMOs is related to 
Lactobacillus, Streptococcus and Streptococcus in colostrum. In addition, there are connections between different oligosac-
charides in content. The study protocol was also registered in the ClinicalTrails.gov (ChiCTR2200064454) (Oct. 2022).
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Introduction

Human milk, which is the biological norm of infant nutri-
tion, has been reported to contain many oligosaccharides. 
The content of HMOs (Human milk oligosaccharide) in 
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breast milk is second to lactose and lipids (Thum et al. 2021). 
Colostrum is usually a sticky yellowish liquid secreted by 
the mammary gland within 7 days after delivery. The con-
tent of HMOs in colostrum is more than that of mature milk 
(Donovan and Comstock 2016). The concentration of HMOs 
in colostrum is about 9–22 g/L, decreased with the duration 
of lactation (Samuel et al. 2019; Liu et al. 2021; Poulsen 
et al. 2022). As we all know, HMOs has important physi-
ological functions. It can affect the health status of newborns 
by supplementing probiotics (Pamela et al. 2018; Triantis 
et al. 2018; Sakanaka et al. 2019), resisting harmful micro-
biota (Quinn et al. 2020), simulating intestinal epithelial 
cell binding ligands and regulating the immune response 
(Ayechu-Muruzabal et al. 2022). Infant formula containing 
2'-FL has been approved by the European Union and the US 
Food and Drug Administration (Reverri et al. 2018).

So far, 200 kinds of HMOs have been found (Urashima 
et al. 2018). At least 157 different HMOs structures were 
isolated and identified (Oursel et al. 2017; Peterson and 
Nagy 2021). The diversity of HMOs is affected by glycosidic 
bonds of different sugar units. According to the substituents, 
oligosaccharides are mainly divided into fucosylated HMOs, 
sialylated HMOs and non-fucosylated HMOs (Samuel et al. 
2019). The main fucosylated HMOs are 2'-fucosyllactose 
(2'-FL) and 3-fucosyllactose (3-FL). Sialylated HMOs 
mainly includes 3-sialyllactose (3'SL) and 6-sialyllactose 
(6'SL). Non-fucosylated HMOs mainly include lacto-N-
tetraose (LNT) and lacto-N-neotetraose (LNnT).

The concentration and composition of HMOs vary from 
individual to individual and from lactation to lactation 
(Thum et al. 2021). Fucosyltransferase 2 and 3 are encoded 
by secretory and Lewis genes, respectively. There are genetic 
variations that affect the activity (Soyyılmaz et al. 2021). 
In addition to genetic factors, other maternal factors may 
affect the composition of breast milk to some extent. The 
composition of HMOs was examined in 290 healthy breast 
milk samples. There were differences in the concentration of 
HMOs before pregnancy, delivery and parity (Samuel et al. 
2019). Studies have provided data to show the correlation 
between HMOs and maternal factors, such as body weight, 
BMI, parity and age (McGuire et al. 2017; Azad et al. 2018). 
On the other hand, HMOs may also affect lactating mothers. 
HMOs can be used as a probiotic or antimicrobial agent to 
affect Staphylococci, Streptococci, Lactobacillus and Ente-
rococci (Bode 2012). These oligosaccharides may affect the 
bacterial community in milk by promoting the growth of 
specific genera (Hunt et al. 2012), or directly regulate breast 
epithelial cell response and local immune response (Bode 
2012).

Human milk microbiota affects maternal and infant health 
through breastfeeding. At the same time, HMOs affect the 
distribution and growth of infant intestinal microbiota. 
HMOs exist in human milk, which are associate with the 

milk microbiota and mother’s situation. Understanding 
the biological and environmental factors associated with 
the HMOs is an important part of the complex subject of 
maternal and child health. However, there are few studies 
on the relationship of HMOs and milk microbiota in China, 
especially in colostrum.

To our knowledge, the relationship between clinical char-
acteristics and high levels of nutrition (including HMOs) in 
breast milk has not been confirmed. Though HMOs has been 
proved to have an impact on infant intestinal microbiota, it 
is not clear whether HMOs affected the microbiota of milk. 
Therefore, we collected human colostrum and pioneered the 
exploration of the potential relationship between HMOs and 
microbiota. At the same time, we observed the correlation 
of HMOs and maternal clinical characteristics. The find-
ings may enrich the clinical data of breast milk research and 
guidelines for maternal and child health.

