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Abstract
This work investigates the establishment of steady-state eddy currents in solid and laminated salient poles and rotor rim of 
synchronous machines due to a periodic excitation voltage. It shows that the presence of eddy currents in the rotor mag-
netic circuit has the double effect of increasing the excitation winding AC-resistance and decreasing its magnetizing AC-
inductance. According to that a simple analytical model is presented in here which allows a rapid rough estimation of the 
excitation winding AC-resistance when little information is available about the machine geometry and its electric/magnetic 
materials properties. The model is then verified by reproducing in frequency the excitation winding AC-resistance and the 
related power loss measured in two synchronous generators. Finally, the limits of reliability and applicability of the model 
are discussed. The model has implications for periodic field winding current control and voltage regulation in synchronous 
machines.

Keywords Eddy current · Current control · Iron losses · Magnetizing inductance · Salient pole rotor · Skin effect · Stability · 
Voltage control

1 Introduction

The occurrence of currents in a metal body moving across a 
magnetic field or being crossed by a time-varying magnetic 
field is a well-known phenomenon [1, 2]. Currents induced 
by that way are mainly responsible for heat generation and 
electrodynamic force reaction into said body. These effects 
are sometimes welcomed and pursued in specific applica-
tions, such as induction ovens, electromagnetic brakes, metal 
trash sorters, nondestructive testing devices, just to cite a 
few. On the contrary, when it comes to electrical machines, 
the same effects are normally undesired. Eddy currents 
are therefore avoided or weakened as possible, in order to 
improve efficiency, reliability and life-time expectation of 
the electromechanical converters. The well-known specific 
eddy current loss formula pe for a conductive laminated 
magnetic core [3] is

where B̂ is the amplitude of the sinusoidal flux density, f  its 
frequency, � the specific resistivity of the conductive mate-
rial and dl its lamination thickness. By showing that the 
specific eddy current losses are proportional to the second 
power of the thickness dl , Eq. (1) explains why magnetic 
circuits are usually finely laminated there, where the flux 
density is varying in time. However, Eq. (1) is valid when 
the layer is completely penetrated by the magnetic field or, 
in other words, when the magnetic reaction of the induced 
eddy current is negligible in comparison with the exciting 
magneto-motive force (MMF). In some recent applications 
of field current control in salient pole synchronous machines 
(SM), such as the Unbalanced Magnetic Pull Compensation 
technique [4] and the Synchronous Motor Start by Rotor 
Polarity Inversion [5], the previous assumption is not valid. 
As soon as a time-varying MMF is set through the excitation 
winding, the eddy current arising in the massive conductive 
rotor parts counteracts almost entirely the establishment of 
a variable magnetizing flux. This phenomenon points to two 
current control related aspects, which are very important 
in the design of combined power-electronics and electrical 

(1)pe =
𝜋2B̂2f 2d2

l
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∼ d2
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machines systems: (1) the influence of the eddy current-reac-
tion on the magnitude of the winding inductance and (2) the 
additional heat generated into the rotor by a periodic excita-
tion. Dreyfus [6] has succeeded in describing analytically 
the proportion between resistive and reactive components 
of the eddy current in an iron core, by relating reactance 
and resistance of the eddy current paths to the frequency-
dependent reduced thickness1 of the iron. Nevertheless, in 
Dreyfus’ work, the magnetic flux density does not result 
from the interaction between the exciting and the induced 
MMF, since the flux density distribution is a starting point 
in his analysis. More recently, Nethe [7] and Jäschke et al. 
[8] have been able to determine the reflected impedance 
[9] of a winding wound on a ferromagnetic core by making 
use of very advanced analytical models. Both cited works 
investigate the subject approached by Dreyfus but from a 
different perspective. Rather than analyzing the local phase 
displacement between the eddy current density and the excit-
ing MMF, they explore how the induced losses and magnetic 
reaction globally affect the excitation winding impedance.

In the present paper, a combination of the approaches of 
[6–8] is presented. By using some simplifying assumptions, 
the eddy current density and flux density in the salient pole 
rotor are first obtained as solutions of a differential problem 
as in [6]. Said solutions are then related to the main geo-
metric dimensions of the electrical machine as in [7, 8], in 
order to evaluate the AC-resistance and inductance of the 
excitation winding. Resistance and inductance determined 
by that way show their dependency on frequency enabling 
the correlation of their cut-off frequencies with the cross-
sectional shape of the rotor magnetic circuit and the thick-
ness of its eventually laminated steel. This is relevant for 
the design of those SM, where the exciting flux needs to be 
adjusted quickly, sometimes periodically, as shown by the 
applications presented in [4, 5]. The model suggested in here 
can help the designer in targeting the suitable rotor geom-
etry and lamination thickness, which ensure the value of the 
magnetizing inductance to be higher than a given threshold, 
up to a needed specified frequency. Furthermore, given a 
first geometric design of the rotor, the frequency-dependent 
AC-resistance of the field winding can be determined by 
said model. The AC field winding resistance can be way 
higher than its DC value,2 mainly as result of the eddy cur-
rent loss induced into the rotor. This fact has been used in 
the experimental part of the paper for testing to what extent 
the modeled frequency-dependent AC-resistance is able to 

fit the AC field winding resistance of two SM, different in 
rated power and shape.

The simplifying assumptions at the base of the suggested 
model are presented and discussed in the manuscript. They 
set the limits for the predictive power of the model itself but 
help greatly in understanding the reaction mechanism of the 
eddy currents, which is triggered by the excitation control.

