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Introduction

Acidobacteria is a very diverse and ubiquitous bacterial 
phylum. Furthermore, those bacteria seem to be especially 
well adapted to soil environment, often representing one the 
most abundant bacterial phylum (Janssen 2006; Lee et al. 
2008). Although there are inconsistencies in reports regard-
ing the preference of Acidobacteria in inhabiting bulk ver-
sus rhizosphere soils (Fierer et al. 2007; Singh et al. 2007; 
Kielak et al. 2008), there are clear evidences for the asso-
ciation of some Acidobacteria with plants (da Rocha et al. 
2010, 2013). The enormous phylogenetic diversity within 
the phylum also suggests that Acidobacteria are genetically 
and, most likely, metabolically dissimilar; thus, the results 
of single studies cannot be generalized and easily extrapo-
lated to the whole phylum.

Due to the still low number of sequenced genomes and 
difficulties associated with cultivation, the ecological role 
of this phylum remains rather unknown (Kielak et al. 2016). 
Nevertheless, a number of studies have compared distribu-
tion and diversity of Acidobacteria in relation to plant root 
proximity (Chow et al. 2002; Filion et al. 2004; da Rocha 
et al. 2010; Chaparro et al. 2014) and/or plant exudates (Shi 
et al. 2011; Mao et al. 2014). For example, acidobacterial 
strains have been obtained from internal plant tissues hint-
ing to an endophytic lifestyle (Idris et  al. 2004; Nissinen 
et al. 2012; Poosakkannu et al. 2015). Mendes et al. (2014) 
using culture-independent approach technique have shown 
that Acidobacteria are overrepresented in soybean rhizos-
phere, and da Rocha et al. (2010) have reported by means 
of qPCR, the Holophagae (Acidobacteria subdivision 8) 
being more abundant in leek rhizosphere. However, in the 
second case bacterial cell number was lower in spheres 
very proximate to roots or on the root surface itself.
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Acidobacteria were also shown to be dominant in the 
rhizosphere of Arabidopsis thaliana, and moreover, change 
in terms of phylum composition and abundance during 
plant development, possibly due to changes in plant exuda-
tion (Chaparro et  al. 2014). However, most of the studies 
were based on culture-independent method based on 16S 
ribosomal gene marker sequencing due to difficulty to cul-
ture Acidobacteria and perform experiments under labora-
tory conditions. Thus, those type of studies do not investi-
gate the nature of plant–bacteria interactions. Concerning 
few studies on Acidobacteria physiology, non-traditional 
sources of carbon such as complex polysaccharides were 
suggested to improve cultivability of Acidobacteria (Koch 
et  al. 2008; Pankratov and Dedysh 2010; Eichorst et  al. 
2011). Also some of the characterized strains were shown 
to be able to utilize plant-derived polymers (Pankratov 
et al. 2008, 2012; Eichorst et al. 2011) further suggesting 
close relation between plants and specific Acidobacteria 
subdivisions. Nevertheless, available strains can be used for 
attempts of studying interactions with plants under experi-
mental conditions. In order to test the hypothesis that Aci-
dobacteria strains effect plant growth, we assayed the inter-
actions of three class Acidobacteria strains with A. thaliana 
ecotype Columbia 0 (Col 0) under in vitro conditions.

Materials and methods

Bacterial strains

Three Acidobacteria strains belonging to the class Acido-
bacteria from the NIOO-KNAW microorganisms’ collec-
tion were used in this study. Two of the strains are affiliated 
with genus Granulicella, namely Granulicella sp. WH15 
(Valášková et al. 2009) and 5B5 (KM979383), and one is 
a type strain of the genus Acidicapsa, A. ligni WH120T 
(Valášková et  al. 2009; Kulichevskaya et  al. 2012). Pseu-
domonas putida IAC-RBal4 (KJ590499) and Escherichia 
coli WA321 (DSM no. 4509) strains were used as positive 
and negative controls of plant growth-promoting bacteria, 
respectively.

Plant–bacteria interaction experiment

Arabidopsis thaliana ecotype Columbia 0 seeds were sur-
face sterilized by washing in 70 % ethanol for 5 min fol-
lowed by submerging for 10 min in 50 % bleach and rins-
ing four times with sterile distilled water. Sterile seeds 
were placed on half-strength Murashige and Skoog (MS) 
medium pH 5.7 (Murashige and Skoog 1962) supple-
mented with 12  g  L−1 plant agar (Duchefa Biochemie 
bv) and 5 g L−1 sucrose. Six plants were grown per plate. 
Seedlings were incubated at 21 °C with the light cycle of 

photoperiod 16 h/8 h day/night. The root tips of 5-day-old 
seedlings were inoculated with 2.5 µL of bacterial suspen-
sion (phosphate saline buffer, pH 5.5) of OD600 = 1 cor-
responding to 1.7 ×  106, 1.5 ×  107 and 1.3 ×  107 CFU 
for A. ligni WH120T, Granulicella sp. 5B5 and WH15, 
respectively, or by direct transfer from the solid medium 
(0.1 × TSA, pH 5.0 see below) as an alternative method. 
The effect of bacteria on plant growth was evaluated 
3 weeks post-inoculation.

