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Abstract The spaces of directed paths on the geometric realizations of pre-cubical
sets, called also [I-sets, can be interpreted as the spaces of possible executions of
Higher Dimensional Automata, which are models for concurrent computations. In this
paper we construct, for a sufficiently good pre-cubical set K, a CW-complex W (K)Y
that is homotopy equivalent to the space of directed paths between given vertices
v, w of K. This construction is functorial with respect to K, and minimal among all
functorial constructions. Furthermore, explicit formulas for incidence numbers of the
cells of W(K)} are provided.

Keywords Directed space - Pre-cubical set - Path space - Higher dimensional
automaton

Mathematics Subject Classification 55U05 - 68Q99

1 Introduction

In recent years, much effort was made to understand spaces of directed paths on d-
spaces. Particularly interesting examples of d-spaces are geometric realizations of
pre-cubical sets [3,4], thanks to their applications in concurrency—their directed path
spaces can be interpreted as the executions spaces of Higher Dimensional Automata
[8]. Raussen [9] proved that such spaces, under certain conditions, have the homotopy
types of CW-complexes. In this paper we construct a combinatorial model of the space
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of directed paths between two fixed vertices of a pre-cubical set, assuming it satisfies
a certain mild condition, i.e., its non-looping length covering being proper (cf. 1.3,
1.4).

The special cases of Higher Dimensional Automata are cubical complexes which
are state spaces of PV-programs, i.e., concurrent programs using Dijkstra’s semaphores
[2] for synchronization. Models for the execution spaces of PV-programs were con-
structed in [10—12]. It is also known that homotopy types of such spaces may be quite
complicated; in fact, any finite homotopy type can be obtained as a connected com-
ponent of such a space [18], and the Betti numbers of execution spaces may grow
exponentially with respect to the length of a PV-program [13]. Since cubical com-
plexes coming from PV-programs are proper, the results of this paper can be applied
in this case. The model of the execution space of a PV-program constructed here has
a nice (though complicated) structure of a “permutahedral complex”. This allows to
use methods of combinatorial topology to understand these spaces. On the other hand,
Theorem 1.4 allows to implement an algorithm which calculates the homology of the
execution state of a PV-program which could be more efficient than previously known
ones.

A pre-cubical set K, called also a [J-set, is a sequence of disjoints sets K|[n],
for n > 0, equipped with face maps df: K[n] — K[n — 1], for ¢ € {0, 1} and
i €{l,...,n}, that satisfy pre-cubical relations; namely, dfd;.] = d}7_]df fori < j.
A O-map f: K — K’ between [I-sets is a sequence of maps f[n]: K[n] — K[n']
that commute with the face maps. Elements of K [n] will be called n-cubes of K; in
particular O-cubes will be called vertices. A bi-pointed [-set is a triple (K, v, w),
where K is a O-set, and v, w € K[0] are vertices in K. Let (JSet and OSet} denote
the category of [-sets and [J-maps and the category of bi-pointed [J-sets and [l-maps
preserving the distinguished vertices, respectively.

Let us introduce a notation for arbitrary compositions of face maps. For a function
fi{l,...,n} = {0, 1, %} such that | f " (x)| = m, define a map df: K[n] — K[m]
by

de =diVa]? . a]", (1.1)

where dl.* is, by convention, the identity map; we will also write d F-10), £-1(1) for
dy. Finally, let d} = dag,dy = dpa and d° = df, _,: Kln] - K[O].
If f: {1,....,n} — {0,1,%},¢: {1,...,m} — {0, 1, x} are functions such that
|f~1(%)| = m, |g~ (*)| = k, then dyd s = d,, where

R{l,... on}3irs {f(’), fori ¢f7](*) € {0,1,%), (1.2)
gla(i)) fori e f~ (%)
and a: f~1(x) = {1, ..., m} is the unique increasing bijection.

The results of this paper apply to finite [-sets that have proper non-looping length
coverings. We say that a [l-set K is proper, if the map
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[ Knl: ¢ > (%), d' (o)} € 251 (1.3)

n>0

is an injection, i.e., the cubes of K can be distinguished by their extreme vertices.
Every proper [J-set is non-self-linked in the sense of [3], i.e., for every ¢ € K|[n]
and f, g: {1,...,n} — {0, 1, %}, the equality ds(c) = d4(c) implies that f = g.
The non-looping length covering [11, 5.1] of a [-set K is the [J-set K such that
K[n] = K[n] x Z and

df(c, k) = (df (0), k + ). (1.4)

Clearly, if a O-set is proper, then its non-looping length covering is also proper. Let
pcISet? C OSet? be the full subcategory of finite bi-pointed (-sets having proper
non-looping coverings.

Remark There are [1-sets which are not proper but their non-looping length coverings
are proper; the simplest example is the directed circle, see (1.5). In many cases, the
barycentric subdivision of a non-proper U-set is proper (1.6). Unfortunately, if K =
(0% U 0%)/80? is the union of two squares glued along their boundaries, then the
non-looping length covering of the barycentric subdivision of K (even iterated) is not
proper.

K is not proper K is proper
Q —_———————————— (1.5)
K is not proper Bd(K) is proper

[J

Definition 1.1 Let K be a [I-set and let v, w € K[0] be two of its vertices. A cube

chain in K from v to w is a sequence of cubes ¢ = (cy, ..., c;), where ¢y € K|[ng]
and n; > 0, such that

o dc1) =,

o d'(c) = w,

o d'(c;)=d%cip1) fori=1,...,1—1.
The sequence (n1, ..., n;) will be called the type of a cube chain ¢, dim(c) = n +

- -« 4 n; — 1 the dimension of ¢, and ny + - - - + n; the length of c¢. The set of all cube
chains in K from v to w will be denoted by Ch(K)}’, and the set of cube chains of
dimension equal to m (resp. less than m, less or equal to m) by Ch=™"(K)} (resp.
Ch="(K)¥, Ch="(K)™). Note that a cube chain has dimension 0 if and only if it
contains 1-cubes only.
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For a cube chain ¢ = (cy,...,¢) € Ch(K)Y of type (ny,...,n;), an integer
kefl,...,l} and asubset A C {1, ..., n;} having r elements, where 0 < r < ny,
define a cube chain

dea(@ = (e1, o it e, dh (@0, s, o oar) € ChUOY, (1)

where A = {1,...,ng} \ A. The cube chain c is thus subdivided once at one of the
inner vertices of c¢;. Let < be the partial order on Ch(K) spanned by all relations
having the form di 4 (¢) < c. Clearly dim(d, 4(c)) = dim(c) — 1; thus, the relation
< is antisymmetric.

For a O-set K let | K| denote its geometric realization (3.1) and, for a bi-pointed
O-set (K, v, w), let 13(K)v“’ be the space of directed paths on | K| from v to w (cf. 2.1).
Clearly, (K, v, w) — Ch(K)Y and (K, v, w) — f’(K)f are functors from [Set}
into the categories of posets and topological spaces, respectively.

Let hTop be the homotopy category of the category of topological spaces. We prove
the following

Theorem 1.2 The functors
P: peISet) > (K, v, w) — ﬁ(K)Uw € hTop
and
|Ch|: pcOSet} > (K, v, w) — |Ch(K)}’| € hTop
are naturally equivalent. In other words, for every finite bi-pointed [J-set (K, v, w)

having a proper non-looping covering, there exists a homotopy equivalence &k . y):
P(K)Y — |Ch(K)Y| such that, for every O-map f: K — K', the diagram

- ar>| floa - F(w)
P(K)Y > P(K’)f(v)
E(K,v,w) iS(K’,fw).f(w))
Ch(f):
| Ch(K)Y | — PO ey 1)

commutes up to homotopy.