2  Method

2.1  Model assumptions

The principal assumptions used for deriving the suggested 
field winding are:

(a) the AC-excitation current is considered sinusoidal.
(b) the magnetic problem is regarded as linear.
(c) the airgap anisotropy is not taken into account.

With reference to point (a), the large time constant of the 
excitation winding means that high frequency components 
in the applied stator MMF is effectively removed and the 
AC-excitation current can be considered sinusoidal.

For the same reason in (b), the reactance is the main 
factor limiting the current in the field winding at very low 
frequency already. AC-voltages of few hertz and with the 
same amplitude of the field winding rated DC-voltage do 
not manage to force an amplitude-like nominal current into 
the excitation winding. Moreover, the induced eddy cur-
rent reaction opposes the exciting MMF by reducing it even 
more. These combined effects set the magnetic flux in the 
rotor way below the DC-rated one and far away from the 
upper knee of the machine magnetization curve. Then, the 
presence of an airgap in the magnetic circuit lets the lower 
knee of the magnetization curve disappear.

With reference to the assumption (c), the slot harmonics 
related eddy current loss in the rotor pole-shoes cannot be 
sensed in terms of increased AC field winding resistance, 
which place them outside the field of interest of the present 
work. The inhomogeneity of the flux density in the pole-
shoes instead, which depends on the special airgap profile 
of the SM, has a minor weight on the total rotor eddy current 
loss for two reasons. First, the higher pole coverage in the 
pole-shoe than in the pole core and rim makes its general 
flux density level lower than elsewhere in the rotor. Second, 
the pole-shoes account for way less volume than the rest of 
the rotor.

2.2  Simplified magnetic circuit

Consider a SM with 2p salient poles having N turns each. 
The coils of said poles are usually connected in series 

1 It is the ratio of the lamination thickness to the skin-effect-related 
penetration depth.
2 This is true even adjusting the DC resistance with the contributions 
of the bare winding skin and proximity effects [10].
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to form one single field winding. The main flux Φ pro-
duced by the excitation winding links the coils as shown 
in Fig. 1. A series of p circuits with 2N-turns can be then 
recognized, which link all the same flux Φ.

In said figure, the flux is tracked along a path of con-
stant vector potential A, from C, over D till B.

Figure 2 shows the elementary machine cell obtained 
by superposing the boundaries BD and CD through an 
ideal mechanical deformation of the pole-pair structure. It 
represents 1/pth of the entire machine. Its electrical resist-
ance and inductance are p-times smaller than those of the 
whole field winding.

In order to study the electrical properties of the field 
winding, it is therefore sufficient to focus on the elemen-
tary electromagnetic cell of Fig. 2. Said cell is symmetrical 
with respect to the vertical and horizontal planes, so that 
it can be represented in Cartesian coordinates as shown 
in Fig. 3, after having introduced some approximations:

• the cross section of the rotor rim is assumed to be half of 
that of the pole core, which is often the case.

• the height of the cell core 2h is equal to the length of the 
path from A to C through D in Fig. 1.

• the airgap d is the equivalent constant airgap of the 
machine, providing the same reluctance of the real pole-
shoe toward the inner stator surface.

• the stator is so finely laminated that the eddy currents 
affect the rotor only.

2.3  General solution of the differential problem

The parallelepiped in Fig. 3 carrying 2N turns of the excit-
ing winding represents a pole-pair of the rotor, including its 
portion of rim. In the present work, it is referred to it shortly 
as “core.”

Figure 4 represents the application of the Ampère’s law 
along an integration path perpendicular to the y-axis.

Fig. 1  Linkage between field winding and main flux

Fig. 2  The elementary electromagnetic cell of the machine

Fig. 3  Cartesian rectangular model of the electromagnetic cell

Fig. 4  Application of the Ampère’s law along a closed path laying on 
the xz-plane
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It shows that the source of the magnetic field is the MMF 
provided by the excitation winding.

The linear integration of the magnetic field, along paths 
that are perpendicular to the y-axis and to x-axis, respec-
tively, leads to

where Hz , H0 and Ha represent the magnetic field in the rotor, 
in the airgap and in the armature, respectively. The timely 
varying variable i is the magnetization current, whereas Jx 
and Jy are the eddy current density components along the x- 
and y-axis, respectively. All magnetic fields are considered 
constant along their integration paths, which measure 2h in 
the core, 2d in the airgap and 2l in the armature.

By considering the magnetic flux crossing the airgap to be 
twice the one flowing in the armature back iron with height 
2e (Fig. 3), it is possible to relate H0 and Ha by

where H0 is assumed to be constant in the airgap and �r,a 
represents the relative average permeability of the armature 
back iron. Given (3) Eq. (2) can be rewritten as

where

is the magnetic relative length of the armature referred to 
the airgap. This parameter expresses how many times the 
magnetic potential drop across the armature is larger than 
that across the airgap.

In order to determine the eddy currents distribution in the 
rotor, a differential equation involving magnetic, electric and 
eddy current density is needed. That equation is

which represents the quasi-electrostatic3 Helmholtz’s equa-
tion for the magnetic field H in a conductive isotropic region 
characterized by uniform resistivity ρ and permeability μ.