Indole acetic acid (IAA) production

IAA production was determined based on the method 
described by Bric et  al. (1991). Acidobacteria strains and 
P. putida IAC-RBal4 (positive control) were inoculated on 
0.1 × tryptone soy agar (TSA) plates (pH 5.0 and 5.7) sup-
plemented with 5 mM L−1 tryptophan and covered with a 
cellulose nitrate filter (0.45 µm pore size, Sartorius). TSA 
contained 1 g L−1 NaCl, 3.0 g L−1 TSB (Oxoid), 1.95 g L−1 
MES, 20  g  L−1 agar (Boom, Netherlands). Plates were 
incubated at 20  °C until colonies reached approximately 
4–5 mm diameter (5 days), and then the membranes were 
washed in the Salkowski reagent (1.2 % FeCl2 in 37 % sul-
furic acid). The reaction was allowed to proceed for 30 min 
at RT until purple color appeared. All strains were tested in 
triplicates on separate plates.

Phosphate solubilization assay

Acidobacteria strains were tested for their ability to solu-
bilize a mineral form of phosphate. P. putida IAC-RBal4 
was used as a positive control. Tests were performed on the 
National Botanical Research Institute’s phosphate growth 
medium (NBRIPM) containing per liter 15  g agar–agar 
ultrapure (Merck KGaA), 10 g glucose, 5 g Ca3(PO4)2, 5 g 
MgCl2·6H2O, 0.25  g MgSO4·7H2O, 0.2  g KCl and 0.1  g 
(NH4)2SO4 (Nautiyal 1999). All strains were inoculated by 
transfer from the 0.1 × TBA pH 5.0 media using inocula-
tion loop and incubated for 6 weeks at 20 °C. The clearing 
zones around the colonies indicated phosphate solubiliza-
tion by the isolates. The experiment was carried out in trip-
licate on separate plates.

Siderophore production

Detection of siderophore production was carried out in 
chrome azurol S (CAS) agar plates. Removal of iron 
from the CAS dye by iron-chelating compounds results 
in a color change from blue to yellow/orange. The CAS 
medium was prepared according to the method described 
by Schwyn and Neilands (1987). Bacteria were collected 
from 0.1  ×  TSA plates, resuspended and washed twice 
with phosphate-buffered saline pH 6.5. An aliquot of 10 µL 



989Arch Microbiol (2016) 198:987–993	

1 3

of bacterial suspension was spotted on CAS agar plates. 
Plates were checked daily for color change around each 
colony. E. coli WA321 was used as a positive control.

nifH targeting PCR

The nifH gene targeting PCR was performed accord-
ing to the modified protocol by Brankatschk et al. (2012). 
PCR amplification was performed in a 25-μL reac-
tion mixture including DNA template, 0.6  μM of prim-
ers (nifHF/nifHR), 200 μM dNTPs, 1× of Taq buffer and 
0.04 U FastStart High Fidelity Taq Enzyme Blend (Roche). 
The PCR were performed under the following conditions: 
initial denaturation step 5 min at 95 °C, followed by touch-
down cycles of denaturation for 15  s at 95  °C, annealing 
starting at 63  °C with temperature decreases of 2  °C per 
two cycles and elongation at 72  °C for 45  s followed by 
30 cycles with annealing at 53 °C. The final extension was 
extended to 10 min at 72 °C.

Results and discussion

In this study, we tested three acidobacterial strains for pos-
sible interactions with A. thaliana (Col 0) roots. The growth 
of the plantlets was clearly positively affected by the pres-
ence of bacteria (Fig. 1). The presented results are shown 
with bacteria transferred directly from the solid media 
since this method of inoculation resulted in a stronger plant 
response. Root length, lateral root formation and root hair 
number were increased in plants exposed to Acidobacteria 
strains used in this study (Fig. 1A). Moreover, the root bio-
mass increased significantly for plantlets inoculated with 
all three strains (Fig. 1B). The improved root architecture, 

more lateral branches and/or higher number of root hairs 
assist in more efficient water and nutrients uptake (Herder 
et  al. 2010). Increased shoot biomass was also observed; 
however, the differences were not significant. We hypoth-
esize that the stronger effect observed on plant growth with 
bacteria from the growth media in comparison with the 
bacterial suspension is not only related to higher bacterial 
biomass in the inoculum but also to the stress and longer 
adaptation time experienced by bacteria under the unfa-
vorable culture conditions.