Next, we prove that the spaces Ch(K);’ have a natural CW-structure, which is
coarser than the simplicial one. For a poset P and x € P, let P<, (resp. P,) be the
subposet of P containing all elements that are less or equal to x (resp. less than x).

Theorem 1.3 Let (K, v, w) be a finite bi-pointed [1-set having a proper non-looping
covering (i.e., (K, v, w) € pcdSet). The space | Ch(K)Y | is a regular CW-complex
with d-dimensional cells having the form | Ch<¢(K)| for ¢ € Ch:d(K)vw. Further-
more, for every -map 1 K — K', the inducedmap f,: | Ch(K)¥| — | Ch(K")4(%)|
is cellular.
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We also calculate the incidence numbers between the cells of this CW-complex. In
Sect. 8 we construct, for every ¢ € Ch™"(K)}’, a cycle g¢ that represents a generator
in the simplicial homology group

[gc] € Hy(| Ch<c(K)Iy, [ Chae (K)I)), (1.8)

As aconsequence of Theorem 1.3, the group H, (| Ch="(K)¥|, | Ch="(K)?|) is a free
group generated by g¢ for ¢ € Ch™" (K)Y.

Theorem 1.4 Let (K, v, w) be a finite bi-pointed [1-set having a proper non-looping
covering, and let

On: Hy (| Ch="(K)¥|, | Ch="(K)¥') = H,—1(|Ch="""(K)¥|, |Ch="""(K)}'])

be the differential in the cellular chain complex of | Ch(K)}'| (cf. [7, p. 139]). For a
cube chain ¢ € Ch™"(K)} of type (n1, ..., n;) we have

I ng—1

g =) D Yoo (=Tt sen(A) g o

k=1 r=1 AC{l,...,ni}: |A|=r

where

1 if Y,cpi =Y i_yi mod 2,

sgn(A) =
gn4) —1 otherwise.

As a consequence, the homology of 13(K )y can be calculated using the formula
above.

We conclude with two examples. For K = a3 (1.9), |Ch(K);'| is a hollow
hexagon; its vertices correspond to directed paths from v to w running along vertices,
i.e., cube chains of type (1, 1, 1), and its edges correspond to cube chains of types
(1,2) or (2, 1). For K being the barycentric subdivision of 02, | Ch(K )y | is presented
in (1.10).

e

v (1.9)
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Bd(C?)

v @ (1.10)

2 Directed spaces

In this section, we recall the notion of d-space and introduce complete d-spaces [5],
which are necessary to define the d-structure on the geometric realization of a d-
simplicial complex. For a complete exposition of this topic see for example [6].

Definition 2.1 Let X be a topological space and let P(X) be its path space, i.e. the
space of continuous maps [0, 1] — X with compact-open topology.

e A d-structure on X is a subset ® € P(X) which contains all constant paths, and
is closed with respect to concatenations and non-decreasing reparametrizations of
[0, 1], not necessarily surjective.

e A d-space is a pair (X, ®), where X is a topological space and ® is a d-structure
on X.

o Let (X,D), (X', D) be d-spaces. A continuous map f: X — X' is a d-map if it
preserves d-structure, i.e. f oa € D’ foreacha € D.

e A d-homeomorphism is an invertible d-map.

The category of d-spaces and d-maps is complete and cocomplete. For an arbitrary
family of paths & C P(X) there exists a smallest d-structure & on X containing &;
it can be constructed as the intersection of all d-structures containing &, or by adding
to & all constant paths and all non-decreasing reparametrizations of concatenations
of paths in G.

The following d-spaces play an important role in this paper:

e the directed real line f& = (R, non-decreasing paths),
o the directed n-cube I" = ([0, 17", paths with non-decreasing coordinates),
e the directed n-simplex A" = (A", P(A")), where

n
A" =1, ..., 1) €0, 11" Zz,- =1
=0

and ¢ = (g, ..., o) € P(A") is directed if and only if the functions

0,115+ Zai(t) €0, 1]

i>k

are non-decreasing for k € {1, ..., n}.
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Spaces of directed paths on pre-cubical sets 503

Let us recall the definition of complete d-spaces introduced in [17] (called there
“good” d-spaces).

Definition 2.2 Let (X, ®) be a d-space. A path «: [0, 1] — X is almost directed if
for every open subset U C X andﬁevery 0 <s <t < 1suchthat a([s,t]) € U,
there exists a directed path § € P(X) such that 8(0) = «(s), (1) = «(t) and
B(0,1)) € U.

The family of all almost directed paths ©. on a d-space (X, ®) is a d-structure on
X. The d-space (X, ®.) will be called the completion of (X, ®); if a given d-space is
equal to its completion, it is called complete. If & € P(X) is an arbitrary family of
paths, then its completion &, is the smallest complete d-structure containing &. We
add a criterion which allows to verify whether a continuous map between complete
d-spaces is a d-map.

Proposition 2.3 Let f: X — X' be a continuous map and let S C P(X), & C
P(X') be families of paths. Assume that f o« € &', for every a € &. Then the map
fi(X,6.) — (X', &) is a d-map.

Proof Fix a path @ € @C, 0 <s <t <1 and an open subset U C X’ such that
f(a([s,t]) € U. Since « is almost directed with respect to S, there exists a path
B € S such that BO) = a(s), B(1) = a(r) and B([0, 1]) C f’l(U). The path g
is either constant, or it is a non-decreasing reparametrization of a concatenation of
paths in &. Thus, by assumption, f o 8 is either constant, or it is a non-decreasing
reparametrization of concatenation of paths in &’. This implies that f o « is almost
directed with respect to &, therefore fouae @C, |

For every n > 0, the directed n-cube and the directed n-simplex are complete
d-spaces. The d-structure on I" is generated by the family of paths

{10,113 £ > (X1, + oy Xkt £y Xk 1o - s X)) k€ {1, ... 0}, x; € [0, 1]} (2.1)

and the d-structure on A" by

{[0,1] 2t — (x0,...,xk—2, (1 —t)c, tC, Xkt 1y -+ -5 Xn):
ke{l,....n}, c.x; €[0.1], c+ > x=1¢. (2.2)
i#k—1,k

If it is clear which d-structure we consider on a given space X, we will denote it
by P(X); the elements of P(X) will be called directed paths or d-paths. Given two
points x, y € X, let

P(X)) :={a e P(X): a(0) = x, a(l) = y} (2.3)

be the space of directed paths from x to y. We extend the notion of directedness for
paths defined on arbitrary closed intervals; a path [a, b] — X is called directed if its
linear reparametrization [0, 1] > # — «(a + t(b — a)) € X is directed. The space of
such paths will be denoted by P?[a, p(X).
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504 K. Ziemianski

3 O-Sets

In this section we introduce [-sets with height function, and prove that their geometric
realizations are complete d-spaces. For a more detailed discussion on [-sets see also
[3].

The geometric realization of a [J-set K is a d-space

K| =[] Kln] x I"/(df (). x) ~ (c. 6 (x)). 3.h

n>0
where 8 (s1,...,8—1) = (51,...,8-1,8 8i,...,5—1). A path a € P(|K]|) is
directed if there exist numbers 0 = 1) < 11 < --- < t; = 1, cubes ¢; € K[n;]

and directed paths B;: [ti—1, t;i]] — " such that a(t) = (ci, Bi(t)) fort € [ti—1, t;].
For every x € | K| there exists a unique cube supp(x) of K, called the support of x,
such that x = (supp(x), (t1, ..., ty)), a£1d t; 20,1 fori € {1,...,n}. For shortness,
we will further write P (K) instead of P(|K]).

Definition 3.1 A height function on a O-set K is a function i: [, K[n] — Z such
thath(df(c)) =h(c)+¢eforeveryn >0,c € K[n],e € {0,1}andi € {1, ..., n}.