(2)

⎧
⎪⎪⎨⎪⎪⎩

Hz ⋅ 2h + H0 ⋅ 2d + Ha ⋅ 2l = 2Ni +
b∫
y

−Jx2hdy

Hz ⋅ 2h + H0 ⋅ 2d + Ha ⋅ 2l = 2Ni +
a∫
x

−Jy2hdx

,

(3)Ha ≅
1

�r,a

a

e
H0,

(4)

⎧⎪⎪⎨⎪⎪⎩

Hz ⋅ 2h + H0 ⋅ ⋅2d
�
1 + Ka

�
= 2Ni +

b∫
y

−Jx2hdy

Hz ⋅ 2h + H0 ⋅ 2d
�
1 + Ka

�
= 2Ni +

a∫
x

−Jy2hdx

,

(5)Ka =
l

�r,ad

a

e
≅

l

�r,ad

(6)∇2
H =

�

�

�H

�t
,

Assuming the excitation current to be harmonic with 
angular frequency ω

and considering that in the core

equation (6) can be transformed in

The complex parameter �̄� in (9) is equal to

the modulus of which represents the reciprocal of the well-
known penetration depth δ

Equation (9) admits a general solution given by [9] 

where

and

with n = 1, 3, 5…. The phasor H̄b in (13) and (14) stands for 
the value assumed by the magnetic field H̄z on the lateral 
surface of the iron core.

2.4  Relating the eddy current and the main flux 
to the exciting MMF

Taking the curl of (12), the components of the eddy 
current density in an arbitrary point of the core can be 
expressed by

(7)i(t) = I cos (�t) = Re
[
Iej�t

]

(8)H = Hzẑ,

(9)
𝜕2H̄z

𝜕x2
+

𝜕2H̄z

𝜕y2
= �̄�2H̄z.

(10)�̄� =
1√
2

(1 + j)

�
𝜔𝜇

𝜌
,

(11)𝛿 =
1

‖�̄�‖ =

�
𝜌

𝜔𝜇
.

(12)

H̄z = P̄0 cosh �̄�y +

∞∑
n=1

Q̄n cosh

√
�̄�2 +

(
n𝜋

2b

)2

x cos
n𝜋

2b
y

(13)P̄0 =
H̄b

cosh (�̄�b)

(14)Q̄n = H̄b

4�̄�2

n𝜋

�̄�2+
(

n𝜋

2b

)2

cosh

√
�̄�2 +

(
n𝜋

2b

)2

a

sin

(
n
𝜋

2

)
,

3 In the achievement of (6), the contribution of displacement current 
density to the curl of H is neglected.
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However, the coefficients P̄0 and Q̄n can only be deter-
mined if H̄b is known. To that end, considering the form 
assumed by (4) on the lateral core surface, the Ampère’s 
law can be formulated as

and represented graphically as shown in Fig. 5.
In Fig. 5, the presence of the eddy current introduces a 

displacement �0 between the airgap field H̄0 and the MMF 
NI. Since the airgap field H̄0 is proportional to the main 
flux Φ̄ , the latter lags on the exciting MMF by the same 

angle �0 , so that

(15)

⎧⎪⎪⎨⎪⎪⎩

J̄x = �̄�P̄0 sinh �̄�y −
∞∑
n=1

Q̄n
n𝜋

2b
cosh

�
�̄�2 +

�
n𝜋

2b

�2

x sin
n𝜋

2b
y

J̄y = −
∞∑
n=1

�
�̄�2 +

�
n𝜋

2b

�2

Q̄n sinh

�
�̄�2 +

�
n𝜋

2b

�2

x cos
n𝜋

2b
y

.

(16)H0d
(
1 + Ka

)
ej�0 + Hbhe

j�b = NI

(17)Φ̄ = 4ab𝜇0H0e
j𝜗0 .

However, the main flux Φ̄ can be also determined by 
using the magnetic field H̄z in the iron core through the 
following integration

By substituting (13) and (14) in (12), Eq. (18) becomes

Assuming b > a, (19) can be rewritten as

where

and

Said �b the phase of H̄b  and �0 the phase of H̄0 , by equating 
(17) and (20) the following equations are obtained

The parameter � expresses how much the flux density pro-
file in the core deviates from the DC uniform one, due to the 
presence of the eddy current. The angle Δ� shows instead how 
much the iron flux density on the lateral surface of the core 
leads on the airgap flux density. It must be noticed that both 
terms depend only on the reduced thickness b∕� and on the 
core cross-sectional dimensions ratio a∕b.

In order to find out H̄b and H̄0 , four real unknowns must be 
determined, precisely Hb , �b , H0 and �0 . That problem can be 
solved by posing four independent equations, which descend 

(18)Φ̄ =

b

∫
−b

a

∫
−a

𝜇0𝜇rH̄bdxdy.

(19)

Φ̄ = 4ab𝜇0𝜇rH̄b

⎡
⎢⎢⎢⎢⎣

tanh (�̄�b)

�̄�b
+

∞�
n=1

2

�
2�̄�

n𝜋

�2

�̄�2 +
�

n𝜋

2b

�2

tanh

�
�̄�2 +

�
n𝜋

2b

�2

a

�
�̄�2 +

�
n𝜋

2b

�2

a

⎤
⎥⎥⎥⎥⎦
.

