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Abstract To prove theirWalrasian equilibrium existence theorem, Arrow andDebreu
(Econometrica 22(3):265–290, 1954) devised an abstract economy that Shapley and
Shubik (J Polit Econ 85:937–968, 1977) criticized as a market game because, espe-
cially with untrustworthy traders, it fails to determine a credible outcome away from
equilibrium.All this earlier work also postulated aWalrasian auctioneer with complete
information about traders’ preferences and endowments. To ensure credible outcomes,
even in disequilibrium, warehousing is introduced into a multistage market game. To
achieve Walrasian outcomes in a large economy with incomplete information, even
about traders’ endowments, a strategyproof demand revelation mechanism is consid-
ered and then extended to include warehousing.

Keywords Market design · Demand revelation · Strategyproofness · Hidden
endowments · Warehousing

JEL Classification C72 · D41 · D47 · D51

1 Introduction and background

1.1 Perfectly competitive spot markets

Following a literature that extends fromArrow (1951) toHammond (2011) andbeyond,
the equilibrium allocations that result from a perfectly competitive spot market system
have efficiency and welfare properties that are fairly well understood. So are sufficient
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2 P. J. Hammond

conditions for Walrasian equilibrium in such a system to exist. In fact, given any fixed
status quo allocation, such a system, when combined with a suitable “pre-distributive”
policy for distributing any potential gains, can produce an equilibrium allocation that
is Pareto superior to the status quo. That is, except in the uninteresting special case
when the status quo is already Pareto efficient.

Yet ever sinceWalras’s own writings concerning his concepts of the auctioneer and
tâtonnement, economists have been vexed by the problem of designing some kind of
mechanism or process to ensure that Walrasian equilibrium in a spot market system
could actually be attained.

1.2 Walrasian tâtonnement

Originally the question that was asked is whether a tâtonnement process for adjust-
ing prices in response to excess demand could converge to a Walrasian equilibrium.
Except in special cases such as when all commodities are “gross substitutes”, the con-
clusions were generally rather unsatisfactory—see, for example, the survey by Hahn
(1993). Even the tâtonnement process itself required each economic agent to report
the appropriate value of its excess demand function truthfully; there was no discussion
of any strategic considerations.

1.3 The Arrow–Debreu “abstract economy”

In the standard definition of a non-cooperative game, eachplayer’s feasible set of strate-
gies is independent of the other players’ strategy choices. By contrast, Debreu (1952)
introduced the notion of a “generalized game” where, by definition, each player’s fea-
sible set of strategiesmay depend on the other players’ strategy choices. In their classic
paper on existence ofWalrasian equilibrium, Arrow and Debreu (1954) constructed an
“abstract economy” as a generalized game which confronts the agents in an economy,
who choose their own net trade vectors, with an auctioneer who chooses a price vector.
Moreover, the economic agents are limited to choosing respective net trade vectors
that satisfy their budget constraint, which is determined by the auctioneer’s choice of
price vector.

This generalized game was never intended to be a fully specified model of how any
market system, realistic or artificial, could actually function. Instead, it merely served
as a device allowing Debreu’s (1952) existence theorem to be applied. This existence
theorem relies on arguments that probably owemore to Glicksberg’s (1952) method of
proving existence ofNash equilibrium in pure strategies, when the set of pure strategies
is convex, than to Nash’s (1950) own proof that a mixed strategy equilibrium exists
when there is a finite set of pure strategies.

1.4 Myerson’s coordination device

Oneobvious issue in using theArrow–Debreu abstract economy is its essential reliance
on Nash equilibrium as the solution concept. In particular, each trader must anticipate
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Twenty-two steps to Walrasian equilibrium 3

the auctioneer’s choice of price vector simply in order to be sure of satisfying the
budget constraint. Following the discussion by Polak (1999) of equilibrium in general
games, restrictive epistemic conditions are required in order to ensure that the players
can reach a pure strategy Nash equilibrium corresponding to a Walrasian equilibrium.

Indeed, a robust market system should be able to handle traders who know little,
and care even less, about one another’s preferences, endowments, and trading strate-
gies. Formally, following Myerson (1982), one can consider a mechanism where a
completely informed principal suggests a Nash equilibrium of the generalized game,
which is then a Walrasian equilibrium of the economy. Nevertheless, the latter part of
this paper will move toward what seems the more relevant case where, in the spirit of
Harsanyi (1967–1968), the principal guides the agents to a particular Bayesian Nash
equilibrium in a game with incomplete information.

1.5 The Shapley–Shubik critique

Let me quote from footnote 1 of Shapley and Shubik (1977), where they discuss
the market game that Arrow and Debreu (1954) use to prove existence of Walrasian
equilibrium:1

But as a descriptive model [t]his game shares the defect of the Walras exchange
model of being ill defined, or unrealistically defined, away from equilibrium.
Indeed, if only one agent departs from equilibrium, he is presumed to be able
to buy and sell at the stated prices, announced by an added fictive player whose
objective is to minimize excess demand. But there is no explanation of how
the excess demand thereby created is to be satisfied—unless it is out of the
bottomless warehouses of the fictive player.