Not every [-set allows a height function; see the directed circle (1.5) for example.
A height function /4 on K determines a d-map

hWMB@Am“”MDHh@+Z}£R (3.2)

i=1

which will also be called a height function. If & € 13(K ) is a directed path, then
l1(a) = h(a(l)) - h(x(0)), where [ is the Li-arc length of Raussen [11, 5.1]. In
particular, if @ € P(K) is not constant on any interval, then Z o« is a strictly increasing
function, which implies that all directed loops on a [J-set with height function are
constant.

Definition 3.2 Let K be a [-set with height function. A d-path a: [a,b] — [K]|
is natural if h(a(t)) = t for every ¢t € [a, b]. For v,w € KJ[0], let N(K)} <
Pihw),haw)1(IK 1)y be the space of natural paths from v to w.

The space N (K)} can be regarded as a subspace 13(1( )y via the reparametrizing
inclusion

NK) s ar> ao(t > a+(b—a))e P(K). (3.3)

On the other hand, by [9, 2.15] there exists a naturalization map
nat: P(K)" — N(K)", (3.4)
which is a left inverse of (3.3). As shown in [9], these maps are mutually inverse

homotopy equivalences.
We conclude this section with the following
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Proposition 3.3 If K is a U-set with height function, then its geometric realization
|K | is a complete d-space.

Proof Let < be the minimal reflexive and transitive relation on [ [, o K[n] such that
dlo(c) < candc < dl.l(c) forn > 0,c € K[n],i € {1,...,n}. The relation < is a
partial order since, for ¢ # ¢/, ¢ < ¢’ implies that either 2(c) < h(c’), or h(c) = h(c')
and dim(¢) < dim(c’). Moreover, it follows immediately from the definition that
supp(«(0)) < supp(a(1)) for every directed path « on |K|.

Let o be an almost directed path in | K| and let, for an arbitrary cube c of K, J. C
[0, 1] be the closure of the set {s € [0, 1]: supp(a(s)) = c}. For s < s’ there exists
a directed path from a(s) to a(s’); therefore supp(a(s)) < supp(a(s’)). This implies
that all the sets J,. are either closed intervals or empty. Thus « is a concatenation of
almost directed paths each of which lies in a single cube. Every such path is directed,
hence so is «. O

4 d-simplicial complexes

In this section, we recall the definition of a d-simplicial complex and prove that every
proper [J-set with height function has a d-simplicial triangulation.

Definition 4.1 [16] A d-simplicial complex M is a triple (Vyr, Sy, <p), where
(Vm, Su) is a simplicial complex and <y, is a binary relation of V), such that

e for every simplex A € Sy, the restriction (<ps)|4 is a total order on A,
e if v <p v/, then {v, v’} € Sy.

A d-simplicial map f: M — M’ is a simplicial map such that v <j; w implies
f) <y f(w) for v, w € V. The geometric realization of a d-simplicial complex
M is the space

M| =3 tvity>0, Y ty=1, {v:it, >0} €Sy

veVy veVy

with the maximal topology and the minimal complete d-structure such that the inclu-
sions of simplices

n
A"5 (to.....ta) = »_tiv; € M| (4.1)
i=0
are d-maps for all {vg < --- < v,} € Sy-
Remark The completion of d-structure is necessary to obtain proper d-structures on the

triangulations of [-sets. For example, the directed square [J*> admits a triangulation
that is a d-simplicial complex with vertices (i, j),i, j € {0, 1}, maximal simplices
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506 K. Ziemianski

((0,0) < (0,1) < (1, 1)) and ((0,0) < (1,0) < (1, 1)), and (i, j) < (i’, j) if and
only if i <i’, j < j'. However, the infinite staircase path on the picture below

0,1) (1,1)

W

0,0) (1,0) 42)

is not directed with respect to the (non-completed) d-structure induced by the inclu-
sions of simplices, though it is directed with respect to the d-structure of the square.

Example 4.2 If P is a poset, then the nerve of P, denoted by N P, is defined by
Vnp = P, <nyp=<pand A C P is a simplex of NP if and only if A is a totally
ordered subset.

Remark d-simplicial complexes can be regarded as special cases of simplicial sets.
For a d-simplicial complex M one can define a simplicial set whose n-simplices are
functions o: {0, ...,n} — Vysuchthato (i) <p o(j) foreveryi < j and the image
of o is a simplex of M.

For the rest of the section we assume that K is a proper [J-set. We will construct
a triangulation of K, i.e., a d-simplicial complex Trg such that |K| and Trx are
d-homeomorphic. With notation as in (1.1), let

Stk == {dg (), ..., dg ()} € K[O]:
ceKn], fo< fi<--<fr, fi:{1,...,n} = {0, 1}}, “4.3)

where f; < fi means that f; # fi and f;(i) < fx(i) for all i. Introduce a binary
relation <t(g) on K[0] by

U <Te(k) V' € TeekmiTr<s 1m0y df(€) = v, dp(c) =0 (44)

Every element A = {df,(c) < --- < ...,dy (0)}, c € K[n] of Str(k) can be written
as

A = {dfooe(c/) <see <., dfkoe(c/)}7

/
where ¢’ = dfk—l(o)!fb—l(l)(c) and

L PO A (1) TR A € D} I § WO AN G A (V) NS A OB
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is an increasing bijection. Thus, A has a unique presentation such that fy = 0 and
fr = 1. By the properness of K, the cube c is determined by its extreme vertices
d%c) = df(c) and d L) = d, (c) and, for every vertex v of c, there exists a unique
f such that v = dy(c). Such a presentation of a simplex of Tr(K) will be called
canonical.

Proposition 4.3 If K is a proper U-set, then

Tr(K) = (Vrv(k) := KIOL, Str(k)» <Tr(k))
is a d-simplicial complex.

Proof 1t follows immediately from the definition that Tr(K) is a simplicial complex,
and that v <tyg) v’ implies {v, v’} € Sty(k). It remains to prove that, for every
A € Str(k), the restriction <Ty(k) |4 is a total order. We have

A ={vy =djsc <tk) V1 =dfc <Tr(K) *** <Te(K) Vk = dfc}

for some n > 0,c € K[n] and fo < --- < fi. Since K is proper, the vertices
vo, ..., Uk are all different. Clearly <t.k) |4 contains a total order. Assume that
v <Ty(k) vi fori < j. Then there exists ¢’ € K[n'] and fy, f{: {1,...,n"} —
{0, 1}, fy < f{, such that dféc’ =v; and dfl/c’ = v;. We have

0 — . —1
d (dfj—l(o)’fi—l(l)c) =v #vj=d (dfj—l(o)’fi—l(l)C),

0 N . C— gl /
d™(d(gry=10). (-1 ()€) = vj F vi = d (d(g1y-10),(£)~1(1)E )

then d 0, ()€ and d 1), (! ¢’ are two different cubes with the same sets
i O '

of extreme vertices, which contradicts the properness of K. O

The d-simplicial complex Tr(K') will be called the triangulation of K .

Our next goal is to construct a d-homeomorphism between the geometric realization
of K and the geometric realization of its triangulation. Let A be a simplex of Tr(K') and
let (dfy(c), ..., dp (c)), c € K[n]beits unique presentation such that fy =0, f; = 1.
Define a continuous map

k k
Fa: A2 ) tidj(0) (c, Zt,ﬁ) € K|, (4.5)
i=0 i=0

where functions f: {1, ..., n} — [0, 1] areregarded as points (f (1), ..., f(n)) € .