(20)Φ̄ = 4ab𝜇0𝜇rH̄b𝜒e
−jΔ𝜗,

(21)� =

������������

tanh

�
1+j√
2

b

�

�

1+j√
2

b

�

+ j2
�
b

�

a

b

�2
∞�
n=1

�
2

n�

�2
tanh

��
n
�

2

a

b

�2

+ j
�

b

�

a

b

�2

��
n
�

2

a

b

�2

+ j
�

b

�

a

b

�2
�3∕2

������������

(22)Δ� = ∠

⎛
⎜⎜⎜⎜⎜⎝

tanh

�
1+j√
2

b

�

�

1+j√
2

b

�

+ j2
�
b

�

a

b

�2
∞�
n=1

�
2

n�

�2
tanh

��
n
�

2

a

b

�2

+ j
�

b

�

a

b

�2

��
n
�

2

a

b

�2

+ j
�

b

�

a

b

�2
�3∕2

⎞
⎟⎟⎟⎟⎟⎠

.

(23)

{
� =

�0H0

�0�rHb

Δ� = �b − �0
.

Fig. 5  Ampère’s law represented by phasors
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from the application of the Carnot’s theorem and the theorem 
of sines to the phasors triangle of Fig. 5. It follows

where the relative magnetic length of the core, K, is

For a given flux Φ̄ , the reactive MMF due to the eddy 
currents is proportional to the core length 2h. In that sense, 
the core relative magnetic length K represents the ratio 
between the magnetic potential drop produced by eddy cur-
rents reaction along the rotor path and the magnetic potential 
drop across the airgap and the armature. In other words, it 
expresses the relative intensity of the induced rotor reaction.

2.5  Field winding lumped‑circuit model: 
the magnetizing inductance

One of the effects of the eddy currents is that to produce a 
phase shift between the impressed field current and the main 
flux crossing the airgap. This effect is already observed in 
Fig. 5, where H̄0 lags by the angle �0 on the exciting MMF. 
With reference to the parallel lumped-circuit-model for the 
field winding represented in Fig. 6, the component of the 
field current I sustaining the main flux Φ̄ and being in phase 
with it is

(24)
H0 =

NI

d
(
1 + Ka

) 1√
1 + 2

K

�
cosΔ� +

(
K

�

)2

,

(25)
sin �0 = −

K

�

sin (Δ�)√
1 + 2

K

�
cosΔ� +

(
K

�

)2

,

(26)
Hb =

K

�

NI

h

1√
1 + 2

K

�
cosΔ� +

(
K

�

)2

,

(27)
sin �b =

sinΔ�√
1 + 2

K

�
cosΔ� +

(
K

�

)2

,

(28)K =
h

�rd + l
.

(29)IL = I cos �0.

Therefore, IL appears in the following expression for the 
magnetizing inductance

where Ψ is the magnetizing linked flux.
By substituting (26) in the modulus of (20), while con-

sidering (30), it results

where Lm(0) is the null frequency or DC magnetizing induct-
ance of the SM

and

is the value of the AC-magnetizing inductance relative to the 
DC-one. Observing (21), (22) and (25) together with (33), 
it makes clear that Λ is a function of the relative magnetic 
length of the core K, of the reduced thickness b∕� and of 
the pole cross-sectional shape ratio a∕b . Figure 7 shows the 
dependency of Λ on said parameters.

In Fig. 7, the eddy currents show a demagnetizing effect 
on the SM, which results in the drop of the magnetizing 
inductance when the reduced thickness increases. The 
same figure illustrates how the rotor geometric param-
eters govern this phenomenon. For the same core cross-
sectional shape (constant a∕b ) and the same frequency 

(30)Lm =
Ψ

IL
= p

2NΦ

I cos�0
,

(31)Lm = Lm(0)Λ,

(32)Lm(0) = p�0

2ab(
d +

l+h

�r

) (2N)2,

(33)
Λ =

(1 + K)

cos�0

√
1 + 2

K

�
cosΔ� +

(
K

�

)2

Fig. 6  Equivalent parallel cir-
cuit of the field winding

Fig. 7  Relative magnetizing inductance Λ
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(constant reduced thickness b∕� ), a higher degree of rotor 
reaction K results in a lower magnetization inductance. In 
the same way, given a relative rotor core length (constant 
K  ), the cross-sectional shape ratio a∕b sets the value of 
the reduced thickness b∕� (i.e., the frequency) at which 
the magnetizing inductance experiences the cut-off. It 
can be observed that the leaner the core cross-sectional 
shape, the higher the cut-off frequency for the field wind-
ing inductance.

2.6  Field winding lumped‑circuit model: 
the reflected resistance

In Fig. 6, R presents the reflected resistance according to 
Stoll [9], which relates to the eddy current loss. In the same 
circuit, it is possible to find out R in dividing the winding 
self-induced voltage by the component of the excitation cur-
rent in phase with it

By substituting (29) in the modulus of (23), while con-
sidering (28) and (37), it results

where

R
(
0+

)
 is a constant with the dimension of a resistance, which 

depends on the core length 2h, the iron resistivity � , the 
number of turns per pole-pair 2N and the number of pole-
pairs p. Since the reflected resistance cannot be sensed when 
the winding is supplied by a DC-voltage, said constant does 
not exist for null frequency. The resistance factor Ξ repre-
sents instead a non-dimensional quantity

(34)R =
�Ψ

IR
=

�p2NΦ(
−I sin�0

) .

(35)R = R
(
0+

)
⋅ Ξ

(36)R
(
0+

)
= p ⋅ 4�

(2N)2

2h
.

which takes into account the influence of the reduced thick-
ness and the shape of the core cross section on the reflected 
resistance, as it is shown in Fig. 8.

