Skip to main content
Log in

Identification of fitness determinants in Enterococcus faecalis by differential proteomics

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Enterococcus (E.) faecalis is found as commensal in healthy humans, in a variety of fermented foods. It can serve as probiotic but also as pathogen causing endocarditis, bacteremia and urinary tract infections. We have employed a proteomic study with E. faecalis strain OG1RF under different growth conditions and in contact to mouse intestinal cells to identify novel latent and adaptive fitness determinants. These relate to changes in catabolic pathways (BudA), protein biosynthesis (AsnS), cellular surface biosynthesis (RmlA) and regulatory mechanisms (OmpR). This knowledge can be used to derive novel evidence-based targets, which can be used to further elucidate gene expression changes enhancing pathogenicity or fitness in a commensal strain and possibly delineate this species into groups of higher and lower risk for applications in a food or a medical context versus improved treatment strategies of the so far hard to cure diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barcelona-Andrés B, Marina A, Rubio V (2002) Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J Bacteriol 184:6289–6300

    Article  PubMed  Google Scholar 

  • Behr J, Israel L, Gänzle MG, Vogel RF (2007) Proteomic approach for characterization of hop-inducible proteins in Lactobacillus brevis. Appl Environ Microbiol 73:330–3306

    Article  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Boehle LA, Frægestad EM, Veiseth-Kent E, Steinmoen H, Nes I, Eisink V, Geir M (2010) Identification of proteins related to the stress response in Enterococcus faecalis V583 caused by bovine bile. Proteome Sci 8:37

    Article  Google Scholar 

  • Bryan-Jones DG, Whittenbury R (1969) Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J Gen Microbiol 58:247–260

    PubMed  CAS  Google Scholar 

  • Centeno JA, Menendez S, Hermida M, Rodríguez-Otero JL (1999) Effects of the addition of Enterococcus faecalis on Cebreiro cheese manufacture. Int J Food Microbiol 48:97–111

    Article  PubMed  CAS  Google Scholar 

  • Coburn PS, Pillar CM, Jett BD, Haas W, Gilmore MS (2004) Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306:2270–2272

    Article  PubMed  CAS  Google Scholar 

  • Curic M, Stuer-Lauridsen B, Renault P, Nilsson D (1999) A general method for selection of alpha-acetolactate decarboxylase-deficient Lactococcus lactis mutants to improve diacetyl formation. Appl Environ Microbiol 65:1202–1206

    PubMed  CAS  Google Scholar 

  • Dolin MI, Gunsalus IC (1951) Pyruvic acid metabolism II. An acetoin forming enzyme system in Streptococcus faecalis. J Bacteriol 62:199–214

    PubMed  CAS  Google Scholar 

  • Dubrac S, Msadek T (2004) Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Duez C, Zorzi W, Sapunaric F, Amoroso A, Tam I, Coyette J (2001) The penicillin resistance of Enterococcus faecalis JH2-2r results from an overproduction of the low-affinity penicillin-binding protein PBP4 and does not involve a psr-like gene. Microbiology 147:2561–2569

    PubMed  CAS  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for bacterial sex pheromone. Proc Nat Acad Sci USA 75:3479–3483

    Article  PubMed  CAS  Google Scholar 

  • Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett 138:49–54

    Article  PubMed  CAS  Google Scholar 

  • Flahaut S, Hartke A, Giard JC, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaption, cross-protection, and changes on protein synthesis. Appl Environ Microbiol 63:812–814

    PubMed  CAS  Google Scholar 

  • Forrest WW (1965) Adenosine triphosphate pool during the growth cycle in Streptococcus faecalis. J Bacteriol 90:1013–1016

    PubMed  CAS  Google Scholar 

  • Frank A, Pevzner P (2005) PepNovo: De Novo peptide sequencing via probabilistic network modeling. Anal Chem 77:964–973

    Article  PubMed  CAS  Google Scholar 

  • Frank A, Tanner S, Bafna V, Pevzner P (2005) Peptide sequence tags for fast database search in mass-spectrometry. J Prot Res 4:1287–1295

    Article  CAS  Google Scholar 

  • Frank AM, Savitski MM, Nielsen LM, Zubarev RA, Pevzner PA (2007) De Novo peptide sequencing and identification with precision mass spectrometry. J Prot Res 6:114–123