Proposition 4.4 If x € |A| N |A|, then Fa(x) = Fpr(x).
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508 K. Ziemianski

Proof 1t is sufficient to check this for

A — dfy(c),....df (0),
A=(df),..., dfj,l (o), dfj+] (©),....dg (),

Jfo=0, fy = 1.If j # 0, k, then the preceding presentation of A is canonical and the
equation F4 = Fy/| 4 is clearly satisfied. For j = 0 the canonical presentation of A
is

— 1 1
A= <dfloe(d bt @) die(d) (1)@)) :

0

where e: {1,...,n — |f1*1(1)|} — {1,...,n}\ ff](l) is the increasing bijection.
We have

k k k
fa (; tidy (c)) = fa (Z tidfroe (d) (1)(c)>) = (d}.o_l 0 ©: ;rxﬁ oe))

i=1

k
- (c, 3}0_](1) (Z 4i(fio e)))
i=1

k k
= (C, Zh‘fi) = fa (Z tidﬁ(c)> :
i=1

i=1
The case j = k is similar. O
As a consequence, the maps F4 glue to a continuous map Fg: | Tr(K)| — |K]|.
Proposition 4.5 Fx is a d-homeomorphism.

Proof For ¢ € K[n] and a permutation o of {1, ..., n} define a set
Sc,o = {(Cv (tl, ey tn)) € |K| ta(l) = 10(2) <= ta(n)}

and a sequence of functions f7, ..., f;7: {I,...,n} — {0, 1} by

0 foro(j)>1i

o= {1 for o' (j) < i.

Clearly the sets S. , cover |K|. Similarly to the proof of Proposition 4.4 we can show
that the maps

n
Geo:Seo 2 (e, (t1, ..., t0)) = Z(fo<i+1) —to@i))dge (c) € [ Tr(K),
i=0
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where by convention #,) = 0 and t5(,4+1) = 1, glue toamap Gg: |K| — | Tr(K)|,
which is the inverse of F. Thus Fk is a homeomorphism. Next, we need to prove
that both Fx and G g are d-maps. By definition, 13(| Tr(K)]) is a complete d-structure
generated by paths having the form (cf. 2.2, 4.1)

w: s+ b(1 = 5)dp () + bsdg () + Y tidy(c)
ik k+1

fOI'I’lZO,CGK[I’l],OEf()<~-~<fnE1,k€{O,...,n—l},b+zi¢k’k+1li=
1. The image

Fg(w(s)) = Fe(w(s)) = b(1 — ) fic + bsfir1 + Z i fi

ik k1

is a directed path in |c| C |K]| since fx < fi+1. Since | K| is a complete d-space (by
Proposition 3.3) from Proposition 2.3 follows that Fx is a d-map. A similar argument
applies for Gg. O

We conclude with some obvious properties of the triangulation.
Proposition 4.6 Let K be a finite proper [-set with height function.

(1) Fx maps bijectively vertices of | Tr(K)| into vertices of |K|.

(2) For each simplex A € Sty(k) there exists a cube of K such that Fk (|A]) C |c|.

(3) Tr is a functor from the category of proper Ul-sets into the category of d-simplicial
complexes. Moreover, the maps Fx define a natural equivalence of functors K +—
|K| and K — | Tr(K)]|. O

5 Tame paths

Recall [16] that a d-simplicial complex M has no loops if for every sequence of vertices
vo < --- < v, <vpin M we have v9 = --- = v,. We say that a [J-set K has no
loops if, for every vertex v € K[0], every cube chain from v to v is empty. If K admits
a height function, then, clearly, it has no loops. Immediately from the construction
follows that the triangulation of a proper [J-set having no loops also has no loops. In
this section we prove that the space of directed paths between two arbitrary vertices
of a proper [I-set having no loops is homotopy equivalent to its subspace containing
only tame paths, i.e. paths that cross from one cube to another at vertices only. It is a
consequence of the results from [16] for d-simplicial complexes.

Definition 5.1 Let M be a d-simplicial complex. A directed path o € I3(M ) is tame
if, foreach 0 < s < ¢ < 1, there exists a simplex A € Sy such that «|;;) € |A], or
a vertex v € Vyy such that v € a([s, r]). Let f’t(M)Uw - 13(M)Uw be the subspace of
tame paths from v to w, v, w € M[0].

Proposition 5.2 [16, Section 6] Let M be a finite d-simplicial complex having no
loops. There exists a d-map Ry: |M| — |M| such that
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(1) Ry(v) = v forevery vertex v € Vyy,
(2) for every x € |M|, there exists a simplex A such that x, Ry (x) € |A],
(3) forv,w € Vyy anda € P(M)Y the path Ry o « is tame.

The tameness of paths on [-sets is defined quite similarly:

Definition 5.3 Let K beal-set. Apatho € 13(|K|)is tameif,foreach0) <s <t <1,
there exists a cube ¢ € K|[n] such that «|j;;) € |c|, or a vertex v € K[0] such that
v e als,t]).

For the remaining part of this section we assume that K is a proper [J-set with
height function.

I:roposition 54 Ifa € 13(Tr(K )) is tame (in the simplicial sense), then Fg oo €
P(K) is also tame (in the cubical sense).

Proof This follows immediately from Proposition 4.6(1) and (2). ]

Proposition 5.5 Let X be aspaceand fi, fo: X — ﬁ(K ) continuous maps. Assume
that, for everyt € [0, 1], there exists a cube c such that f1(«(t)), f2(a(t)) € |c|. Then
f1 and f> are homotopic.

Proof For ¢ € K[n] the map |i.|: "> x > (¢, x) € |c| is a d-homeomorphism,
since K is proper. The homotopy between f; and f; is given by

Hy (x) (1) = lic| (1 = )lic| ™" (fi(@@®) + slic| ™ (f2(@@)),  fi(x), fo(x) € |l

It is clear that this is well-defined (since convex combinations of d-paths in I" are
d-paths), continuous and does not depend on the choices of cubes ¢ for respective
points. O

Remark If K has height function, then convex combinations of natural paths are
natural, so the analogue of Proposition 5.5 holds also for maps into N (K)’.

The main result of this section is the following

Theorem 5.6 Assume that K is a finite proper U-set with height function. For v, w €
K[0], the inclusion

P.(K)" € P(K)"

is a homotopy equivalence.

Proof The triangulation Tr(K) is finite and has no loops. Let Rrr(k): | Tr(K)| —
| Tr(K)| be a map satisfying the conditions of Proposition 5.2, and let fK | Tr(K)| —
|K| denote the homeomorphism from Proposition 4.5. For o € P(K); the path
Fk o Rtk o (FK)_1 o « is a d-path with endpoints v, w [Proposition 5.2(1)] and is
tame [Propositions 5.2(3), 5.4]. Therefore the map

P(K)"” 5 a — Fk o Rryk) o (Fx)™' o € P(Tr(K))"

is well-defined and is a homotopy inverse of the inclusion I%(K W C I3(K )y. The
latter statement follows from Propositions 5.2(2), 5.5 and 4.6(2). O
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6 A cover by cube chains
Let K be a finite proper [J-set with height function and let v, w € K[0]. Let
N(K)Y = (nat)™ (P(K)}),

(cf. 3.4) dengte the space of na}ural tame paghs; thanks to Theorem 5.6 and [9, 2.16]
the spaces N;(K)Y, N(K)Y, P;(K)y and P(K)) are all homotopy equivalent via
normalization maps and inclusions. In this section we construct a good closed cover
of N;(K)Y indexed with the poset of cube chains from v to w.

Recall that a cube chain from v to w is a sequence of cubes ¢ = (cy, ..., ¢;) such
that d°(c1) = v, d'(¢;) = w and d'(¢;) = d°(ci_y) for 1 <i < [. Recall also that

dea© = (c1, - ko, d (e, dh (@), cxr, o) € Ch(K)Y. (6.1)

fork € {1,....,},ANA = §,AUA = {l,...,dim(cx)} and that < is the
transitive-reflexive closure of relations di 4(¢) < ¢ on Ch(K)} . For a cube chain
¢ =(c1,...,cq) we will write [¢ = [,n§ = dim(c;), vf = d°(ci+1) = d'(c¢;) and
by =n§{+---+ng, ke {l...1}. The upper index ¢ will be omitted if it does not lead
to confusion.