In said figure, for a given core cross-sectional shape (con-
stant a∕b ), a specific cut-off value for the reduced thickness 
b∕� can be recognized. It separates the range of constant 
reflected resistance from the range of increasing resistance. 
In particular, the leaner the core cross-sectional shape, the 
higher that cut-off value of the reduced thickness. Moreover, 
the constant resistance factor depends on the core cross-sec-
tional shape alone before said cut-off, whereas, beyond it and 
for core profiles with a∕b < 0.1, the resistance factor shows a 
common asymptotic trend.

Given the not handy form of (37), Ξ has been approximated 
by a simpler function Ξ̃ in the range of a∕b ∈ [0.001, 1] , with 
an overall error smaller than 2%. The form of the approximat-
ing function is

where

with the following coefficients

(37)Ξ =
a

b

(
b

�

)2 �

sinΔ�
,

(38)Ξ̃
�
b

𝛿
,
a

b

�
= CR

�
a

b

�
��������1 +

⎡
⎢⎢⎢⎣

b

𝛿

CC

�
a

b

�
⎤
⎥⎥⎥⎦

2

,

(39)CR

(
a

b

)
=

pR2

(
a

b

)2

+ pR1

(
a

b

)
+ pR0

(
a

b

)3

+ qR2

(
a

b

)2

+ qR1

(
a

b

)
+ qR0

,

(40)CC

(
a

b

)
=

pC2

(
a

b

)2

+ pC1

(
a

b

)
+ pC0

(
a

b

)3

+ qC2

(
a

b

)2

+ qC1

(
a

b

)
+ qC0

(41)

⎡⎢⎢⎢⎢⎢⎢⎣

pR2
pR1
pR0
qR2
qR1
qR0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

2.9274

−2.6666

11.9760

−3.2611

3.9813

0.0001

⎤⎥⎥⎥⎥⎥⎥⎦

,

(42)

⎡⎢⎢⎢⎢⎢⎢⎣

pC2
pC1
pC0
qC2
qC1
qC0

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

9.5238

−3.4514

12.7429

0.4677

6.0143

−5.1124 × 10−5

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 8  Parametric representation of the resistance factor Ξ
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CR and CC used in (38) are rational functions of the shape 
ratio a∕b alone. They represent the resistance factor at low 
frequency and the cut-off value of the reduced thickness, 
respectively. With reference to Fig. 8, CR scales the value 
of R

(
0+

)
 for setting its constant value at low frequency, as 

soon as the penetration depth largely exceeds the geometric 
average of the core half-dimensions a and b

The second function CC sets a limit for the relative value 
of the penetration depth, above which the reflected parallel 
resistance factor (37) is asymptotically proportional to the 
inverse of the penetration depth

It is also possible to represent the lumped-circuit model 
of the field winding according to a series equivalent circuit 
as shown in Fig. 9. Said circuit is alternative to the one of 
Fig. 6.

Since both parallel and series equivalent lumped-circuit 
models must show the same input impedance, it must be 
true that

and

where

descends from (31), (32),(35) and (36).
By substituting (47) and (35) in (46), the following 

expression for the series reflected resistance R′ can be found

where

(43)𝛿 ≫
√
a ⋅ b →

b

𝛿
≪

�
b

a
.

(44)
b

𝛿
≫ CC

(
a

b

)
→ Ξ ≅

CR

(
a

b

)

CC

(
a

b

) b

𝛿
.

(45)L�
m
= Lm

1

1 + (��)2

(46)R� = R
(��)2

1 + (��)2
,

(47)�� =
�Lm

R
=

a

b

(
b

�

)2 K

K + 1

Λ

Ξ

(48)R� = R
(
0+

)
⋅ Ξ�

Equation (49) represents the non-dimensional factor for 
the series reflected resistance. It can be observed in (46) 
that the series and parallel reflected resistances converge 
asymptotically, as soon as the angular frequency is bigger 
than the inverse of the time constant � (cut-off frequency). 
Equation (49) shows that the same convergence happens 
when the penetration depth becomes much smaller than the 
geometric average of a and b. At low frequency instead, the 
series reflected resistance tends to zero, as it is predicted 
by (46). The described behavior is confirmed by the graphs 
shown in Fig. 10, where Ξ� is plotted versus b∕� for differ-
ent values of the relative magnetic core length K and of the 
cross-sectional shape ratio a∕b.

In the previous Fig. 8, it can be observed that the multi-
plication factor Ξ for the resistance of the parallel lumped-
circuit model does not depend on the parameter K, describ-
ing the relative magnetic length of the core. That means that 
it does not depend on the entity of the magnetic reaction of 
the armature and on the presence of the airgap, which are 
both summarized in K. In Fig. 10 instead, the multiplication 
factor Ξ� for the series lumped-circuit model shows its strong 
dependency on K. The parallel model has the advantage that, 
given an exciting MMF, as soon as an armature reaction 
reduces the main flux, it results in a corresponding drop of 
the induced electromotive force. This reduces in turn the 
eddy current losses without any need for adjusting the value 
of the parallel reflected resistance R. On the contrary, for the 
series equivalent lumped-circuit model of the rotor winding, 
once the MMF is constant in amplitude, a change in the eddy 
current losses due to the armature reaction always requires 

(49)Ξ� = Ξ

[
a

b

(
b

�

)2
]2

[
a

b

(
b

�

)2
]2

+
(

K+1

K

Λ

Ξ

)2

.

Fig. 9  Equivalent series circuit 
of the field winding

Fig. 10  Parametric representation of the series resistance factor Ξ�
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an update of the series reflected resistance R′, in order to 
give a correct account of the losses at constant current. This 
explains the dependency of Ξ� on K.