Materials and methods

Study participants

Healthy Chinese lactating women from the Shanghai Fourth 
People’s Hospital Affiliated to Tongji University School of 
Medicine were included in the study from October 2022 
to December 2022. Informed consent was obtained from 
all subjects at enrollment. The study was approved by the 
Institutional Review Board (IRB) of the Shanghai Fourth 
People’s Hospital (20,211,124-001).

The inclusion criteria for the participants were as follows: 
(I) they were healthy and lactating; (II) postpartum colos-
trum was collected within 5 days after delivery. Exclusion 
criteria were as follows: (I) there was mammary abscess, (II) 
there was any other mammary pathology.

Collection and processing of milk samples

Colostrum samples were collected from healthy breastfeed-
ing women within 5 days after delivery and 5 ml of milk was 
collected from each side of the breast. Women were asked to 
have not fed or expressed from the study breast for at least 2 
h prior to sample collection. Before the milk collection, the 
areola and nipple area were sterilized by using 75% alcohol. 
The first drop of milk (about 150 μl) was discarded to avoid 
contamination. Samples were collected using a single-use, 
sterile containers and stored at − 20 °C. Microbiotal DNA 
was extracted within 24 h after collection.

Human milk oligosaccharide analysis

The HMO analysis was performed as previously described in 
the Laboratory of Immunopharmacology, Shanghai Institute 
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of Materia Medical. After the samples were defatted and 
protein removed, the oligosaccharides were reduced to aldol 
with 1.0M sodium borohydride (NaBH4) and cleaned by 
solid phase extraction (SPE) with graphitized carbon car-
tridges. LC separation using binary gradient at 0.2 mL/min 
flow rate for 55 min. MS analysis runs in forward mode. Raf-
finose was added to each milk sample as an internal standard 
for absolute quantification. The concentration of HMOs was 
calculated as the specific oligosaccharides detected. The fol-
lowing HMOs were detected based on retention time com-
parison with commercial standard oligosaccharides (Zhenz-
hun Biotechnology, Shanghai, China) and mass spectrometry 
analysis: 2ʹ-fucosyllactose (2ʹ-FL Cat.ZMI-108106), 3-fuco-
syllactose (3-FL Cat.ZG10022), 3ʹ-sialyllactose (3ʹ-SL Cat.
ZG-10015), lacto-N-tetraose (LNT Cat.ZEO-GLY-010), 
difucosyl-LNT (DS-LNT Cat. ZEO-GLY-066), lacto-N-
neotetraose (LNnT Cat.ZB-038728), lacto-N-fucopentaose 
I (LNFP I Cat. ZG10048), LNFP II (Cat. ZG10049), and 
LNFP III (Cat. ZG10051).

Microbiotal DNA extraction

Total microbiotal DNA was extracted from the colostrum 
and mastitis milk samples using a microbiotal DNA Extrac-
tion Kit (TIANGEN, Beijing, China). Initially, milk samples 
(1 mL) were centrifuged at 12,000 rpm for 20 min at 4 °C. 
The supernatants with the fat and whey layer were removed. 
The protocol included an initial rupture of the microbiotal 
wall by 30 min of incubation with lysozyme (20 mg/mL) at 
37 °C. Total DNA was then isolated from the pellets using 
the microbiotal DNA extraction kit (TIANGEN Cat: DP302) 
following the manufacturer’s instructions. A spectrophotom-
eter (Thermo NanoDrop) was used to quantify the DNA. The 
purified DNA extracts were stored at – 20 °C.

Microbiotal quantitation of colostrum

Standard curves were created using serial tenfold dilutions 
of microbiotal DNA extracted from qPCR amplification 
products (Collado et al. 2009). A strain belonging to each 
of the microbiotal genera or groups targeted in this study 
was used to construct the standard curve. PCR standards 
were added, and the standard curve was obtained.