Definition 6.1 We say that a natural path o € ﬁ,(K )y lies in a cube chain ¢ €
Ch(K)Y if

a ([bf_y,bf]) < leil
fori e {1,...,1}. Let N(K, c) C 1\7,(K) be the subspace of tame paths lying in c.
Note that a(b¢) = v¢ fora € N(K, ¢),i € {0, ..., 1),

For v,w,z € K[0] and cube chains ¢ = (ci,....¢) € Ch(K)V,¢ =
(¢}»--..c;) € Ch(K)S, we define the concatenation ¢ * ¢’ € Ch(K)j of ¢ and ¢/
by

c*c/:(cl,...,Cl,C/l,...,C;/). (6.2)

The concatenation of paths induces a homeomorphism
N(K,¢) x N(K,¢) C N(K,cx*¢). (6.3)

Proposition 6.2 Let v, w € K[0], ¢, ¢’ € Ch(K)Y.

(1) N (K, ¢) is a contractible closed subspace of IV,(K ).

(2) The intersection N(K c)N N(K ¢)is elther empty or there exists a cube chain
cﬂc € Ch(K)w suchthatN(K cnNc) = N(K c)ﬁN(K c).

(3) N(K c) gqN(K c) if and only if ¢ < c.

(4) Uececnx) N(K, €) = N (K).
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Proof Assume that 2(v) = 0, h(w) =n,c=(c1,...,c1), € =(c},....cp).
(1) Lety € IV(K, ¢) be the diagonal of ¢, i.e. a path given by

t—b¢ t—b§
— . i—1 i—1
7/([)—<Cu( w0 Tt ))

fort e [bf_,, bf]. The identity map of N (K, ¢) and the constant map with value
y satisfy the assumptions of Proposition 5.5; therefore the space N (K, ¢) is con-
tractible. Closedness of N (K, ¢) is clear.

(2) Assume thata € N (K,e)N N (K, ¢). The proof is by induction with respect to 7.
Ifn = 1,thenc = (cy) = (c/l) = ¢’ since ¢y and c/] have the same extreme vertices.

Assume thatn > 1 and n{ < nf,. Since a(n{) = v{ and a ([0, nf,]) C |c} | then vf
is a vertex of the cube ¢/, say v = dA,A(C/l) forANA =0, AUA ={1,..., nf/}.
We have d°(df(c))) = v = d%ecy) and d'(d(c))) = v§ = d'(c1); by the
properness of K this implies ¢; = dg (c}). Furthermore, o ([n§, nf/]) - |di§ (DI,

and then a|f,¢ y is contained in the cube chain (dji (¢]), ¢5, ..., c)). We have

N(K.e)NN(K.¢)=N(K,c)N N (K, (cl, dh () ..., c;))

= N(K. (1)) x (N(K, €esea) NN (K, (d/g(c’l), ..., c;)))
= N(K.c1 (2. ... cn) N (@dh(c)). Sho o cp))

since (c2, ..., cp)N (d}i (c}), ¢, ..., c)) is acube chain in Ch(K)l'f’f by the induc-

tive assumption. The case n{ = n?, is similar, only the term d fli (c}) is dropped
(since it is a vertex).

3) Immedlately from the definition, we have N (K,diae) C N (K, c) Assume
that N (K,c) C N (K, ¢'); this is equivalent to the equation ¢ = ¢ N ¢/. Assume
that the statement is true for all pairs of chains having length less than n. Using
the argument from the previous point we obtain

cnNe =cq ((cz,...,cn) N (dk(cﬁ),cé,...,cé))

By the inductive assumption, (c3, ..., ;) < (dji (c})), ¢, ..., c,) and therefore
c<c.

(4) Let«: [0,n] — | K| be a natural tame path from v to w. If «(¢) is a vertex then ¢
is an integer. Thus, there is a finite sequence 0 = kg < --- < k; = n of integers
such that a(k;) = v; is a vertex, and restrictions o[, _, ;) do not contain vertices
in its images. By the tameness of «, for each i € {1, ..., [} there exists a cube ¢;
such that a([k;—1, ki]) < |ci|. Obviously v;_; and v; are vertices of ¢; and then
there exist umque (by properness) subsets A, B € {l,...,dim(c;)} such that
dy A(c) =vi_1,d B, z(c) = v; (where A, B stand for sultable complements). The
segment a|[x,_, ;] is contained in cl =d ’A(c,) andv;_1 = do(cl), v; = d! (cl).
As a consequence, « is contained in the cube chain (c/l, el c;). O
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This allows us to prove Theorem 1.2 in the following special case. Let fphUJSet
be the category of finite proper [J-sets with height function and [J-maps that preserve
height functions. For (K, v, w) € fphOSet] let ¢k ,, ) be the composition

nat

ek vy: PUKY 2 Pi(K)Y =5 Ni(K)Y
< hocolimeech(k.e) N(K, ¢) = | Ch(K)"|. (6.4)
All the maps in the sequence and homotopy equivalences. This follows from Theorem
5.6 for the left-most inclusion, [9, 2.16] for the nat map, and from [14, 4.1] and
Proposition 6.2 for the remaining two maps. This implies that (g , ) is well-defined

up to homotopy, and it is a homotopy equivalence. Furthermore, all the maps are
functorial with respect to (K, v, w). As a consequence, we obtain the following.

Proposition 6.3 The maps &k v,w) define a natural equivalence of functors
P ~ |Ch|: fphOSet* — hTop.o

The proof of Theorem 1.2 in full generality is postponed to Sect. 9.

7 Permutahedra

In this section we study the posets of faces of products of permutohedra (see [15, p.18]),
which play an important role in the description of the posets of cube chains on [1-sets.
There are (at least) three ways to describe the face poset of the (n — 1)-dimensional
permutahedron:

e As ordered partitions of the set {1, ..., n}, i.e., as sequences
1.1 1] 22 1 1.1 I
aa, ...a, |aya;...a,, ...‘alaz...am *)
suchthatn = ny 4+ ---+nyand {1, ...,n} = {af}f::f ''''''' ,i o The partitions are
ordered by the relation of (ordered) refinement.
e Asweak strict orderings of {1, .. ., n}, ordered by inclusion. A weak strict ordering

is a reflexive and transitive relation such that any two elements are comparable,
though, not necessarily anti-symmetric. The ordered partition (*) corresponds to
the weak strict ordering T defined by

afgaf,,@kfk’.
e As surjective functions f: {1,...,n} — {1,..., k} ordered by refinement (see
7.1). Such a function determines a weak strict ordering Ty such that i E i " if
and only if (i) < f(i’). On the other hand, every weak strict ordering C on

{1, ..., n} determines the unique surjective function

ferfl, . .oony > {1,... k), (7.1)

@ Springer



514 K. Ziemianski

called the characteristic function of C, characterized by i T j if and only if
fe@ = fc(h)-

The first description is most common and, probably, more intuitive than the others.
We will pass freely between these three approaches; however, we will mainly use
surjective functions since they allow more rigorous arguments.

Definition 7.1 Let O, be the poset whose elements are surjective functions

Fill, . on) = {1,..., k),

where k = k(f) is a positive integer, and f < g if and only if f is a refinement of g,
i.e., there exists a non-decreasing function z such that g = h o f.

Clearly, the function f is determined uniquely. The poset O, has a greatest element:
the constant function with value 1, which will be denoted by f;,. Let

8On = On \ {fn} (72)

Proposition 7.2 The pairs (|0,|, |d0,|) and (D", $"=2) are homeomorphic.