2.7  Experimental setup

In order to verify the validity of (35) in predicting the value 
for R represented in Fig. 6, the field winding impedance 
of two different test-object (TO) synchronous machines has 
been measured over a given frequency range, by means of 
the setup depicted in Fig. 11.

A single phase of a synchronous generator SG supplies 
the field winding of the TO with a periodic voltage. The 
frequency f of the applied voltage Ū is set by the rotational 
speed n of a driving DC motor DCM. The amplitude of the 
voltage Ū is adjusted by controlling the field current of SG 
through the voltage divider applied to the generator U2. In 
the following Table 1, and with reference to Fig. 12, the 
main features of the two TO are presented.

Said Ū = Uej𝜑U and Ī = Iej𝜑I to be the fundamental har-
monic components of voltage and current interesting the 
field winding, respectively, the related complex power S̄ 
is equal to

The real part of (50) accounts for the hysteresis, eddy 
current and excess losses in the TO, since the AC-resist-
ance of the copper wire Rw [10] in Fig. 6 is negligible if 
compared with the reflected parallel resistance R. How-
ever, it is possible to prove that (50) represents the eddy 
current loss essentially, as soon as the amplitude of the 
applied AC voltage does not exceed the rated DC-voltage 
and as soon as it overcomes the cut-off frequency of the 
field winding. In fact, from the winding inductance and 
resistance enlisted in Table1, it is possible to determine the 
cutoff frequencies 0.05 Hz and 0.11 Hz for the field wind-
ing of the 60 kVA and 200 kVA rated SM, respectively. 
For an impressed AC voltage, having the amplitude of the 
DC-rated voltage and frequency 1 Hz, the obtained excita-
tion current amplitude must be smaller than one tenth of 
the rated DC-current for both TO. Moreover, the outbreak 
of the eddy current in the magnetic circuit counteracts 
the exciting MMF by reducing it even more. In that way, 
the general level of the flux density in the magnetic cir-
cuit of the TO becomes way lower than the DC-rated one. 
If the excitation winding was the primary winding of a 
transformer in the presence of few percent of the rated 
flux density, the active power being measured at the ter-
minal of the winding itself would represent the copper loss 
of that transformer mainly, according to the well-known 

(50)
S̄ =

1

2
Ū ⋅ Ī∗ =

UI

2
cos

(
𝜑U − 𝜑I

)
+ j

UI

2
sin

(
𝜑U − 𝜑I

)
.

Fig. 11  Experimental setup

Table 1  Test objects main dimensions and characteristics

Symbol Description Machine 1 Machine 2

A Rated power 60 kVA 200 kVA
p Pole pairs 2 6
N Turns per pole 460 162
In Rated field current 10 A 12.4 A
2a1 Pole-shoe lamination thickness – 2.5 mm
2b1 Pole-shoe width – 75 mm
h1 Pole-shoe-height – 45 mm
2a2 Pole-core width 70 mm 75 mm
2b2 Pole-core length 200 mm 303 mm
2h2 Core-rim-core path length 269 mm 317 mm
2l Armature pole pitch length 322 mm 226 mm
2e Armature back iron radial thick-

ness
70 mm 75 mm

Lm (DC) DC magnetizing inductance 22 H 3.9 H
Rw (DC) DC winding resist 6.87 Ω 2.76 Ω

Fig. 12  The main dimensions of the magnetic circuit

Fig. 13  Hysteresis losses estimation
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short-circuit test. In the SM field winding instead, the 
whirls of the eddy current in the rotor iron can be regarded 
as several secondary windings of the transformer closed in 
short circuit. Keeping the analogy, the fictitious “copper 
loss” measured at the field winding terminals is then the 
joule loss of a secondary winding made of iron, the iron 
of the rotor magnetic circuit. Under the condition of low 
flux in the core, the real part of (50) accounts for the eddy 
current loss essentially.

Nevertheless, an approximate estimation of the hyster-
esis and excess losses has been performed for testing the 
validity of this assumption. Figure 13 shows several hys-
teresis cycles insisting on the same magnetization curve 
b. The quasi-static hysteresis cycle a encloses an area 
proportional to the hysteresis and the excess losses [11].

The wider hysteresis cycle c encloses instead an area 
proportional to the total loss, so that its difference with 
the area enclosed by a is proportional to the eddy current 
loss. If the value of the flux density is much smaller than 
the saturation one, the hysteresis and the excess losses are 
represented by the area of a smaller symmetrical hyster-
esis cycle d, delimited by the extremal points 

(
−Ĥ,−B̂

)
 

and 
(
Ĥ, B̂

)
 in Fig. 13. Since the rotors of synchronous 

machines, in massive or partially laminated execution, 
consist of soft magnetic materials made of low-carbon 
iron or iron-alloys, the ratio between B̂ and Ĥ is charac-
terized by a pretty high value of the relative permeability, 
typically �r > 2000 [12]. Imagining to know B̂ , the power 
Phe   related to the hysteresis and excess losses can be 
overestimated by P̃

where Vcore stands for the core volume and �∗
r
 is a constant 

relative permeability, higher than 2000. By neglecting the 
influence of the field winding stray inductance, the peak 
value of the average flux density in the core can be esti-
mated by

Equation (51) presents the limitation to neglect the 
flux density distribution in the core cross section. For 
this reason, its result has been compared with the more 
consolidated method of the complex permeability [13]. In 
this last method, the flux density lags the magnetic field 
on the angle � according to

Assumed the core made of a soft magnetic material—
such as, e.g., low-carbon steel 1006—for the 60 kVA SM 

(51)Phe < P̃ = p2
B̂2

𝜇∗
r
𝜇0

Vcoref ,

(52)B̂ ≅

U∕p

𝜔2N

1

4ab
.