Microbial quantitation was based on the conserved 
marker gene 16s rRNA for microbiotal genus including Bifi-
dobacterium, Lactobacillus, Staphylococcus and Streptococ-
cus. Real-time PCR quantitation for target microbiotal gene 
was conducted with ABI 7900HT Fast Real-time PCR Sys-
tem (Applied Biosystems, Thermo Fisher, U.S.). Each reac-
tion mixture (25 μl) was composed of 12.5 μl SYBR Green 
Master Mix (TIANGEN Cat: FP205), 0.1 ul of each of the 
specific primers at a con centration of 100 μM and 5.0 μL 
of template (1 ng/μl). Forty cycles of two-step polymerase 

chain reaction amplification were performed on the Applied 
Biosystems real-time polymerase chain reaction system 
(95 °C 5 s, 60 °C 32 s). The microbiotal concentration in 
each sample was measured as  log10 genome equivalents by 
the interpolation of the Ct values obtained by the milk sam-
ples into the standard calibration curves. All samples were 
analyzed in two independent PCR assays, and the standard 
curve should be determined at all times.

The primer sequence was as follows: (Lactobacillus) 
LactoF TGG AAA CAG RTG CTA ATA CCG; LactoR GTC 
CAT TGT GGA AGA TTC CC; (Bifidobacterium) T-Bifid426-
F CTC GTA GGC GGT TCGTC; T-Bifid426-R GAA CAT GTC 
AAG CCC AGG; (Staphylococcus) TStaG422 GGC CGT GTT 
GAA CGT GGT CAA ATC A; TStag765 TAC CAT TTC AGT 
ACC TTC TGG TAA;(Streptococcus) Tuf-Strep-1 GAA GAA 
TTG CTT GAA TTG GTT GAA; Tuf-Strep-R GGA CGG TAG 
TTG TTG AAG AATGG.

Statistical analysis

All data were expressed as x ± s or [M (Q25, Q75)]. Con-
tinuous variables were compared using the t test or the 
Mann–Whitney U test. A single-factor analysis of variance 
(ANOVA) or Kruskal–Wallis test was used for multiple 
comparisons. A spearman correlation matrix was calculated 
for the HMO groups and the different microbiota, as well 
as individual HMO structures and the microbiota. p < 0.05 
was considered the statistically significant level. All the PCR 
data represented three groups. The statistical analysis was 
done with IBM SPSS version 27.0 (Chicago, IL, U.S.) and 
Graphpad Prism version 9.0 (La Jolla, CA, U.S.).

Results

Clinical data of participants

A total of 70 subjects were included in this study, excluding 
those who lost follow-up and missing data (Fig. 1). Table 1 
shows the participant’s description data. The average age of 
pregnant women was 29.7 ± 3.9, and the gestational weeks 
were normal. The maternal colostrum with an average of 
2.9 ± 1.0 days was collected. The subjects were counted 
according to the number of deliveries, mode of delivery, 
lactation mode, situation before delivery, and whether to use 
antibiotics in perinatal period. 

The concentration of HMOs

The concentrations of major oligosaccharides were as fol-
low: 2'-FL 440.1 ± 215.6 ng/ml, 3-FL 665.7 ± 597.8 ng/ml, 
LNFP I 597.3 ± 470.1 ng/ml, LNFP II 373.4 ± 228.5 ng/
ml, LNFP III 84.3 ± 33.9 ng/ml, 3-SL 560.7 ± 383.9 ng/
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ml, DS-LNT 575.6 ± 522.7 ng/ml, LNT 785.7 ± 460.5 ng/
ml, LNnT 142.7 ± 99.4 ng/ml (Fig. 2). The substituents are 
divided into three categories according to their substituents, 

which are fucosylated HMOs (2ʹ-FL, 3ʹ-FL, LNFP I, LNFP 
II, LNFP III), sialylated HMOs (3-SL, DS-LNT) and non-
fucosylated HMOs (LNT, LNnT). Furthermore, the cor-
relation between different oligosaccharides was analyzed 
(Table 2). The results showed that there was a negative cor-
relation between 2'-FL and 3-FL (r = – 0.465, p = 0.001), 
3-FL and LNFP I (r = – 0.334, p = 0.005). There was a 
positive correlation between 2'-FL and LNFP I (r = 0.449, 
p = 0.001), LNT and LNnT (r = 0.778, p = 0.001) (Fig. 3).  