Proof As mentioned before, the poset O, is isomorphic to the face lattice of the
(n — 1)-dimensional permutohedron Pr=1(cf. [15, p.18]), with f,, corresponding to
its body (i.e. the single (n — 1)-dimensional cell), and 3 O, to its boundary. Hence the
pair (| O,|, |8 0,]) is homeomorphic to (P"~!, 3 P"~1) and hence to (D"~ !, §"~2). 0

Next, we will identify the product Oy, x - - - x Oy, with the sub-poset of O,,, n =
>k Nk, consisting of those weak strict orderings E of {1, ..., n} which satisfy

1,...mmCni+1,....my+mCcC---Cn—n;+1,...,n,

where i T i’ means thati C i’ and not i’ C i.
Let Seq(n) be the set of all sequences of positive integers n = (11, ..., nym)) such
thatn = ny + - -+ 4 nym). For a given partition n € Seq(n), let

o by(n) =Y*_ nj fork € {0,..., ()},

j=1
o fu:{l,...,n} — {1,...,l(n)} be the unique non-decreasing surjective function
that takes value k for exactly ny integers, i.e., fn(i) = k if and only if by_1(n) <
i < br(m),

® On:=(On)<s, ={f € Op: f =X fu}.
Notice that O,y = O,. Whenever it does not lead to confusion, we will write / or by
instead of /(n) or by (n).

Fix n € Seq(n). For every f € Op, there exists a non-decreasing function
h: {1,...,k(f)} = {1,...,1} such that h o f = fy. Thus, for k € {1,...,1}, f
determines a function

: B . i+ 1—mi h_l &
oo B oty SO g,
(7.3)

i>i+by_1

e )
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which is an element of Oy, . On the other hand, a sequence

(Ff 1, om) = {1, .. 7)) € Oy,

fork € {1,...,1}, determines an element f € Oy such that
k—1
[ =[G —bien+ Yy (74)
j=1

These constructions give an isomorphism of posets O = Oy, X -+ X Oy,. Thus,
Oy, is isomorphic to the face lattice of the product of permutahedra of dimensions
n1 —1,...,nr — 1 respectively; as a consequence, there is a homeomorphism

(10nl,180n) = (D", s"7171), (7.5)

where d Oy := Oy \ {fn}, which generalizes Proposition 7.2.

The main goal of this section is to construct a fundamental class of the pair (7.5)
in simplicial homology [7, p. 104]; to achieve this, we need to introduce a notation
for the simplices of the nerve 'O, of O,,. Before passing to formal definitions, let us
present a general idea of this notation.

Example 7.3 Here follows an example of a 2-simplex in N'O,,, n = 6:

S = (Vo = (3I5|6/14]2), Vi = (35614]2), V> = (35/6142)).

To this simol . wtono — (L 23 4 56 e
0 this simplex we can assign a permutation o = 35 6 1 4 2 onn =

letters that determines in what order integers appear in every sequence; we can choose
compatible orders for all vertices of S. Then we assign a function

)

:{1,...,5} = {0,...,3}, T:(l 2 34 5)

1 3 1 0 2

7(i) = j means that the vertical line between the i-th and the (i + 1)-th entry appears
in Vy, ..., Vi_1 and does not appear in V;, ..., V>. The pair (o, 7) determines S; on
the other hand, S determines uniquely 7 but not .

Let
e X, be the set of permutations of {1, ..., n},
e T%bethesetof functions t: {1,...,n—1} — {0,...,d+1}suchthatt=1(j) # @

n

for0 < j <d.
For n € Seq(n) define 1, € T,? by th(i) = fu(i + 1) — fa(i),and for v € T,? define
f* € O, by

k—1

fri)y =14 0. (7.6)

i=1
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Clearly, f™ = f,, and this defines a bijection between Tn0 and Seq(n). For T € Tf
let

Y, ={o e ffo = fT). (1.7)

Let us enlist some properties of the functions f7:

Proposition 7.4 (a) If T,V € Tno, then f* < fV ifand only if t(i) > ¥ (i) for all
iel{l,...,n—1}

(b) ffo < fYoifandonlyif f* < f¥ andop™' € Zy.

(c) Every element of O, has the form f'o foro € X,, T € Tno.

Proof To prove (a), assume that (i) > ¥ (i) for 7,¢¥ € T,?,i e{l,...,n—1}.
Clearly 7(i) = O implies that (i) = 0; thus, if (i) = t(j), then ¥ (i) = ¥ (j).
As a consequence, the formula A(k) = (f Vo (fT)~1) (k) defines a non-decreasing
surjection such that f¥ = h o f7. On the other hand, if (i) = 0 and ¥ (i) = 1, then
fYG) # fYG + 1) and f7@i) = f7(@i + 1); therefore, f¥ cannot be written as a
composition o f7.

If f7 < fYandog~! € =y, then

Yo=flop o= fVo =hf'o,

where 4 is a function such that f¥ = hf®. If fY¢ = hf%o, then fYpo ! = hfT
is a non-decreasing function. Hence o ! € Xy and f ¥ = hfT, which implies (b).
The point (c) is clear. O

Let us introduce the following maps between integers:
i fori <k i fori <k
di (i) = i (i) = =<
K@ {i—i—l fori =k O {i—] fori > k
. k fori =k+1
. 0 fori <k . .
Pr(i) = . te@)=1k+1 fori =k
1 fori >k : .
i fori #k,k+ 1.

furthermore, for r < s denote t? = t,t,1...t;_;itis easy to check that t’ (i) = i for
i<rori>s,t(s)=r,andt?(i)=i+1forr <i <s.

Every element t € T,fl determines a sequence (PgoT, ..., PgotT) of d+ 1 elements
of T,?. Thus, foro € ¥, and t € Tf, we can define a d-simplex in O,:

alo, 1] := (fP%q, fP1%0, ..., fP70). (7.8)

Notice that Proposition 7.4(b) implies that P70 < fPiTg < ... < fPd'q, This
definition coincides with Example 7.3

Proposition 7.5 Foro € X, 7 € T,f’ we have
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(a) 0;(alo, t]) = alo, S;t], where 0; denotes the simplex with i-th vertex skipped,
i€{0,...,d},
(b) alo, ] =ale, Y] ifand only ift = Y and o9~ ! € Z,.

Proof This follows immediately from Proposition 7.4 and the definition. O
For n € Seq(n) define
Zhi={o € Xy fnoo = ful, (7.9)
T4 = (v € T Vio1. im)y—1 T(r(n)) = d + 1}. (7.10)
Notice that T) = {t € T): f7 < fu},and T = {r € T%: py7 € T}.

Proposition 7.6 Letn € Seq(n),o0 € X, T € Tnd. Then alo, t] is a simplex in N Oy,
ifand only ifo € Lpand 1 € Tnd.

Proof Clearly a[o, ] is a simplex of N'Oy, if and only if fPi'o < f, = f™. By
Proposition 7.4 this holds if and only if 0 € X, and pyt < 74 O

The next step is to construct a generator of the top homology class of the pair
(N On, N3 0y). Itis clear that this a combination of all simplices of V' Oy, having the
maximal dimension; the difficult part is to choose £1 coefficients at these simplices.
Foro € ¥, let sgn(o) € {£1} be the sign of the permutation o. For n € Seq(n) and
T E T,{’_l,theimageofr contains {1, ...,n—l},andt(b;) =n—Iforj=1,...,[-1.
Then the restriction

o {l,...,n=1\{by,....0—1} > {1,....,n =1}
isabijection. Let op: {1, ..., n—1} — {1,...,n—=1}\{by, ..., bj_1} be the (unique)

increasing bijection. The composition Toy is a permutation on n — [/ letters, and we
define the sign of T € T~ as

sgny (1) = sgn(ton). (7.11)

Define a chain g, € C,,_;(N Oy) by

&n = Z Z sgn(o) sgn, (t)alo, t]. (7.12)

0EXy TET,{Lil

We will show that g, represents a fundamental class in H,_;(|Oyp|, |0 Op|) (cf. 7.5).