1.6 The warehousing remedy

In mentioning “warehouses”, as well as in introducing their well known model with
trading posts, Shapley and Shubik (1977) implicitly suggest a possible remedy for this
serious deficiency in the Arrow–Debreu market game.2 This is to allow the Walrasian
auctioneer to combine three functions:

1. the traditional Walrasian auctioneer, who chooses a price vector;
2. a coordinator who, like Myerson’s (1982) principal, recommends—even

mandates—both demand and supply vectors for each economic agent subject to

1 The preceding sentence of their footnote reads as follows: “In his important early paper, Debreu (1952)
represents the Walras exchange model as a game in strategic form for the technical purpose of applying
a general existence theorem.” Yet Debreu (1952) refers to the Walras exchange model only when citing
the (then) forthcoming paper by Arrow and Debreu. So I have changed “his” to “[t]his” in quoting the
remainder of the footnote.
2 Thanks to Kenneth Judd for reminding me that Keisler (1995, 1996) uses inventories to accommodate
mismatches between demand and supply during a non-tâtonnement process of quantity adjustment to a
Walrasian equilibrium.
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4 P. J. Hammond

the incentive constraints that these vectors must be what the agents themselves
would be willing to choose given the chosen price vector;

3. a warehouse manager, who manages a system that takes in all the agents’ offered
supplies up to their mandated levels, and then allocates whatever total supplies
have been made available in order to meet agents’ demands as far as possible.

The key idea is to allow supplies to be collected before attempting to meet any
demands. In order to do this, one has to consider a game in two stages, as will be done
in Sect. 4.

1.7 From Vickrey and Harsanyi toward market design

Vickrey (1961) proposes a second-price auction for a simple market in which one
committed seller plans to sell one indivisible item to one of several competing buyers.
Themodel anticipatesHarsanyi’s (1967–1968)work on adaptingNash’s theory of non-
cooperative strategic games to accommodate incomplete information. Wilson (1985)
and others have been able to use Vickrey’s ideas in developing a theory of “double
auctions” for a single market that confronts several competing potential sellers, each
with one unit of a homogenous commodity they might sell, with several competing
potential buyers, each able to buy at most one of those units.

Ideas building on Vickrey’s and Harsanyi’s theories have also been widely applied
to the design of auction markets for a wide range of products. These include licences
in many countries to use parts of the electromagnetic spectrum in order to transmit
information, as well as “Certificates of Entitlement” for owning a car in Singapore.

1.8 Hidden endowments

To the author’s knowledge, however, nobody has yet faced up to the task of designing
a game of incomplete information whose outcomes can reasonably be expected to
generate a Pareto efficient allocation in a general multimarket system with many
traders. This is especially true when, as in the work by Postlewaite (1979) and by
Hurwicz et al. (1995), there is incomplete information regarding traders’ endowments,
and traders can consume whatever they conceal.

Indeed, it was assumed in Hammond (1979), as well as in later work surveyed in
Hammond (2011, Sections 14–15), that agents would restrict themselves to reporting
types for which the allocation mechanism specified a net trade that was feasible given
the true endowment vector. The only sanction facing somebody who violated this
constraint was that, if misreporting their type led to a supply contract being broken,
they would be required to keep reporting a different type until the feasibility constraint
was satisfied and a supply contract was reached that could be honoured. Even this
sanction was left entirely implicit. For an alternative in a two-period setting, where
Walrasian equilibrium may be unattainable, see Hammond (1992).

In the case of financial markets, the need for some radical system re-design seems
entirely evident given events that led to the recent “Great Recession” in most Western
economies. At this stage, however, it would seem highly premature to suggest how to
reform financial markets. For now, the much less ambitious task of designing a gen-
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Twenty-two steps to Walrasian equilibrium 5

eral spot market system that can implement Walrasian allocations seems challenging
enough.

After reviewing a few key approaches to the issues mentioned above, the main
purpose of the paper is to propose a demand revelation mechanism with warehousing
that attempts to meet the suggested requirements.

1.9 Outline of paper

Section 2 introduces the basic definitions, notation, and assumptions for a class of
pure exchange economies. Thereafter, Sect. 3 presents a significant variation of the
generalized game that Arrow andDebreu (1954) used to define their abstract economy.
In particular, before the traders are required to announce their demands, they are
informed of the price vector chosen by the auctioneer or market organizer. Then each
trader’s strategy becomes, rather than the simple demand vector it was in Arrow and
Debreu’s generalized game, an entire demand function of the price that the rules of the
game require always to satisfy the budget constraint. This extension to functionsmakes
the traders’ strategy sets independent of the auctioneer’s choice of any one particular
price vector. Hence, this variation produces a game rather than a generalized game.

So far there have been no explicit incentives for traders to fulfil their supply con-
tracts. Following the key idea of Shapley and Shubik (1977), Sect. 4 considers the
implications of requiring all supplies to be collected in a system of warehouses or trad-
ing posts, before being released to meet traders’ demands as far as possible. Traders
can be deterred from default by excluding all those who break their contracts from
any access to warehoused supplies.

Next, Sect. 5 turns attention to the case when the market organizer is incompletely
informed of both traders’ preferences and their endowments. In this setting, it is well
known that there is a strategyproof allocation mechanism guaranteeing Pareto effi-
cient outcomes only if either allocations close to the dictatorial or oligarchic extremes
are selected, or else there is an infinite population of traders. Contrast, for example,
the results of Myerson and Satterthwaite (1983), Serizawa (2002) and Serizawa and
Weymark (2003) with those of Hammond (1979) and Guesnerie (1998). Accordingly,
Sect. 5 introduces the notion of a statistical continuum economy. Earlier work, includ-
ing Hart et al. (1974), considers just the distribution of traders’ characteristics as well
as their net demand vectors. Here, by contrast, a joint distribution over traders’ labels
as well as their characteristics, net demand vectors, etc. is considered. This relaxes
some obvious symmetry conditions.