    Article  CAS  Google Scholar 

  • Freitas M, Cayuela C (2000) Microbial modulation of host intestinal glycosylation patterns. Microb Ecol Health Disease Suppl 2:165–178

    Google Scholar 

  • Giard J-C, Rincé A, Capiaux H, Auffray Y, Hartke A (2000) Inactivation of the stress-and starvation-inducible gls24 operon has a pleiotropic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J Bacteriol 16:4512–4520

    Article  Google Scholar 

  • Gold OG, Jordan HV, van Houte J (1975) The prevalence of enterococci in the human mouth and their pathogenicity in animal models. Arch Oral Biol 20:473–477

    Article  PubMed  CAS  Google Scholar 

  • Görg A, Postel W, Weser J, Günther S, Strahler JR, Hanash SM, Somerlot L (1987) Elimination of point streaking on silver stained two-dimensional gels by addition of iodacetamide to the equilibration buffer. Electrophoresis 8:122–124

    Article  Google Scholar 

  • Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  Google Scholar 

  • Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorumsensing autoinduction. Nature 415:84–87

    Article  PubMed  CAS  Google Scholar 

  • Hanin A, Sava I, Bao YY, Huebner J, Hartke A, Auffray Y, Sauvageot N (2007) Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS ONE 5:e11879

    Article  Google Scholar 

  • Hartke A, Giard J-C, Laplace J-M, Auffray Y (1998) Survival of Enterococcus faecalis in an oligotrophic microsom: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238–4245

    PubMed  CAS  Google Scholar 

  • Hew CM, Korakli M, Vogel RF (2007) Expression of virulence-related genes by Enterococcus faecalis in response to different environments. System Appl Microbiol 30:257–267

    Article  CAS  Google Scholar 

  • Hulse MI, Smith S, Chi EY, Pham A, Rubens CE (1993) Effect of type III group streptococcal capsular polysaccharide on invasion of respiratory epithelial cells. Infect Immun 61:4831–4835

    Google Scholar 

  • Jones ME, Lipmann F (1960) Chemical and enzymatic synthesis of carbamyl phosphate. Biochemistry 46:1194–1205

    CAS  Google Scholar 

  • Lih-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E, Weissman GS, Katz S, Floyd RA, McKinley MJ, Fisher SE, Mullin GE (1996) Increased oxidative stress and decreased antioxidant defense in mucosa of inflammatory bowel disease. Digestive Diseases Sci 41:2078–2086

    Article  CAS  Google Scholar 

  • Lindenstrauß AG, Pavlovic M, Bringmann A, Behr J, Ehrmann MA, Vogel RF (2011) Comparison of genotypic and phenotypic cluster analyses of virulence determinants and possible role of CRISPR elements towards their incidence in Enterococcus faecalis and Enterococcus faecium. System Appl Microbiol 34:553–560

    Article  Google Scholar 

  • Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530

    Article  PubMed  CAS  Google Scholar 

  • Maekawa S, Habadera S (1996) Comparative distribution of the serotypes of Enterococcus faecalis isolated from the urine of patients with urinary tract infections and the feces of healthy persons as determined by the slide agglutination reaction. Kansenshogaku Zasshi 70:168–174

    PubMed  CAS  Google Scholar 

  • Marchesini B, Buttin A, Romailler N, Moreton RS, Stucchi C, Sozzi T (1992) Microbiological events during commercial meat fermentation. J Appl Microbiol 73:203–209

    Article  CAS  Google Scholar 

  • Marquis RE, Bender GR, Murray DR, Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl Environ Microbiol 53:198–200

    PubMed  CAS  Google Scholar 

  • Maury J, Bernadac A, Rigal A, Maroux S (1995) Expression and glycosylation of the filamentous brush border glycocalyx (FBBG) during rabbit enterocyte differentiation along the crypt-villus axis. J Cell Sci 108:2705–2713

    PubMed  CAS  Google Scholar 

  • Metaxopoulos J, Samelis J, Papaedlli M (2001) Technological and microbiological evaluation of traditional processes as modified for the industrial manufacturing of dry fermented sausages in Greece. Italian J Food Sci 13:3–18

    CAS  Google Scholar 

  • Monnet C, Nardi M, Hols P, Gulea M, Corrieu G, Monnet V (2003) Regulation of branched-chain amino acid biosynthesis by alpha-acetolactate decarboxylase in Streptococcus thermophilus. Lett Appl Microbiol 36:399–405