Proposition 7.7 Let 3: C,,_;(N Oy) — C,_1_1(N Oy) be the differential of the sim-
plicial homological chain complex. Then

dgn) = (=" D" " sgn(o) sgny(t)alo, S,

geX, reTI:tfl(n)
As a consequence, gy represents a generator of H n—l(m) (N (On), N(80y)).
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Proof We have

n—I
dgn) = Y Y sen(o)sgny (1) Yy (—=1)d;(alo, 1)
J=0

o€Xy reT,{’_l
n—l .
= Z Z(—I)J sgn(o) sgny(t)alo, s;7] = Z sgn(o) sgn, (t)alo, Sot]
o,T ]:0 o,T

n—Il—1
+ Y (=17 sen(o) sgny(t)alo, s;7]

j:l o,T

+(=1)! Z sgn(o) sgn, (t)alo, $,—7].

0,7

For the first summand, we have a[o, sot] = alt.-1(}y0, So7], since t,_u(l)ao_l =
t-1(1) € Xsyr, therefore the first summand equals

Z sgn, (7) Z sgn(o)alo, Sor]+sgn(tr_1(l)o)a[t(,q(1))0, SoT]
T oot 1) <o (r=1(1)+1)
=0.

For the second summand, for j € {1,...,n—[—1}, we have s;7 = s;t; 7, therefore

Z sgn(o) sgn,(7)alo, s;7]

0,7

= Z sgn(o) Z sgn, (t)alo, s;t] + sgn, (tjt)alo, s;tjr] = 0.
o ()<t (G+D)

Hence only the third summand remains. The maximal element of Oy, namely f;, does

not appear as a vertex of any a[o, S,_;t]. Thus, d(gn) € Cn_;1_1(N(d0y)) and gy is

a cycle, regarded as an element of C,,_; (N (Oy), N (9 Oy)). Since the coefficients of

gn on all simplices are £1, it represents the generator in the homology group. O

Letn € Seq(n). Fork € {1,...,1},r € {1, ..., ny — 1} denote
nlk,r] =y, ..., Rg—1,F, 0k — ¥, Ngg1, ..., N7) € Seq(n). (7.13)

Lemma 7.8 For each t € Tl;”l, there exists a unique pair of integers k €

{1,....01},r e {1,...,nr— 1} such that Tt (by—1 +r) = n—1, i.e., there is a bijection
I ng—1
T,{"l 5T S,T € ]_[ ]_[ Tl:'[;’lrjl.
k=1 r=1
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. n—Il—1
Furthermore, if ;7 € Tn[k,r] , then

— (_1)n—l—bk71 —r+k—1

g0y r1(Sp—17) sgn,, (7).

Proof The existence of k and r, as well as the fact that 5,,_;7 € T;’[;’lr_] 1, follows
immediately from the definitions. It remains to prove that the signs of permutations
Sn—1TOnlk.r] € Zn—i—1 and Ton € T, (cf. 7.11) differ by (— 1)~ —be-1=r+k=1,
Denote v = by_1 — (k — 1) 4 r; clearly

ontr) () forj e (1,...,v— 1),
on(j) = {bx—1 +r for j = v,
Onk,r1(j—1) forje{v+1,....,n-1}

since im(ton(k,r)) € {1,...,n — [ — 1}, we obtain
Sn—1TOn[k,r1(J) forje{l,...,v—1}

ton(j) = yt(bk—1+7r)=n—1 forj=v
Sn—1T0nk,r1(j—1) forjefv+1,....,n—=1}.

Then

ron() = St At () forjefl,....n—1—1}
" n—1 for j=n—1I,

The permutations to, € %,—; and Sn_lrgn[k,r]t’;’l € ¥,_;—1 have equal signs. As a
consequence,

sgy () = sgn(ton) = sgn(Su—rTenienty ) = (=1)" '~V sgn(Su—170nfk.r))
— (_l)n—l—v Sgnn[k’r](sn—lf) — (_l)ﬂ—l—bk—l—r-'rk—l Sgnn[k’r](snfl":)

Fixn € Seq(n). Fork € {1,...,l},r e {1,...,n; — 1}, let
Snk, 1) :i={AC fl(k) = {bx—1 +1,..., b} |A] = r). (7.14)

Remark Notice that elements of | [, | [, Su(k, r) are in 1-1 correspondence with max-
imal elements of d O, or, more geometrically, facets of the product of permutahedra
P ox ... x P,

For A € Su(k,r), let & 4o € X, be the permutation determined by the following
conditions:

o &i,a() = ifor fu(i) # k,

o & alai A — {br—1+1,...,br_1 + r} be strictly increasing,
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° Sk»A|f,;1(k)\A: fn_l(k) \A — {bp_1+r+1,..., b} be strictly increasing.

Proposition 7.9 Assume that n € Seq(n), k € {1,...,1},r € {1,..., by — 1} and
A € Sn(k,r). Thensgn(&x,a) = sgn(A—bi—1), where A—by_1 == {i —br_1:i € A}.

Proof Assume that A = (a; < --- < a;). We have

_ iar ar ai
Ek.a = tbk—1+r T thk—1+2tbk—|+l’

hence sgn(&x, 4) equals —1 to the power

r r d .
0 SURERES SRS
=1 = j=1 =

which coincides with the definition given in Theorem 1.4 in the introduction. O

Lemma 7.10 For everyn € Seq(n), k € {1,...,1},r € {1, ..., ng — 1} the function
Sulk, ) X Zpk,r) 3 (A, @) > wép 4 € Xy *)
is a bijection.

Proof For arbitrary o € Xy, let A = U_l({bk71 +1,...,bx_1 +r}). Then USI:,J\ €
>n[k,r]» and the inverse to the function (*) is given by o — (A, ng_,lx)' O

Every permutation § € X, induces an automorphism ¢*: Op — Oy by the for-
mula 0*(f) = fo; note that £&.alo, t] = aloé&, t]. Define an inclusion (¢ 4 as the

.. (&k.a)*
composition Op[k,r] € On LN On.

Proposition 7.11 Forn € Seq(n) we have

I ngp—1

dgn = Z Z Z (=Kot son(A — b 1) () w (gnik.r))-

k=1 r=1 AeSa(k,r)

Proof By 7.7 we have

dgn = (=t Z sgn, (7) Z sgn(o)alo, S,—t].

.[ETI’II*I 0EX,

Then, by Lemma 7.8

[ ng—1

dgn=D_ > D DTFlsgng () Y sen(o)alo, ¥l

k=1 r=1 wETl:l[;,’;Jl 0EXL
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Finally, using Propositions 7.9 and 7.10, we obtain

I np—1

dgn=_ Y > (=DFTtlsen ()

k=1 r=1 I/JGTI’:[;'Z;]I

Yo Y sen(wgaalwbia. ¥
w€Xyk,r] AESn(k,r)

I ngp—1

ZZ Z (_1)k+r+bk,1+1 sgn (. 4)

k=1 r=1 AeSyk,r)

Yo Y sengpn () sen(@) wa)walo, ¥

yely ! @€%nik ]

I ng—1

=33 > (=DM sen(A — b 1) ()« (8nikr))-

k=1 r=1 AeSa(k.r)

8 CW-decomposition

Throughout the whole section, K is a finite proper [J-set with height function £, and
v, w € K[0] are two vertices such that 2(v) = 0, h(w) = n. For s € Z, define a
function

0 fori >=s
Us:Z3i+— 31 fori <s

* fori =s.
Proposition 8.1 For every ¢ € K[n], the map
It Op > f > (duyp(c), duy(0), ..., dyy s £ () € Che)(K),

is an isomorphism of posets.