The Relationship between HMOs and clinical 
characteristics

The HMO of different groups are compared according to 
the number of deliveries, mode of delivery, lactation mode, 
situation before delivery, and whether to use antibiotics in 
perinatal period (Fig. 4). The results showed that the concen-
tration of non-fucosylated HMOs in vaginal delivery milk 
was less than that of cesarean (p = 0.038). The concentra-
tion of primipara Fucosylated HMOs was higher than that 
of multipara (p = 0.030). Non-fucosylated HMOs in breast 
milk of women who took antibiotics during the perinatal 
period were less than those who did not use (p = 0.020). 
Non-fucosylated HMOs in breast milk from breastfeeding 
women who were sucked by the baby were less than that of 
that breast pump (p = 0.038). Vacation or work before deliv-
ery and abortion history has no significant effect on HMOs 
concentration (p > 0.05).

The correlation between HMOs and microbiota

Bifidobacterium, Lactobacillus, Staphylococcus and Strep-
tococcus was detected in milk (Fig. 5). We analyzed the 
correlation between microbiota and HMOs (Fig. 6, Table 3). 
The results showed that LNT was positively correlated with 
Lactobacillus (r = 0.250, p = 0.037). The concentration of 
DS-LNT was negatively correlated with Staphylococcus 
(r = – 0.240, p = 0.045). There was a positive correlation 
between Streptococcus and LNFP II (r = 0.314, p = 0.011), 
LNFP III (r = 0.251, p = 0.044), 3-SL (r = 0.322, p = 0.009), 
LNnT (r = 0.292, p = 0.018).  

Discussion

In this study, we collected the precious colostrum. We quan-
titatively analyzed oligosaccharides in colostrum. Then, we 
found the relevance of oligosaccharides and the clinical 
characteristics of breastfeeding women. Furthermore, this 
study explored the relevance of the microbiota and HMOs 
in milk, which could guide lactation.

Human milk contains the plenty HMOs and various 
microbiota categories. The results from our study confirmed 

Fig. 1  Clinical trial flow chart

Table 1  Clinical data of 70 healthy participants [ x ± s or n (%)]

� ± s or n (%)

Age 29.7 ± 3.9
Days after delivery 2.9 ± 1.0
Weeks of pregnancy 39.0 ± 1.32
Mode of delivery
 Vaginal 33 (47.1)
 Cesarean 37 (52.9)

Number of deliveries
 Primipara 45 (64.3)
 Multipara 25 (35.7)

Whether to use antibiotics in the perinatal period
 Antibiotics 39 (55.7)
 Without antibiotics 31 (44.3)

Lactation mode
 Breastfeeding 59 (84.3)
 Breast pump 11 (15.7)

Situation before delivery
 Work 15 (21.4)
 Vacation 55 (78.6)
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Fig. 2  The concentrations of HMOs in human colostrum (a the 
concentrations of several HMOs: 2'-FL 440.1 ± 215.6 ng/ml, 
3-FL 665.7 ± 597.8 ng/ml, LNFP I 597.3 ± 470.1 ng/ml, LNFP II 
373.4 ± 228.5 ng/ml, LNFP III 84.3 ± 33.9 ng/ml, 3-SL 560.7 ± 383.9 

ng/ml, DS-LNT 575.6 ± 522.7 ng/ml, LNT 785.7 ± 460.5 ng/ml, 
LNnT 142.7 ± 99.4 ng/ml; b the concentrations of three kinds of 
HMOs: fucosylated HMOs 2314.3 ± 1994.4 ng/ml, sialylated HMOs 
1136.3 ± 791.5 ng/ml, non-fucosylated HMOs928.3 ± 530.7 ng/ml)

Table 2  The correlation 
between HMOs in milk 
(*p < 0.05)

2'-FL 3-FL LNFP I LNFP II LNFP III DS-LNT 3'-SL LNT LNnT

2'-FL
 r 1
 p  – 

3-FL
 r  – 0.465* 1
 p 0.001  – 

LNFP I
 r 0.449*  – 0.334* 1
 p 0.001 0.005  – 

LNFP II
 r  – 0.418* 0.669*  – 0.010 1
 p 0.001 0.001 0.938  – 

LNFP III
 r  – 0.151 0.430* 0.392* 0.553* 1
 p 0.212 0.001 0.001 0.001  – 

DS-LNT
 r 0.189 0.093 0.569* 0.066 0.512* 1
 p 0.117 0.445 0.001 0.585 0.001  – 

3'-SL
 r  – 0.14 0.215 0.351* 0.351* 0.499* 0.509* 1
 p 0.246 0.074 0.003 0.003 0.001 0.001  – 