Then, building on previous ideas in Hammond (1979), Sect. 6 constructs a strate-
gyproof demand revelation mechanism that implements Walrasian equilibrium. This
works, however, only for the casewhen traders ultimately limit themselves to revealing
demandswhich guarantee that they can honour their supply contracts. This leaves open
the problem of providing more effective incentives to dissuade traders from revealing
net demand correspondences which create the possibility that they may be asked to
supply more of some goods than their true endowments. To overcome this problem,
Sect. 7 follows Sect. 4 in combining warehouses with a two-stagemarket system. Each
stage uses a demand revelation mechanism like that in Sect. 6.
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6 P. J. Hammond

In Sect. 8, an extensive form game in twenty-two steps is formally defined. It
involves infinitely many traders and one market organizer or principal who also acts
as recording clerk, statistician, auctioneer, market equilibrator, and warehouse man-
ager. The game implements Walrasian equilibrium when backward induction is used
to eliminate dominated strategies recursively in relevant continuation subgames of
incomplete information, as well as in the game as a whole.3 In this sense, even
when traders’ endowments as well as their preferences are unobservable, appropriate
incentives are created for individuals to reveal their true Walrasian demand corre-
spondences and also to deliver whatever supplies are required to reach Walrasian
equilibrium.

Themain results, alongwith their limitations, are reviewed in the concludingSect. 9,
which also contains some ideas for future research concerning extensions beyond spot
markets in a pure exchange economy.

Appendix1 sets out someuseful selected results concerningprobabilitymeasures on
Polish spaces—i.e. complete and separable metric spaces. Appendix 2 shows how the
space of suitably regular closed graph demand correspondences can be given a metric
that makes it a Polish space. Finally, Appendix 3 offers a proof that a market clearing
equilibrium price exists in our setting where a countably infinite set of traders with
random labels is required to submit demand correspondences satisfying the regularity
conditions imposed earlier.

2 A pure exchange economy

2.1 Commodities and their prices

Let G denote a finite set of commodities, with typical member g, which traders may
be able to exchange. The commodity space whose members are vectors such as x =
(xg)g∈G will then be denoted by R

G . Let 1G = (1, 1, . . . , 1) ∈ R
G++ denote the

specific vector that has all its components equal to 1.
Let p = (pg)g∈G ∈ R

G+\{0} denote a typical semi-positive price vector, and

P :=
⎧
⎨

⎩
p ∈ R

G+
∣
∣
∣

∑

g∈G

pg = 1

⎫
⎬

⎭
(1)

the unit simplex of normalized price vectors, with relative interior

P0 :=
⎧
⎨

⎩
p ∈ R

G++
∣
∣
∣

∑

g∈G

pg = 1

⎫
⎬

⎭
(2)

and relative boundary bd P := P\P0.

3 Like orthodox subgames, subgames of incomplete information arise as continuations of an extensive form
game after some initial moves have been made. Unlike orthodox subgames, but like games of incomplete
information, the precise continuation subgame being played typically depends on players’ hidden types.
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Twenty-two steps to Walrasian equilibrium 7

2.2 Traders and their endowments

For our initial discussion of a game of complete information with warehousing, we
will consider a pure exchange economy with a finite set I of traders. Each trader
i ∈ I is assumed to have a fixed endowment vector ei ∈ R

G+. We also assume that
the commodity set G excludes irrelevant goods g that cannot be traded because their
total endowment

∑
i∈I ei

g = 0. Accordingly, we assume that
∑

i∈I ei ∈ R
G++.

In the early part of the paper, the set G and the associated commodity space R
G

will be treated as fixed. Once the demand revelation mechanism of Sect. 6 is being
considered, however, the trading space of exchangeable commodities is allowed to
become the variable set of goods for which a non-null set of traders claim to have
positive endowments.

2.3 Net trades

For any trader i ∈ I , a typical net trade vector will be denoted by zi ∈ R
G , with

components zi
g for g ∈ G. This vector can be decomposed uniquely as zi = xi − yi

where xi ∈ R
G+ and yi ∈ R

G+ are separate non-negative demand and supply vectors
with xi

g = max{zi
g, 0} and yi

g = max{−zi
g, 0} for all g ∈ G. Using standard lattice

notation, one can then write

xi = zi ∨ 0 and yi = −(zi ∧ 0) = (−zi ) ∨ 0 (3)

2.4 Feasible sets

Assume that each trader i ∈ I , given the endowment vector ei ∈ R
G+, is able:

1. to supply any non-negative commodity vector yi that belongs to the supply set
Y i := {yi ∈ R

G+ | yi � ei };
2. to demand any non-negative commodity vector xi that belongs to the consumption

set R
G+.

This leads to the closed feasible set Zi := {z ∈ R
G+ | z � −ei } = R

G+ + {−ei } of net
trade vectors zi = xi − yi with xi ∈ R

G+ and yi � ei .
Taking into account the resource balance constraint

∑
i∈I xi �

∑
i∈I yi with free

disposal, it follows that one has the following three compact subsets of the Cartesian
product set (RG+)I whose dimension is the product #I · #G:

1. Y I := {y I ∈ (RG+)I | yi � ei (all i ∈ I )} of feasible supply allocations;
2. X I := {x I ∈ (RG+)I | ∑

i∈I xi �
∑

i∈I ei } of feasible demand allocations;
3. Z I := {z I ∈ X I − Y I | ∑

i∈I zi � 0} of feasible net trade allocations with free
disposal.

Compactness of these three sets helps guarantee that a Walrasian equilibrium
exists.
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8 P. J. Hammond

2.5 Preferences

Assume that each trader i ∈ I has a continuous, convex, and strictly monotone pref-
erence ordering �i over consumption vectors ci ∈ R

G+. It is well known that any such
�i can be represented by a continuous quasi-concave utility function ui : R

G+ → R

which is strictly increasing. For example, one can construct

ui (ci ) := inf
{
γ ∈ R | γ 1G �i ci

}

3 Formulating an Arrow–Debreu game

3.1 An ordinary market game

The following reformulation of the Arrow–Debreu abstract economy defines an ordi-
nary strategic game, rather than a “generalized game” in the sense of Debreu (1952).
In addition to the set of traders i ∈ I , there is one extra “fictive” player 0 whose role
is that of the “Walrasian auctioneer”.