Proof We will construct an inverse of I.. For an arbitrary b = (by,...,b;) €
Ch<)(K) and k € {1, ...}, there exists a unique, since K is proper, presentation
b, = dAlc,Bk(C) where Ay and By, are disjoint subsetsof {1, ...,n}.For X C {1, ..., n}
denote X = {1,...,n}\ X. We have By = # (since d°(b;) = d’(c)), A; = @ (since

d'(by) = d'(c)), Biy1 = A (since d®(brs1) = d'(by)), and Ay U By # {1,...,n}
(since dim(bg) > 0). Therefore, we have a strictly increasing sequence

=B CA=BC--CA_1=BCA={,....n}
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which defines a unique function J.(b): {1,...,n} — {1,...,l} suchthati € Af(l-) \
By ;). Clearly, J. is inverse to I.. O

For v, w € K[0] and ¢ = (cy, ..., ¢;) € Ch(K)}’, define a map
I On > f > I (fY %% Iy (f') € Choe(K), 3.1

where f ! are defined as in (7.3).
Proposition 8.2 For every ¢ € Ch(K)Y, I is an isomorphism of posets.

Proof Every b € Ch.(K) has a unique presentation as b! x - - - x b!, where b* €
Ch<(¢,)(K). Define

Je(b) = (Jo, (Y, ..., Jy (D)) € Oy X -+ X Oy = O,

where J, is the map from the proof of Proposition 8.1; J; is the inverse of /. O

Proposition 8.3 Theorem 1.3 holds for finite proper bi-pointed [J-sets with height
function.

Proof By Propositions 8.2 and 7.5, for every ¢ € Ch(K) the space | Chc(K)y| is
homeomorphic to §4™©~1 Therefore, Ch(K )y, augmented with a minimal element
@, is a CW poset in the sense of [1]. Thus, by [1, 3.1], | Ch(K)}| is a regular CW-
complex with cells

A¢ i= | Ch<e(K)y |\ |Ch_e(K), |

for ¢ € Ch(K)Y. Every O-map f: K — K’ induces a morphism of posets

Ch(K)¥ — Ch(K/)ﬁvw)), which maps Chc(K)" into Ch f(c)(K)§§f)); therefore,

fe: |Ch(K)?| — | Ch(K/)j;Ez;)| is cellular. o

Let Ch="(K)¥ < Ch(K)Y be the subset of cube chains having dimension less of
equal n; clearly | Ch="(K)¥| is the n-skeleton of | Ch(K )Y |. For a chain ¢ € Ch(K)Y
of type n and dimension 7 let

ge = (Ie)«(gn) € Cu(|Ch="(K)¥|, | Ch="""(K)¥). 8.2)
The group H, (| Ch="(K)¥], | Chfn_l(K)g)D is a free Z-module generated by (sim-
plicial, homological) chains g¢ for ¢ € Ch™" (K)Y.

Proposition 8.4 Assume thatn € Seq(n), k€ {1,...,l=Im)},r € {1,...,nx—1},
and A € Sy(k, r). Then the diagram

Idkv(A*bk—l NG

>Ch(K)

Onlk,r]
3
Op — + Ch(K)

commutes.
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Proof 1t is sufficient to prove this in the case when n = (n),¢ = (¢) and k = 1.
Let f: {1,...,n} — {1,...,m} be an element of Oyt ;] = O(n—r). There exists a
presentation m = my + my such that f(i) < mj fori € {1,...,r}and f(i) > m;
fori € {r + 1, ..., n}. Furthermore,

=L my)
is the restriction of f, and f> is the composition

i>itr

{1,....n—r} ——{r+1,...,n}
Lfw){}’I’ll—i—l,...,l’}’lz}i—'_):ﬁL){l,...,mz}.

We will write £ instead of §1 4. We have
Loy (t1,a(f)) = 1c(f§) = (duy e(c), .. ., du, re(c))
and
Ly 4@ () = T 0 aten () = Lo o () Lyt (F)

_ (dulfldg(c), ody, d3(©).dy, pd} (O dum2fzd}‘(c)>

Since £|4 is an increasing bijection A — {1, ...,r}, fors € {1, ..., r} we have (cf.
1.2) dy, p1d9(c) = dg, where gl = 0 = U, f€, and gla = f'&§ = f&. Hence,
g = Ug f&. A similar argument applies fors € {r + 1, ..., n}. O

Proposition 8.5 Let ¢ € Ch(K)Y be a cube chain of type n. Then

I(n) ng—1

W)=Y > Y (=Dt sen(A — b Dga @

k=1 r=1 AeSy(k,r)
Proof We will write A’ = A — b;_1. By 8.4 and 7.11, we have

0(gc) = 9(Ic(gn)) = Ic(9gn)
725) I ng—1
Y0 DT (oMt sen(A) iy a (i)
k=1 r=1 AeSy(k,r)

ng—1

Il
MN

> (DTt sen(AN Iy, o) (8nik.r)
1 r=1 AeSy(k,r)

o~
Il
_

[ ng

YooY (=DM sen(ANgy, -

=1 r=1 AeSn(k,r)

=~

]
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Proposition 8.6 Theorem 1.4 holds for finite proper bi-pointed U-sets with height
function.

Proof By Theorem 1.3, H, (| Ch=""(K)¥|, | Ch="~1(K)¥|) is a free Z-module gen-
erated by (simplicial, homological) chains g¢ for ¢ € Ch™" (K}, and the differentials
are calculated in Proposition 8.5. O

9 Non-looping length covering

In this section we generalize the results obtained for finite proper [J-sets with height
function to a larger class of [l-sets that have proper non-looping length coverings.
Recall that pc[JSet} is the category of finite bi-pointed (-sets having proper non-
looping coverings.

For K € pcSet} and n > 0 define a [J-subset 15,1 C K by If'n[d] = K[d] x
{0, ...,n — d} (cf. 1.4). For every n, the formula (K, v, w) > (K, (v,0), (w, n))
defines a functor from pedSet: to fphCISet;.

Let p: K 3 (¢, k) — ¢ € K denote the obvious projection, and let p,, = p| &,

Proposition 9.1 Assume that (K, v, w) € pcOISet:. All maps in the sequence
oo (w,n) 55 (w,n) 5 (w,n) L =
V&Y < [T P&y € [ P&y == PE)Y
n>0 n>0 n>0
are homotopy equivalences, and they are functorial with respect to (K, v, w).

Proof For the right-hand map this follows [11, Proposition 5.3] and for the left-hand
one from [9, 2.5]. Every directed path in K with endpoints in K, lies in K,, so the
middle inclusion is a homeomorphism. O

This criterion shows that, when proving Theorem 1.2, we can restrict to the case
when K if a finite proper [J-set with height function.

Proposition 9.2 For an arbitrary U-set K and v, w € K[0] the sequence of U-maps

K, CK 2L K induces morphism of posets

[ Jcnek, )Ewgl)) [Jch®)a) = chk)y,

n>0 n>0

which are isomorphisms.

Proof The formula

Ch(K)" 5 (¢ci)l_, — Zdlm(cj) e [[enknyy)

n>0

defines the inverse function and all the maps involved commute with dg 4. O
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Proof of Theorem 1.2 If K is a [J-set with the proper non-looping covering, then, for
v, w € K[0], there is a sequence of homotopy equivalences

- ~ -~ us'n ~ ~
PK)Y <— [ [ P&™ =25 TTIChE )™ 31 = |Ch(K)?],
(v,0) (v,0)

n>0 n>0
according to Propositions 9.1, 6.3 and 9.2 respectively. O

Proof of Theorems 1.3 and 1.4 By Proposition 9.2, these follow from Propositions 8.3
and 8.6, respectively. O

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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