CORRECTION

Correction to: Some classes of permutation polynomials of the form $b(x^q + ax + \delta)^{\frac{i(q^2-1)}{d}+1} + c(x^q + ax + \delta)^{\frac{j(q^2-1)}{d}+1} + L(x)$ over \mathbb{F}_{q^2}

Danyao Wu¹ · Pingzhi Yuan²

Published online: 30 July 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Correction to: Applicable Algebra in Engineering, Communication and Computing https://doi.org/10.1007/s00200-020-00441-z

In the original publication of the article, the mathematics symbol q was replaced with "s" by mistake while replacing the math mode to text mode. As a result, the first sentence in the following sections are affected and correct sentences should read as given below:

Abstract

Let q be a prime power and \mathbb{F}_q be a finite field with q elements.

Introduction

Let \mathbb{F}_q be the finite field with q elements, where q is a prime power, and let $\mathbb{F}_q[x]$ be the ring of polynomials of one variable over \mathbb{F}_q .

Lemma 2 (See [26]) For a prime power q, assume that $a \in \mathbb{F}_{q^2}$ with $a^{q+1} = 1$ and $g \in \mathbb{F}_{q^2}$ is a primitive element of \mathbb{F}_{q^2} .

The original article can be found online at https://doi.org/10.1007/s00200-020-00441-z.

Danyao Wu wudanyao111@163.com
Pingzhi Yuan yuanpz@scnu.edu.cn

¹ School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China

² School of Mathematics, South China Normal University, Guangzhou 510631, China

Theorem 1 For a prime power q and positive integers d, i, j with $q \equiv 1 \pmod{d}$, assume that $b, c \in \mathbb{F}_q$ and $a, \delta \in \mathbb{F}_{q^2}$ with $a^{1+q} = 1$.

Theorem 2 For a prime power q and positive integers d, i, j with $q \equiv 1 \pmod{d}$, assume that $b, c \in \mathbb{F}_q$, $a \in \mathbb{F}_{q^2}$ with $a^{1+q} = 1$, and $g \in \mathbb{F}_{q^2}$ is a primitive element of \mathbb{F}_{q^2} .

Theorem 3 For a prime power q and positive integers d, i, j, s, k with $q \equiv -1 \pmod{d}$, $iq \equiv s \pmod{d}$ and $jq \equiv k \pmod{d}$, assume that $b, c \in \mathbb{F}_q$ and $a, \delta \in \mathbb{F}_{q^2}$ satisfying $a^{1+q} = 1$.

The original article has been updated accordingly.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.