LNT
 r  – 0.190 0.271* 0.211 0.541* 0.419*  – 0.259* 0.087 1
 p 0.116 0.023 0.079 0.001 0.001 0.030 0.475  – 

LNnT
 r  – 0.232 0.277* 0.392* 0.562* 0.643* 0.073 0.403* 0.788* 1
 p 0.054 0.020 0.001 0.001 0.001 0.548 0.001 0.001  – 
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that colostrum samples of human milk consisted of high 
content of HMOs, with the evidences indicating that the 
Fucosylated HMOs as the highest compared with Sia-
lylated HMOs or non-fucosylated HMOs. It was found that 
the ratio of the oligosaccharides in HMOs varied among 
the breastfeeding (Thurl et al. 2017; Xu et al. 2017). Our 
study exhibited the concentrations of 2'-FL, 3-FL, LNT and 
LNFP I were 0.58 g/L, 0.4 g/L, 0.55 g/L and 0.47 g/L cor-
respondingly. It was reported that 2'-FL could be considered 
as the most abundant oligosaccharide in colostrum with the 
level almost 4.1 g/L, with the concentrations of 3-FL, LNT 
and LNFP I lower than it (Marriage et al. 2015; Thum et al. 
2021). Meanwhile, the results from one meta study indicated 
that the mean content of 2'-FL, 3-FL and LNFP I varied 
from 0.14 to 2.74 g/L (Thurl et al. 2017), which was consist-
ent with our founding. The concentrations of LNFP II and 
LNFP III were 0.19 g/L and 0.07 g/L, which were lower 
than the reported mean content of 0.21–0.58 g/L (Thurl et al. 
2017). Previously research indicated that the level of LNnT 
was 0.36–1.12 g/L (Ma et al. 2018) which was higher than 
our results of 0.12 g/L. And the concentrations of 3-SL and 
DS-LNT were 0.50 g/L and 0.39 g/L in this study, which 
were different from the reported results of 0.19–0.29 g/L 

(3-SL) and 0.50–0.77 g/L(DS-LNT) (Gidrewicz and Fenton 
2014; Van Niekerk et al. 2014). Previously studies mainly 
concentrated in the European or America, which rarely 
involved Asia, especially the China. Differences between 
our results and other reports would originate in the regional 
differences, which would be affected by the race, culture 
and living habits, etc. Besides, the concentrations of HMOs 
would be influenced by the personal status, including the α 
(1,2)-fucosyltransferase (FUT2) and enzyme FUT3 encoded 
by Lewis blood group gene (Morrow et al. 2011; Soyyılmaz 
et al. 2021). In addition, the differences would be attrib-
uted to the measurements conducted in the various studies 
(Austin and Bénet 2018; Huang et al. 2019). The method 
conducted in our results was LC–ESI–MS to determine the 
concentrations with the advancement of fast and convenient 
(Chaturvedi et al. 1997; Porfirio et al. 2020; Catenza and 
Donkor 2021). Other detection methods, such as refractive 
index detection (RID), evaporative light scattering detection 
(ELSD) and capillary electrophoresis (CE), have common 
disadvantages including complicated sample preparation 
steps and low sensitivity (Sarkozy et al. 2021).

The relationship between kinds of HMOs was observed 
in our study, including the negative correlation between 

Fig. 3  The correlation between HMOs in milk (a 2'-FL and 3-FL; b 2'-FL and LNFP I; c 3-FL and LNFP I; d LNT and LNnT)
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2'-FL and 3-FL which was consistent with the reported 
results (r = 0.78–0.99) (Austin et al. 2016; Thurl et al. 2017). 
The two HMOs contained the similar molecular structure 
which shared the same substrate (Guanosine 5′-diphosphate 
(GDP)-l-amylose), further resulting the negative correlation 
(Thum et al. 2021). The positive relationship of 2'-FL and 
LNFP I was observed in this study, which originated in α1-2 
Rockweed glycosylation and the high dependence of FUT2 

activity (Phipps et al. 2021). The results from our study 
also indicated that LNT positively related with LNnT, with 
supporting evidences that the two HMOs could be regu-
lated by α1-2-fucosyltransferase (FUT2) (Sprenger et al. 
2017). In addition, it was reported that LNT was negatively 
related with 2′-FL (Sprenger et al. 2017), which was differ-
ent from our results that no relationship between LNT and 
2′-FL founded. Meanwhile, our results exhibited that LNFP 