    Article  PubMed  CAS  Google Scholar 

  • Murray BE, Singh KV, Ross RP, Heath JD, Dunny GM, Weinstock GM (1993) Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175:5216–5233

    PubMed  CAS  Google Scholar 

  • Nachin L, Loiseau L, Expert D, Barras F (2003) SufC: an unorthodox cytoplasmic ABC/ATPase required for [Fe-S] biogenesis under oxidative stress. EMBO J 22:427–437

    Article  PubMed  CAS  Google Scholar 

  • Nallapareddy SR, Qin X, Weinstock GM, Hook M, Murray BE (2000) Enterococcus faecalis adhesion, ace, mediates attachment to extracellular matrix proteins collagen type IV and laminin as well as collagen type I. Infect Immun 68:5218–5224

    Article  PubMed  CAS  Google Scholar 

  • Nallapareddy SR, Singh KV, Sillanpää J, Zhao M, Murray BE (2011) Relative contributions of Ebp pili and the collagen adhesin Ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:1910–2901

    Google Scholar 

  • Nannini EC, Teng F, Singh KV, Murray BE (2005) Decreased virulence of a gls24 mutant of Enterococcus faecalis OG1RF in an experimental endocarditis model. Infect Immun 73:7772–7774

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Arribas P, Seseña S, Poveda JM, Chicón R, Cabezas L, Palop L (2001) Enterococcus populations in artisanal Manchego cheese: biodiversity, technological and safety aspects. Food Microbiol 28:891–899

    Article  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586

    Article  PubMed  CAS  Google Scholar 

  • Riboldi GP, Verli H, Frazzon J (2009) Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. BMC Biochem 10:3

    Article  PubMed  Google Scholar 

  • Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson ME (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372

    Article  PubMed  CAS  Google Scholar 

  • Shevchenko A, Sunyaev S, Loboda A, Bork P, Ens W, Standing KG (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73:1917–1926

    Article  PubMed  CAS  Google Scholar 

  • Snoep JL, Teixeira de Mattos MJ, Starrenburg MJ, Hugenholtz J (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 174:4838–4841

    PubMed  CAS  Google Scholar 

  • Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H, Tonkonogy SL, Mair K, Krüger D, Prunteanu M, Shanahan F, Vogelmann R, Schemann M, Küster B, Sartor RB, Haller D (2011) Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 141:959–971

    Article  PubMed  CAS  Google Scholar 

  • Teng F, Nannini EC, Murray BE (2005) Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target. J Infect Diseases 191:472–480

    Article  CAS  Google Scholar 

  • Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, Amorena B, Leiva J, Penadés JR, Lasa I (2001) The enterococcal surface protein, ESP, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545

    Article  PubMed  CAS  Google Scholar 

  • Veboe HC, Solheim M, Snipen L, Nes IF, Brede DA (2010) Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE 5:e12489

    Article  Google Scholar 

  • Wells CL, Jechorek RP, Erlandsen SL (1990) Evidence for the translocation of Enterococus faecalis across the mouse intestinal tract. J Infect Diseases 162:82–90

    Article  CAS  Google Scholar 

  • Whitehead RH, Robinson PS, Williams JA, Bie W, Tyner AL, Franklin JL (2008) Conditionally immortalized colonic epithelial cell line from a Ptk6 null mouse that polarizes and differentiates in vitro. J Gastroenterol Hepatol 23:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich PF, Braun L, Fumagalli I, D’Apuzzo V, Heim F, Karly M, Lodi R, Politta G, Vonbank F, Zeltner L (1989) Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoe and in the treatment of acute diarrhoea. J Int Med Res 17:333–338

    PubMed  CAS  Google Scholar 

  • Xu Y, Murray BE, Weinstock GM (1998) A cluster of genes involved in polysaccharide biosynthesis from Enterococcus faecalis OG1RF. Infect Immun 66:4313–4323

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Axel Imhof, Zentrallabor für Proteinanalytik (ZfP, Adolf-Butenandt-Institute of Ludwig-Maximilians-Universität München, Germany) for LC-ESI MS/MS analysis. This work was supported by GRK 1482 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenstrauß, A.G., Behr, J., Ehrmann, M.A. et al. Identification of fitness determinants in Enterococcus faecalis by differential proteomics. Arch Microbiol 195, 121–130 (2013). https://doi.org/10.1007/s00203-012-0857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0857-3

Keywords

Navigation