Unlike Debreu’s (1952) generalized game, our game has a non-trivial extensive
form. Specifically, player 0 moves first and chooses a price vector p ∈ P0. Each
trader i ∈ I then observes this choice of p, which determines that trader’s endowment
constrained budget set

B(p; ei ) := {z ∈ R
G | z � −ei and p z ≤ 0} (4)

of net trade vectors that are permissible choices for i at the next stage of the game.
Thus, for each trader i ∈ I , a feasible strategy, which we denote by zi , is a net
demand function P0 � p �→ zi (p) ∈ B(p; ei ) whose value at each price p ∈ P0 is
a net trade vector zi ∈ B(p; ei ). Hence, zi is a selection from trader i’s endowment
constrained budget correspondence P0 � p �→→ B(p; ei ) ⊂ Zi . Note that trader i’s
feasible strategy set is the Cartesian product

Bi :=
∏

p∈P0

B(p; ei ) (5)

In this game, the typical strategy profile is a combination

(p, zI ) ∈ P0 ×
∏

i∈N

Bi

of a price vector p ∈ P0 and a profile zI = (zi )i∈I ∈ ∏
i∈I B

i of traders’ net demand
functions. Player 0’s pay-off is taken to be

v0(p, zI ) := −
∥
∥
∥
∥
∥

∑

i∈I

zi (p)

∥
∥
∥
∥
∥

= −
⎛

⎝
∑

g∈G

[
∑

i∈I

zi
g(p)

]2
⎞

⎠

1/2

(6)
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Twenty-two steps to Walrasian equilibrium 9

—i.e. minus the Euclidean norm of the aggregate net demand induced by this strategy
profile. Finally, each trader i’s pay-off is taken to be

vi (p, zI ) := ui (zi (p) + ei ) (7)

3.2 The case of strictly convex preferences

Consider the special case where all traders’ preferences are strictly convex—or equiv-
alently, when their ordinal utility functions are strictly quasi-concave. This assumption
implies that each trader i ∈ I will have a single-valuedWalrasian net demand function
z̄i ∈ Bi in the form of a mapping

P0 � p �→ z̄i (p) ∈ B(p; ei ) (8)

satisfying
{z̄i (p)} = argmaxz{ui (z + ei ) | z ∈ B(p; ei )} (9)

Then, in the subgame that follows the auctioneer’s choice of any price vector p ∈ P0,
where each trader i ∈ I is required to choose any net demand vector zi ∈ B(p; ei ), it
follows that trader i’s unique dominant strategy is z̄i (p).

With such single-valued net demand functions, the price vector p̄ ∈ P0 is a Wal-
rasian equilibrium just in case

∑
i∈I z̄i ( p̄) = 0. Now, applying backward induction

shows that the strategy combination ( p̄, z̄I ) is a subgame perfect Nash equilibrium if
and only if:

1. each trader i’s equilibrium strategy z̄i is the Walrasian net demand function p �→
z̄i (p) defined by (9);

2. p̄ is a Walrasian equilibrium price vector that, because of (6), gives player 0 the
global maximum pay-off v0( p̄, z̄I ) = 0.

3.3 The case of demand correspondences

When trader i’s preferences are not strictly convex, however, there is typically a Wal-
rasian net demand correspondence or multifunction Z̄i whose set value is defined
by

P0 � p �→ Z(p; Z̄i ) := argmaxz{ui (z + ei ) | z ∈ B(p; ei )} (10)

Each set value is generally not a singleton.
In this case, a Walrasian equilibrium is a combination ( p̄, z̄ I ) of a price vector

p̄ ∈ P0 and an allocation or profile z̄ I = (zi )i∈I ∈ (RG)I of net trade vectors, one
for each trader i ∈ I , satisfying both

∑
i∈I z̄i = 0 and z̄i ∈ Z( p̄; Z̄i ) for all i ∈ I .

Even when they are evaluated at an equilibrium price vector p̄ ∈ P0, the typical
profile z I of net trade vectors selected from the value z̄ I ( p̄) ∈ ∏

i∈I Z( p̄; Z̄i ) of the
Cartesian product of traders’Walrasian net demand correspondenceswill fail to satisfy
themarket clearing requirement that

∑
i∈I zi = 0. For this reason, traders’ realized net

demands need to be more coordinated in order to implement a Walrasian equilibrium
as a subgame perfect Nash equilibrium.
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10 P. J. Hammond

Indeed, consider any particular Walrasian equilibrium ( p̄, z̄ I ). Following Myerson
(1982) and the discussion in Sect. 1.4, we allow player 0:

– as auctioneer, to announce the Walrasian equilibrium price vector p̄;
– as principal, to recommend that each trader i ∈ I chooses any specific selection

p �→ zi (p) from the Walrasian net demand correspondence (10) that satisfies
zi ( p̄) = z̄i at the chosen equilibrium price vector.

This selects a particular subgame perfect Nash equilibrium which does implement the
chosen Walrasian equilibrium ( p̄, z̄ I ).

3.4 Untrustworthy traders

The game defined in Sect. 3.1, however, makes the outcome function depend only on
the traders’ profile of net trade vectors z̄ I at the equilibrium price vector p̄ ∈ P0.
These net trades are based on the promise and the premise that each trader will supply
the equilibrium supply vector ȳi = −(z̄i ∧ 0). Yet no clear incentive for them to do
so has been provided.

Indeed, unlike Shapley and Shubik (1977), as well as many successors, the game
defined in Sect. 3.1 ignores what commodity vectors traders actually choose to supply.
To overcome this moral hazard problem, we construct an alternative multistage game
that incorporates a warehouse system.

4 A game with warehousing

4.1 Distinguishing supply and demand

Our mechanism with warehousing takes place in several stages. It begins very like the
reformulated Arrow–Debreu game of Sect. 3.1. The difference is that we distinguish
between supply and demand and require each trader i ∈ I to choose what supply
vector yi to deposit in a warehouse system. Only at a later stage is each trader i ∈ I
allowed to withdraw a demand vector xi from the warehouse system.