Fig. 4  Clinical characteristics and HMOs of subjects (a mode of delivery; b number of deliveries; c antibiotics in perinatal period; d lactation 
mode; e situation before delivery; f abortion history; *p < 0.05)
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I was negatively related with 3-FL. However, Gabrielli 
et al. (2011) reported a positive correlation between the two 
HMOs, which would attributed to the different race and liv-
ing habits, etc. Based on the above results, it was supposed 
that the HMOs with the similar molecular structure con-
tained the homologous synthesis pathway, such as the regu-
lation of Sialylated HMOs including 3'-SL and DS-LNT.

Oligosaccharides were formed through the conjunc-
tion of nucleotide sugar molecules based on the glycosidic 
bonds, which were catalyzed by the glycosyltransferases. 
The generation of HMOs was regulated by the cellular gly-
cosyltransferases (including FUT2 and FUT3) in mammary 
gland cells, and simultaneous influenced by substrate. All 
the process were closely related with the physiological state 
of the mother, which caused the sightly influence on the 
glycosylation during the onset of the breastfeeding (Samuel 
et al. 2019). Concentrations of specific HMOs were related 
with maternal age, allergy history, pre-pregnancy body mass 
index, gestational age, mode of delivery, infant gestational 
age and sex (Wang et al. 2020). The results from this study 
indicated that higher concentrations of fucosylated HMOs 
in first-time mothers’ milk was founded compared with the 
milk from multiple births. Niekerk et al. (2014) also reported 
that the concentrations of HMOs were negatively correlated 
with births and the first contain the higher level, which was 
consistent with our results. But Azad et al. (2018) reported 
that there were relationships between the concentrations 
of HMOs and the times of birth. Meanwhile, this study 
exhibited that the non-fucosylated HMOs concentrations 
in breast milk from the mother underwent vaginal delivery 

were lower than it from the mother with cesarean delivery. 
However, it was reported that no relationship was founded 
between HMOs concentrations and delivery modes (Azad 
et al. 2018). In addition, the non-fucosylated HMOs concen-
trations in breast milk from breastfeeding mothers who are 
suckled by their babies was lower than it from the mothers 
who breastfeed the children through the breast-pumps. And 
the concentrations of non-fucosylated HMOs in the mother 
who unused antibiotics during the perinatal administration 
were higher. All the evidences suggested that there are dif-
ferences in the susceptibility of various HMOs to maternal 
characteristics, further revealed that there may be different 
synthetic pathways for each type of HMOs.

It was noteworthy that there were complex relationships 
between HMOs and microorganisms. Previously studies 
reported that HMOs could directly mediate infant intestinal 
Staphylococci, Streptococci, Lactobacilli and Enterococci, 
or modulate maternal mammary epithelial cell responses and 
local immune responses (Bode 2012; Porro et al. 2022). Bifi-
dobacterial proliferation in breastfed infants was correlated 
with the high levels of HMOs in breast milk from mothers 
(Le Doare et al. 2018; Moya-Gonzálvez et al. 2021). The 
breast milk was not considered as non-sterile and consisted 
of complex flora, which varies greatly among individuals 
(Tao et al. 2020). Based on the results from the measure-
ments of colostrum samples, Lactobacillus and Streptococ-
cus contents were higher compared with Bifidobacterium 
and Staphylococcus. The bacteria of breast milk could origi-
nate from the skin surface, and was associated with its own 
intestinal flora (Latuga et al. 2014). It was supposed that 
various bacteria utilized HMOs (such as Bifidobacterium 
and Lactobacillus), or benefited from their promotive/inhibi-
tory effects without direct utilization (Craft and Townsend 
2018; Zúñiga et al. 2018), with the possible relationships 
between HMOs and bacteria desired further exploration.