Bacterial adhesion, biofilm formation and growth along 
the root surfaces were observed for all three strains (Fig. 2). 
Acidobacteria strains Granulicella paludicola, G. pectini-
vorans, G. aggregans and G. rosea (Pankratov and Dedysh 
2010), Acidicapsa borealis and A. ligni (Kulichevskaya 
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Fig. 1   Effects of inoculation with Acidobacteria strains on Arabi-
dopsis thaliana seedlings. Root tips of 5-day-old seedlings were 
inoculated by direct transfer with a loop of bacteria grown on 
0.1 × TSA medium, pH 5.0. A Changes in morphology. Image was 

taken 3 weeks post-inoculation. B Changes in root length and fresh 
biomass. Different letters (a, b) indicate statistically significant differ-
ences (P < 0.05) between inoculated and control plants according to t 
test. Error bars represent SD (n = 6 plates each with six plants)

Fig. 2   Root colonization and biofilm formation around Arabidopsis 
thaliana roots by strain 5B5
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et al. 2012) and Terriglobus tenax (Whang et al. 2014) were 
proven to produce extracellular polysaccharide. By genome 
mining, Ward et  al. (2009) have suggested Acidobacteria 
being involved in soil matrix formation, water and nutrition 
trapping, or bacterial adhesion that lead to soil aggregate 
formation. However, here, for the first time we show that 
Acidobacteria strains produce exopolysaccharide (EPS) in 
the adhesion of bacteria to the root surfaces.

Bacteria can have positive effect on plant growth indi-
rectly by acting as a biocontrol agent or directly by modu-
lating plant hormone levels (Hayat et  al. 2010) or/and by 
facilitating resource acquisition (mostly nitrogen, phospho-
rus and iron). Among the plant hormones, the auxin indole-
3-acetic acid (IAA) has received most of the attention. As 
auxin production could best explain the observed changes 
in the plant phenotypes, we tested our strains for produc-
tion of this phytohormone. A color change due to IAA pro-
duction was observed for all three strains indicating all of 
them as positive for indolic substances production (Fig. 3).

Moreover, we tested our strains for nutrient acquisi-
tion abilities. Phosphorus (P) is an important macronutri-
ent for plant growth and development. However, in gen-
eral, the concentration of soluble P in soil is quite low. It 
is postulated that bacteria can enhance the P acquisition of 

plants (Richardson and Simpson 2011). All three strains 
were proven to be not able to solubilize mineral phosphate 
(Fig. 4). Nevertheless, the enhanced P uptake by plants can 
be also achieved via hormonal stimulation of root growth, 

Fig. 3   Isolates were tested 
for indole acetic acid (IAA) 
production by bacteria immo-
bilization on a nitrocellulose 
membrane followed by washing 
the membrane with Salkowski 
reagent. P. putida IAC-RBal4 
was used as a positive control. 
A P. putida IAC-RBal4, B strain 
WH120T, C strain 5B5 and D 
strain WH15

Control WH15

WH120T5B5

Fig. 4   Isolates were tested for phosphate solubilization on agar plate 
using National Botanical Research Institute’s phosphate medium. P. 
putida IAC-RBal4 was used as a positive control
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branching or root hair development mediated by IAA 
among others (Richardson and Simpson 2011).

On the other hand, the assay for siderophore production 
showed that all three strains react with the media (Fig.  5). 
Detection of siderophore production was carried out on 
chrome azurol S (CAS) agar plates. Removal of iron from 
the CAS dye by iron-chelating compounds results in a color 
change. The discoloration was observed for all strains with 
stronger discoloration zones observed around 5B5 and 
WH120T colonies than around colonies of strain WH15. 
Plants have high iron requirement but similarly to P, most of 
the iron in soil is in ferric form, which is unavailable for plant 
uptake (Hayat et al. 2010). The strategies of iron uptake by 
plants are similar to those from bacteria. Those include acidi-
fication of the rhizosphere resulting in reduction of Fe3–Fe2 
or synthesis of Fe3 chelators (Morrissey and Guerinot 2009; 
Saha et al. 2013). Additional advantage of bacterial sidero-
phore production is competition with pathogens by removing 
iron from the environment (Saha et al. 2013).

In order to test the ability of the strains to fix N2, we 
have carried out PCR targeting nitrogenase (nifH) gene. 
However, the results showed no evidence of such ability of 
tested strains. The absence of nifH is in agreement with aci-
dobacterial genome mining studies (Ward et al. 2009). Up 
to now, there is no experimental evidence for the ability of 
Acidobacteria type strains to fix nitrogen.

Conclusion

Based on our findings, we provide for the first time a direct 
evidence of active Acidobacteria–plant interaction and data 
indicating growth-promoting effects by Acidobacteria. 
We verified that a possible auxin production is involved 
in plant growth promotion. Although commonly used, the 
test conducted to unravel possible mechanisms of this phe-
nomenon, for the first time was applied for Acidobacte-
ria. Further studies are needed to better understanding the 
beneficial Acidobacteria–plant interaction as well as the 
mechanisms involved in such interaction. In addition, we 
conclude that EPS production during root colonization by 
Acidobacteria might be helpful in root adhering to soil par-
ticles and in root protection. Taking into account the domi-
nance in abundance of this phylum in soil environment, the 
overall impact of Acidobacteria on plant growth may be 
significant and the results shown here indicate for the first 
time that Acidobacteria can act as plant growth-promoting 
bacteria.
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Fig. 5   Isolates were tested for siderophore production on CAS 
medium. E. coli WA321 was used as a positive control. A CAS 
plates prepared with the MM9, pH 6.8. B CAS plates prepared with 

the MM9, pH 6.0 and supplemented with casamino acid. a E. coli 
WA321, b  strain WH120T, c strain 5B5 and d strain WH15
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