We therefore consider the multistage game that starts as follows:

1. Initially, the auctioneer selects some Walrasian equilibrium price vector p̄ ∈ P0

and also recommends an associated mandated Walrasian equilibrium allocation
z̄ I of net trade vectors, with associated profiles x̄ I , ȳ I ∈ (RG+)I of non-negative
mandated warehouse demand vectors x̄ i := z̄i ∨ 0 and supply vectors ȳi =
−(z̄i ∧ 0) = (−z̄i ) ∨ 0 defined for all i ∈ I following Eq. (3). Note that because
ei � 0, the feasibility constraint z̄i � −ei implies that ȳi � ei .

2. Next, each trader i ∈ I chooses to deposit in the warehouse system some supply
vector yi ∈ RG+ . Because the warehouse manager is told only to accept the supply
of any good up to the limit of what is mandated, this supply vector is required to
satisfy yi � ȳi .
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Twenty-two steps to Walrasian equilibrium 11

4.2 Distinguishing deviant from compliant agents

The moves made in these first two stages of the game determine the two profiles ȳ I

and y I of mandated and actual warehouse deposit vectors, respectively. These profiles
also determine a partition of I into two disjoint subsets of traders:

– the set
C(y I , ȳ I ) := {i ∈ I | yi = ȳi } (11)

of compliant traders, who deliver their mandated supplies, and will be duly
rewarded;

– the complementary set

D(y I , ȳ I ) := I\C(y I , ȳ I ) = {i ∈ I | yi < ȳi } (12)

of deviant traders, who fail to deliver their mandated supplies, andwill be banished
entirely from the warehouse system.

4.3 The normal ending of the game

Suppose that the two supply profiles y I , ȳ I ∈ (RG+)I of different traders’ actual
and mandated warehouse supply vectors are equal. Then C(y I , ȳ I ) = I . In this
case, each trader i is allowed to withdraw any commodity vector xi ∈ R

G+ satisfying
xi � x̄ i := z̄i ∨ 0. After these withdrawals have been completed, any remaining
surplus is thrown away. This is the end of the game.

4.4 The abnormal ending of the game

Alternatively, suppose that for the pair (y I , ȳ I ) of warehouse deposit profiles, there
exists i ∈ I such that yi < ȳi—or equivalently, suppose that the set D(y I , ȳ I ) of
deviant traders is non-empty. In this case, a second-period allocation submarket is
opened, whose outcome depends on (y I , ȳ I ). In this submarket, the auctioneer will
choose a revised price vector q ∈ P0 to clear markets given the already determined
available aggregate supply vector

∑
i∈I yi . Moreover, each trader i ∈ I is faced with

a second-period budget constraint q xi ≤ wi (q, y I , ȳ I ), whose right-hand side is
determined by a continuous wealth distribution rule q �→ wi (q, y I , ȳ I ) which also
depends on the mandated as well as the actual warehouse deposit vectors.

Specifically, for each pair y I , ȳ I ∈ (RG+)I , the market organizer:

1. first specifies a continuous wealth distribution rule (or WDR)

P0 � q �→ w I (q, y I , ȳ I ) ∈ R
I (13)

as a function of the price vector q that is about to be chosen;
2. given this WDR, specifies some Walrasian equilibrium selection rule

R
G × R

G � (y I , ȳ I ) �→ (q̃, x̃ I )(y I , ȳ I ) ∈ P0 × (RG+)I (14)
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12 P. J. Hammond

which generates net demand vectors that, for each y I , ȳ I ∈ (RG+)I , satisfy the
market clearing condition

∑

i∈I

x̃ i (y I , ȳ I ) =
∑

i∈I

yi (15)

3. allows each trader i to withdraw any demand vector xi ∈ R
G+ satisfying xi �

x̃ i (y I , ȳ I ), and then ends the game by throwing away any outstanding stocks.

4.5 The second-period wealth distribution rule

Banishing any deviant trader i ∈ D(y I , ȳ I ) is equivalent to leaving themwith nothing
at all to spend in the second-period market, so

wi (q, y I , ȳ I ) := 0 if i ∈ D(y I , ȳ I )

This draconian sanction is imposed in order to ensure that the income loss outweighs
anything that a deviating trader could possibly gain by manipulating warehouse sup-
plies of one or more goods in an attempt to force the auctioneer to change prices in a
favourable direction.4

Compared to allowing all deviant traders i ∈ D(y I , ȳ I ) to spend the market value
q yi ofwhat they have actually delivered, this sanction generates a positive total surplus
given by

S(q, y I , ȳ I ) :=
∑

i∈D(y I ,ȳ I )

q yi

This surplus will then be shared equally between all compliant traders i ∈ C(y I , ȳ I ).
It will supplement the value q ȳi at prices q of trader i’s mandated deliveries to the
warehouse system. This implies that any compliant trader i ∈ C(y I , ȳ I ), for whom
yi = ȳi by definition, is allowed to spend the amount

wi (q, y I , ȳ I ) := q yi + 1

#C(y I , ȳ I )

∑

h∈D(y I ,ȳ I )

q yh (16)

Overall, therefore, we define the second-period WDR by

wi (q, y I , ȳ I ) :=
⎧
⎨

⎩

q yi + 1

#C(y I , ȳ I )

∑
h∈D(y I ,ȳ I ) q yh if yi = ȳi

0 if yi < ȳi
(17)

Note that if yi = ȳi , then #C(y I , ȳ I ) ≥ 1, so wi (q, y I , ȳ I ) is always well defined.
Summing equations (17) over i ∈ I shows that this WDR satisfies

4 Many thanks to John Geanakoplos for emphasizing the importance of this point.
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Twenty-two steps to Walrasian equilibrium 13

∑

i∈I

wi (q, y I , ȳ I ) =
∑

i∈C(y I ,ȳ I )

wi (q, y I , ȳ I ) ≤
∑

i∈I

q yi (18)

with equality except in the degenerate casewhenC(y I , ȳ I )=∅ and sowi (q, y I , ȳ I )=
0 for all i ∈ I . In this degenerate case, all traders are excluded from the warehouse,
whose entire contents are then discarded. In the non-degenerate case, reaching an
equilibrium allocation in the second-period market system will allow the warehouse
to be emptied.