(53)B̄ ≅ 𝜇r

�‖B̄‖�𝜇0e
−j𝜃H̄.

Fig. 14  Comparison between results from (51) and (54) in the 60 
kVA TO

Fig. 15  Losses repartition in the 60 kVA TO during measurements

Fig. 16  Losses repartition in the 200 kVA TO during measurements
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and performed a stationary 2D-FEM analysis with � = 8◦ , 
the hysteresis loss can be estimated by

where 
(
1 +

a

b

)
 represents the 2D-to-3D correction factor.

In Fig. 14, it can be observed that (51) deviates signifi-
cantly from (54), but it catches the same order of magni-
tude for the loss.

3  Results

In Figs. 15 and 16, the measured active power absorbed by 
the field winding in the 60 kVA and 200 kVA test machine, 
respectively, has been split between eddy current- and hys-
teresis + excess losses by means of (50) and (51).

Since both voltages U1 and U2 in the setup of Fig. 11 
have been adjusted during the measurements, in order to 
target the wanted frequency, the curves of Figs. 15 and 16 
do not represent values obtained at constant excitation flux. 
This explains why the curves are broken and not smooth. 
Both figures show that the aggregated hysteresis- and excess 
losses are way smaller than the eddy current loss, confirming 
by that the prevision done in the previous paragraph. The 
aggregated hysteresis- and excess losses, which accounts for 
less than 12% in both cases, could have been neglected in 
the determination of the eddy currents-related AC-resistance

(54)Ph ≅
(
1 +

a

b

)
b2hf

a

∫
−a

𝜋‖‖B̄‖‖‖‖H̄‖‖ sin 𝜃dx

without introducing a relevant error in the indirectly meas-
ured reflected resistance.

Figure 17 shows the comparison between said resistance 
Re and the predicted one calculated by (35) for the 60 kVA 
rated machine. A specific rotor iron resistivity � = 90 nΩm 
and an average relative permeability �r = 1000 have been 
required for fitting the values of Re.

The rotor of the 200 kVA machine has laminated pole-
shoes which extend for a radial height h1 and a massive pole 
core and rotor rim showing a whole length 2h2 as represented 
in Table 1 and Fig. 12. In that case, since the two portions 
of the rotor magnetic circuit are crossed by the same flux, 
the reflected resistances related to each portion must share 
the same electromotive force. Therefore, they can be repre-
sented by two resistances in parallel as shown in Fig. 18. R1 

(55)Re =

(
Re

[
S̄
]
− P̃

)
U2

,

Fig. 17  Eddy currents related parallel resistance for 60 kVA TO

Fig. 18  Eddy currents related 
parallel resistances for the 200 
kVA TO

Fig. 19  Eddy currents related parallel resistances for the 200 kVA TO

Fig. 20  Eddy currents related parallel resistance for the 200 kVA TO
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is related to the laminated pole-shoe and R2 to the massive 
pole core and rim. Both have been calculated by (35).

Correspondingly, Fig.  19 shows the contributions of 
each rotor portion, pole-shoes and pole core + rim, to the 
total reflected resistance, in function of the applied voltage 
frequency.

The laminated part (pole-shoes), which is seat of less 
eddy current loss in comparison with the remaining part of 
the rotor, shows the highest value of the reflected resistance 
(R1 > R2).

In Fig. 20, the fit of (35) to the Re for the 200 kVA 
machine has required a specific rim-pole steel resistiv-
ity � = 140 nΩm , a specific pole-shoe steel resistiv-
ity � = 470 nΩm and an average relative permeability 
�r = 1000.

Figures 17 and 20 prove that it is possible to estimate 
the reflected resistance of a salient pole synchronous 
machine field winding by the analytical approach pre-
sented in the method of this paper. Even though the power 
supplied to the field winding during the measurements 
shows a large variability in Figs. 15 and 16, the relative 
plots of the measured reflected resistances in Figs. 17 
and 20 are both very smooth and present a clear trend 
versus the frequency. This is mainly due to the fact that 
said resistance is independent of the voltage level applied 

to the rotor circuit. This favorable circumstance makes it 
possible to use the suggested model for obtaining a rough 
estimate of the eddy current loss induced in the rotor, as 
soon as the control voltage U is known. Once the reflected 
resistance in the model of Fig. 6 has been guessed by (35), 
the estimated eddy current loss can be predicted by,

Figures 21 and 22 show the comparison between the 
active power measured on both TO and the predicted value 
of the eddy current loss (59), comparison made possible 
by the small weight of the hysteresis and excess losses on 
the total loss documented above.