However, rare studies focused on the potential relation-
ships between HMOs and bacteria of breast milk. The results 
from our study founded that DS-LNT was negatively related 
with Staphylococcus, which was consistent with the report 
that HMOs contained the bacteriostatic effect on pathogens 
from Yue et al. (2020). Rubio et al. (2019) also founded 
that the higher the level of staphylococcus in breast milk 
accompanied with the lower concentrations of total HMOs. 
Moossavi et al. (2019) analyzed the milk samples from 393 
mothers and reported that oligosaccharides were associated 
with the diversity of lactic microbial communities with 
results including the negative relationship between HMOs 
and Staphylococcus (r = – 0.60 p = 0.038). It was believed 
that Staphylococci could bind to HMOs or HMOs contained 
the inhibitor effect on Staphylococci proliferation, which 
lead to the negative relationship between them. However, it 
was reported that the relative abundance of Staphylococcus 
was positively correlated with HMOs content based on the 
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Fig. 5  Concentration of microbiota in human colos-
trum (Bifidobacterium 4.77 ×  10^4 ± 0.63 ×  10^4/ml, Lac-
tobacillus 5.07 ×  10^4 ± 0.93 ×  10^4/ml, Staphylococcus 
4.40 ×  10^4 ± 1.48 ×  10^4/ml, Streptococcus 6.43 ×  10^4 ± 1.45 ×  10^4/
ml)
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measurements from healthy breast milk samples (Williams 
et al. 2017). Therefore, the potential relationship still desired 
further confirmation through the clinical studies from with 
the expand sample size.

It was delighted that we found LNT was positively cor-
related with Lactobacillus. Rubio et al. (2019) also obtained 
the similar conclusion that higher levels of Lactobacillus 
were positively associated with concentrations of 2'-FL 
(r = 0.542, p = 0.038 in colostrum samples, and r = 0.700, 
p = 0.001 in mature samples). The results from our study 
proved that LNFP II, LNFP III, 3-SL, and LNnT possessed 

positive effects on Streptococcus proliferation. It was 
reported that Streptococcus levels were positively corre-
lated with total HMOs in colostrum and transition samples 
of breast milk (Cabrera-Rubio et al. 2019). Besides, previ-
ously studies reported that oligosaccharides, such as 2'-FL 
et al., inhibited the growth of Group B Streptococci and 
Streptococcus pyogenes in vitro (Ackerman et al. 2017; Salli 
et al. 2020). However, the categories of Streptococcus genus 
also included the common probiotics such as Streptococcus 
thermophilus et al., in addition to Group B Streptococcus 
and Streptococcus pyogenes. It was important to conduct a 

Fig. 6  The correlation between microbiota and HMOs (a LNT and Lactobacillus; b DS-LNT and Staphylococcus; c LNFP II and Streptococcus; 
d LNFP III and Streptococcus; e 3-SL and Streptococcus; f LNnT and Streptococcus)
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series of studies to confirm the relationships between HMOs 
and Streptococcus. There were no relationships between 
HMOs and Bifidobacterium founded in our study. But evi-
dences proved that Bifidobacterium was positively correlated 
with Sialylated HMOs and LNT (Aakko et al. 2017), and 
negatively correlated with DS-LNT (Moossavi et al. 2019). 
There were no associations between HMOs and bacteria 
of breast milk, which would be attributed to characteris-
tic differences of HMO consumption by bacteria (Zúñiga 
et al. 2018). Therefore, the in-depth and comprehensive 
researches needed to be conducted to explore the potential 
relationships between HMOs and bacteria of breast milk.

In conclusion, there is a positive correlation between 
HMOs that depend on FUT2 in colostrum. We found that 
maternal clinical characteristics such as mode of delivery, 
number of delivery and lactation mode were associated with 
HMOs. In addition, there were correlations between HMOs 
and Lactobacillus, Staphylococcus and Streptococcus in 
milk. However, we were limited by multiple factors, such 
as the number of subjects, age, regional provinces and so 
on. In this study, secretor status was not determined on the 
basis of serological tests. In order to enrich the study of Chi-
nese colostrum, it should be further studied in more groups 
in the future. Further experiments could be carried out to 
explore the mechanism of HMOs and Microbiota in vivo 
and in vitro.
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