4.6 Second-period Walrasian equilibrium

For each fixed pair (y I , ȳ I ) ∈ (RG+)I ×(RG+)I , themapping q �→ wi (q, y I , ȳ I )whose
value is defined by (17) is always continuous in the price vector q. So a variation of the
usual existence argument shows that there is a Walrasian equilibrium in this second-
period submarket. We assume that the auctioneer/principal uses an arbitrary selection
rule to choose a mapping

(y I , ȳ I ) �→ (q(y I , ȳ I ), x̃ I (y I , ȳ I )) (19)

whose value is always a Walrasian equilibrium with an allocation x̃ I (y I , ȳ I ) of ware-
house withdrawal vectors that satisfies the market clearing condition (15).

For notational simplicity, we extend the domain of the mapping defined by (19) to
include pairs of profiles (y I , ȳ I ) ∈ (RG+)I ×(RG+)I satisfying y I = ȳ I or equivalently
C(y I , ȳ I ) = I . Note that then Eq. (17) specifies that the second-period WDR must
satisfy ∑

i∈I

wi (q, y I , ȳ I ) = q
∑

i∈I

yi = q
∑

i∈I

ȳi = q
∑

i∈I

x̄ i (20)

This allows us to specify that the value of the mapping (19) at (y I , ȳ I ) should be given
by q(y I , ȳ I ) = p̄ and x̃ I (y I , ȳ I ) = x̄ I .

4.7 A second-period mechanism

To convert this second-period submarket, with its selectedWalrasian equilibrium, into
a strategic mechanism, with its corresponding Nash equilibrium, we modify the first-
period mechanism of Sect. 4.1. Specifically, following each pair of profiles (y I , ȳ I ) ∈
(RG+)I × (RG+)I :

1. At the start of the second period, themarket organizer applies the selection rule (19)
in order to determine a Walrasian equilibrium with price vector q̃(y I , ȳ I ) ∈ P0

and associated demand allocation x̃ I (y I , ȳ I ).
2. Subsequently, each trader i ∈ I withdraws from thewarehouse a commodity vector

xi ∈ R
G+ satisfying xi � x̃ i (y I , ȳ I ); the game ceaseswhen thesewithdrawals have

been completed and any remaining stocks thrown away.
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14 P. J. Hammond

Because preferences are assumed to be strictly monotone, these rules evidently
imply that withdrawing the full allowance x̃ i (y I , ȳ I ) is a strictly dominant strat-
egy for each trader i ∈ I in the subgame that follows the principal’s choice
(q̃(y I , ȳ I ), x̃ I (y I , ȳ I ) of Walrasian equilibrium.

4.8 First-period pay-offs and dominant strategies

Looking back to the first period, recall our postulate that the auctioneer/principal
chooses a particular Walrasian equilibrium

( p̄, x̄ I , ȳ I ) ∈ P0 × (RG+)I × (RG+)I (21)

for the exchange economy. After the auctioneer/principal has made this choice, con-
sider the pay-off function y I �→ vi (y I ) of each trader i ∈ I in the ensuing first-period
subgame where:

1. each player i ∈ I has a strategy space consisting of warehouse deposit vectors
satisfying 0 � yi � ȳi ;

2. thereafter the economy continues on to the second-period Walrasian equilibrium
q(y I , ȳ I ), x̃ I (y I , ȳ I ) specified by (19) as the outcome of the ensuing second-
period subgame.

The rules devised in Sects. 4.4 and 4.5 to determine this second-period Walrasian
equilibrium imply that this pay-off function satisfies

vi (y I ) =
{

ui (ei − yi + x̃ i (y I , ȳ I )) if yi = ȳi

ui (ei − yi ) if yi �= ȳi (22)

with x̃ i (y I , ȳ I ) = x̄ i in case y I = ȳ I . Because preferences are strictly increasing,
while both x̄ i and x̃ i (y I , ȳ I ) are non-negative, it follows that whenever yi < ȳi one
has

vi (y I ) = ui (ei − yi ) ≤ ui (ei − yi + x̃ i (y I , ȳ I )) = vi (ȳi , y I\{i}) (23)

with strict inequality except in the special case when x̃ i (ȳi , y I\{i}, ȳ I ) = 0. Hence,
the minimal compliant supply strategy yi = ȳi is player i’s unique best response in
this first-period game to any strategy profile y I\{i} chosen by the other players.

4.9 Subgame perfect dominant strategies

Consider the two-stage strategic market game defined in this section. Suppose that the
auctioneer/principal is committed to choose both:

1. the first-stage mandated Walrasian equilibrium ( p̄, x̄ I , ȳ I ), as described in
Sect. 4.1;

2. for each profile y I of actual warehouse supply vectors, and given the profile ȳ I

of mandated warehouse supply vectors that was determined in the first period, the
second-stage Walrasian equilibrium (q, x̃ I )(y I , ȳ I ), as described in Sect. 4.6.

123



Twenty-two steps to Walrasian equilibrium 15

Conditional on these commitments, all the traders are involved in a two-stage game
where each trader i ∈ I is required to choose:

1. in the first stage, a non-negative warehouse deposit vector satisfying yi � ȳi ;
2. in the second stage, in each possible subgamedetermined by a specific pair (y I , ȳ I )

of actual andmandated warehouse supply vectors, a non-negative warehouse with-
drawal vector satisfying xi � x̃ i (y I , ȳ I ).