The control voltage U used in (56) is the one recorded 
during the measurements performed on the two synchronous 
machines, whereas the resistance R is the one used as fit in 
Figs. 17 and 20, respectively. Both Figs. 21 and 22 present 
a trend of the predicted power, which follows pretty well the 
evolutions of the measured power. This result proves that the 
modeled reflected resistance (35) catches the effects of both 
independent variables on the eddy current generation, the 
applied voltage level U and the frequency f. By doing so, it 
supports the fundamental idea of this work, that to character-
ize the losses induced by the excitation control by means of a 
frequency-dependent resistance, the value of which is related 
to the SM main rotor parameters. In fact, from Figs. 6 and 8, 
it can be seen that for 𝛿 ≫

√
a ⋅ b (i.e., rotor iron fully pen-

etrated by the magnetic field) the magnetizing inductance and 
the reflected resistance are substantially unaffected by the eddy 
currents. The first one equals its DC value, and the second one 
remains constant and independent from the frequency. As soon 
as 𝛿 ≪

√
a ⋅ b , the magnetizing inductance starts to decrease 

proportionally to the penetration depth and the reflected resist-
ance increases instead inversely proportional to that. This 
allows to draw some conclusions about the dependency of the 
eddy current loss on the frequency, when the exciting MMF is 
held constant. Considering (11) and the just above-mentioned 
remarks, it can be found that

and

In particular, for the case examined in (57), as soon as 
a∕b < 0.1 , it can be found from (39) that.

(56)Pe ≅
U2(f )

2R(f )
.

(57)Pe =
1

2

�
𝜔Lm(0)I

�2
R0

∝ f 2 for 𝛿 ≫
√
a ⋅ b

(58)Pe =
1

2

�
𝜔LmI

�2
R

∝
√
f for 𝛿 ≪

√
a ⋅ b.

(59)CR

(
a

b

)
≅ 3

b

a
.

Fig. 21  Comparison measured and predicted power for the 60 kVA 
TO

Fig. 22  Comparison between measured and predicted power for the 
200 kVA TO
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Taking into account (36), (38) and (59), the eddy current 
loss can be then expressed by

which returns the classical analytical result (1) for the eddy 
current loss in a fully penetrated thin metal sheet of thick-
ness dl = 2a. In the case considered in (58) instead, as soon 
as a∕b < 0.1 , it can be easily recognized from Fig. 8 that

A first simple estimate of the reflected resistance is then 
possible by using (36), (38) and (61)

The reflected resistance (62) found by this way can be 
interpreted as the secondary resistance of a transformer with 
voltage transformation ratio 2N:1, transferred to its primary 
winding and taken into account p-times, as Fig. 23 shows. 
The resistance of the secondary winding single turn is that 
of a conductive layer presenting resistivity ρ, length 2 times 
2b and cross-sectional area equal to 2h times �∕

√
2.

This result shows that the induced eddy currents can be 
regarded as concentrated underneath the lateral surface of 
the not fully penetrated thin metal sheet, within a thickness 
of ca. 70% of the penetration depth.

Besides the encouraging results obtained by the analytical 
approach used in the present work, it should be noted that 
both predicted resistances in Figs. 17 and 20 underestimate 
slightly the real losses at low frequency. This is the con-
sequence of having assumed an average constant magnetic 
permeability for the magnetic circuit all over the examined 
frequency range. Hariharan [14] has shown that the iron 
core flux density increases from the middle of the iron core 

(60)Pe = p
1

2

(�2NB4ab)2

R(0+) ⋅ CR

(
a

b

) =
�2f 2B2(2a)2

6�
⋅ Vcore

(61)Ξ
�
b

�

�
≅
√
2
b

�
.

(62)R = p4�
(2N)2

2h

√
2b

�
= p�

2 ⋅ 2b

2h ⋅
�√
2

(2N)2.

toward its lateral surface, as soon as the eddy currents con-
centrate toward the lateral boundary of the pole and rotor 
rim. This means that, when the rotor pole is fully penetrated, 
the magnetizing inductance should be generally bigger than 
the one calculated by the simplifying hypothesis assumed 
in here. Therefore, for the same MMF a higher magnetic 
flux should be expected, which would be responsible for a 
higher loss than the here predicted one. On the other hand, 
it must be noticed that the used simplistic hypothesis makes 
the model and its outcomes easy to be derived and handled. 
Finally, having neglected the stray inductance of the winding 
in the suggested model implies that the highest frequency 
limit for model validity is presumably that, which makes the 
magnetizing inductance of the winding one order of magni-
tude larger than the stray inductance.

4  Conclusion

A parallel and a series equivalent lumped-circuit model for 
the field winding of salient pole synchronous machines has 
been obtained by means of a simple analytic electromagnetic 
approach. It manages to interpret and to reproduce many 
effects, which are related to the outbreak of eddy currents 
in the rotor of a salient pole synchronous machine, such as 
the main flux lagging on the exciting MMF, the weaken-
ing of the field winding inductance and the increase in the 
winding AC-resistance. In particular, the achieved model is 
able to relate the eddy current magnetic reaction and loss 
to the main geometrical and physical properties of the rotor 
winding. Said model has been tested on two salient pole syn-
chronous machines by comparing its predictions in terms of 
AC-resistance and induced eddy current loss, with the evi-
dences of measurements performed on their field windings. 
In spite of the simplifying assumptions behind its achieve-
ment, the model is able to point out to the essential factors 
influencing the generation of eddy current in the rotor and to 
perform a rough estimate of its loss. It can be useful in the 
design of a SM for verifying the suitability of a given rotor 
arrangement for the needed control strategy, as well as, in 
the analysis of those, sometimes older, existing machines, 
where the material properties and the exact geometry of the 
rotor are unknown. Finally, in expressing the dependency 
of the field winding inductance and resistance on the fre-
quency, the model can provide an operational formulation 
of the excitation winding, which better suits the dynamic 
analysis involving voltage/stability control loops.
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Fig. 23  Transformer-like model for the eddy current account
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