Given the assumption that preferences are strictly monotone, our construction ensures
that each trader i ∈ I has:

1. in the overall two-stage game, a strictly dominant strategy consisting of:
– the minimal compliant supply strategy in the first stage of depositing the man-
dated amount ȳi into the warehouse system, as described in Sect. 4.8;

– followed in every possible second-stage subgame defined by the pair (y I , ȳ I )

by the maximal demand strategy of withdrawing the full amount x̃ i (y I , ȳ I )

allowed to trader i .
2. within every possible second-stage subgame defined by the pair (y I , ȳ I ), a strictly

dominant strategy consisting of the same maximal demand strategy.

In this sense, the strategy profile where every trader pursues this combination of the
minimal compliant supply strategy followed by the maximal demand strategy is a
subgame perfect Nash equilibrium in subgame perfect strictly dominant strategies. Of
course, it does implement the Walrasian equilibrium chosen by the market principal.

5 An economy with many traders

5.1 Incomplete information

In the game set out inSect. 3, player 0 asmarketmanager combined the role of the price-
setting Walrasian auctioneer with that of the principal in a generalized principal/agent
model. We now switch focus to the case when player 0 has incomplete information
regarding traders’ preferences and endowments.

In Sect. 4, the same player 0 also took on the role of warehouse manager, but with
complete information regarding the traders. When there is incomplete information,
we defer until Sect. 7 any discussion of the incentives needed to encourage traders to
deposit their promised supply vectors in a warehouse.

5.2 Traders and their labels

Wewill be considering strategyproof trading mechanisms in a setting with incomplete
information. The introduction explained why we need to consider an economy with
many traders. Accordingly, let the set I of actual traders be N := {1, 2, . . .}, the
countably infinite set of natural numbers. There will, however, be a continuum of
potential traders in the form of a non-atomic probability space (L ,L , λ), where L is
a topological label space, with L as its completed Borel σ -algebra—i.e. it contains
not only all open sets, but all subsets of λ-null sets. A prominent example occurs

123



16 P. J. Hammond

when L is the unit interval [0, 1] equipped with its Lebesgue σ -algebra L and its
Lebesgue measure λ.

Now each trader i ∈ I will be given a random label �i chosen from a non-atomic
probability space (L ,L , λ). This random labelling embeds an economy with a count-
able set of traders into the standard notion of a continuum economy with L as the set
of potential traders. In this continuum economy, there is an actual trader labelled �

if and only if the label � happens to equal one of the countable random draws from
(L ,L , λ).

5.3 Traders’ types

To accommodate incomplete information, we followHarsanyi (1967–1968) in assum-
ing that traders’ pay-off functions depend on their respective hidden personal types,
known only to themselves. Actually, unlike inHarsanyi’s formulation, in Sects. 7 and 8
traders will also have hidden endowments, and so feasible sets of net trade vectors
that depend on hidden variables.

Specifically, assumefirst that each trader i’s utility functionR
G+ � ci �→ ui (ci ) ∈ R,

which was introduced in Sect. 2.5, takes the form ui (ci ) ≡ u(ci ; θ i ) for a taste
parameter θ i belonging to a type space Θ , where the mapping

R
G+ × Θ � (c, θ) �→ u(c; θ) ∈ R (24)

is independent of i , as well as jointly continuous and strictly increasing in c for each
fixed θ . Quasi-concavity, however, will not be required for existence of Walrasian
equilibrium in our economy with an infinite set of traders.

Second, define the rectangular set Ē = {e ∈ R
G+ | e � ē} for a suitable upper

bound satisfying ē � 0. This strict inequality loses no generality provided that we
exclude from the commodity set G those goods g for which ēg = 0.

We will take the space of possible endowment vectors e to be the set

E := Ē\{0} = {e ∈ R
G+ | 0 < e � ē} (25)

This implicitly excludes any trader whose endowment vector is zero andwho therefore
plays no role in any Walrasian exchange.

Finally, the traders’ type space is taken to be theCartesian product space T = Θ×E ,
whose members are hidden preference–endowment pairs t = (θ, e).

5.4 A statistical continuum economy

LetMλ(L; T ) denote the family of probability measures τ on the product measurable
space (L × T,B(L × T )) of label–type pairs with the property that the marginal
measure induced by τ on the component space L equals the specified measure λ. That
is, for every Borel subset B in L , one has τ(B × T ) = λ(B). A statistical continuum
economy is defined as a probability measure or type distribution τ ∈ Mλ(L; T ).
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Twenty-two steps to Walrasian equilibrium 17

Given any Borel set B ⊆ L × T and any label � ∈ L , define the section B� :=
{t ∈ T | (�, t) ∈ B} of B. Then, as discussed in Appendix 1, the requirement that
margL τ = λ is equivalent to the existence of a stochastic transition or measure
disintegration in the form of a measurable mapping L � � �→ τ� ∈ M (T ) which is
also the regular conditional probability measure that satisfies τ(B) = ∫

L τ�(B�)λ(d�)
for every Borel set B ⊆ L × T . In Appendix 1, it is also shown that, because λ is
non-atomic, so is τ .

Thus, in the end our economy will have the countable set I = N of actual traders,
whose labels (�i )i∈N are assumed to be i.i.d. random variables drawn from the proba-
bility space (L ,L , λ). Moreover, it is assumed that there exists a probability measure
τ ∈ Mλ(L; T ) such that the actual traders’ label–type pairs (�i , t i )i∈N are inde-
pendent and identically distributed (i.i.d.) random variables drawn from the product
probability space (L × T,B(L × T ), τ ). Then, each label–type pair (�, t) ∈ L × T
can be regarded as a potential trader, whose existence as an actual trader depends
on whether (�, t) is included in the set {(�i , t i ) | i ∈ N} of random draws. Because
τ is non-atomic, the probability space (L × T,B(L × T ), τ ) can be regarded as a
continuum of potential traders.

5.5 The statistical economy as limit

Given any label–type pair (�, t) ∈ L × T , let δ(�,t) denote the degenerate Borel
probability measure defined on the space B(L × T ) of Borel measurable subsets of
L × T which, for every Borel set B ⊂ L × T , satisfies

δ(�,t)(B) :=
{
1, if (�, t) ∈ B

0, if (�, t) /∈ B
(26)

For each infinite sequence (�N, tN) = (�k, tk)k∈N of label–type pairs in L × T , and
for each n ∈ N, let

τn(�N, tN) := 1

n

n∑

k=1

δ(�k ,θk ) (27)

denote the empirical measure on Borel subsets of L × T generated by the label–type
pairs of the finite subset of traders {1, 2, . . . , n}. That is, by (26) and (27), the empirical
measure of each Borel set B ⊂ L × T satisfies

τn(�N, tN)(B) = 1

n

n∑

k=1

δ(�k ,θk )(B) = 1

n
#{k ∈ {1, 2, . . . , n} | (�k, θk) ∈ B} (28)

This requires τn(�N, tN)(B) to equal the proportion of the set of n pairs {(�k, tk) | k ∈
{1, 2, . . . , n}} that belong to B.

Because both L and T are compact Polish spaces, so is L × T given any natural
metric. Equip the spaceM (L × T ) of joint probability measures with its topology of
weak convergence of probability measures, along with the associated Borel σ -algebra;
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18 P. J. Hammond

this makes M (L × T ) a compact Polish space as well. Recall the assumption that
the sequence (�N, tN) = (�k, tk)k∈N of label–type pairs results from infinitely many
i.i.d. random draws from the common probability space (L × T,B(L × T ), τ ). As
discussed in Appendix 1, this assumption enables the Glivenko–Cantelli theorem to
be applied; it tells us that for τ∞-a.e. sequence (�N, tN), in this weak convergence
topology the empirical measure τn → τ as n → ∞.

Moreover, definition (27) implies that the marginal empirical measure over the
measurable label space (L ,L ) satisfies

margL τn = 1

n

n∑

k=1

margL δ(�k ,θk ) = 1

n

n∑

k=1

δ�k (29)

Applying the Glivenko–Cantelli theorem to the left-hand side of (29) establishes that
margL τn → margL τ for λ∞-a.e. sequence �N, whereas applying it to the right-hand
side establishes that 1

n

∑n
k=1 δ�k → λ for λ∞-a.e. sequence �N. So these limits must

be equal, from which it follows that margL τ = λ and so τ ∈ Mλ(L; T ).
This convergence property enables us to interpret the statistical continuumeconomy

with a continuum of potential traders (�, t) ∈ L × T as an appropriate limit of an
economy with a countable set of traders k ∈ N whose label–type pairs (�k, tk)k∈N
are i.i.d. random draws from a joint probability measure τ ∈ Mλ(L; T ) over L × T
whose marginal on L is λ.

5.6 Statistical strategy measures

Consider a trading game of incomplete information in which a market organizer con-
fronts a finite set I of traders. Each trader chooses a strategy belonging to a common
strategy or action set A that takes the form of a Polish space. Then it is natural to
consider the entire domain of strategy profiles

I × T � (i, t) = (i, θ, e) �→ ai,t ∈ A

determining, as a function of their respective individual type t ∈ T , the strategy of
each trader i ∈ I .

We focus on the extension to a countably infinite set of traders whose label–type
pairs form the sequence (�N, tN) of independent random draws from the probability
measure τ over Borel subsets of L × T . In this case, it seems natural at first to extend
this notion of strategy profile to mappings

L × T � (�, t) = (�, θ, e) �→ a�,t ∈ A

Yet the space AL×T of all these mapping includes many that are not measurable w.r.t.
any convenient σ -algebra on L ×T . Instead of mappings in AL×T , therefore, we focus
on statistics that the market organizer could estimate, at least in principle.

Indeed, suppose first that the market organizer was able to observe not only the
traders’ labels � ∈ L and actions a ∈ A, but also their hidden types t ∈ T . Then
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Twenty-two steps to Walrasian equilibrium 19

it is assumed that the market organizer’s estimated distribution of triples (�, t, a) ∈
L×T ×A takes the formof a statistical strategy measure αS in the spaceMτ (L×T ; A)

of joint probability measures on L × T × A whose marginal distribution margL×T αS

on the component subspace L ×T of label–type pairs equals the exogenously specified
joint measure τ ∈ Mλ(L; T ). In effect, we assume that:

1. not only does the infinite sequence (�N, tN) ∈ (L × T )N of actual traders’ label–
type pairs consist of i.i.d. random draws from a joint probability measure τ ∈
Mλ(L; T ) over potential traders’ label–type pairs;

2. but there also exists a joint probability measure αS ∈ Mτ (L ×T ; A) over potential
traders’ triples (�, t, a) having the property that, when the actual traders’ observ-
able actions ak ∈ A are appended to their label–type pairs (�k, tk), the resulting
infinite sequence (�N, tN, aN) of triples (�k, tk, ak) consists of i.i.d. random draws
from the distribution αS over L × T × A.

An unnecessarily strong sufficient condition for the measure αS to exist can be
specified, following the results of Hammond and Sun (2008). It requires that there
exist:

1. a probability space (Ω,F , P);
2. a measurable mapping L × T � (�, t) �→ π�,t ∈ M (A) from the space of label–

type pairs (�, t) to the domain of probability measures, or equivalently of mixed
strategies, on A;

3. a random process

L × T × Ω � (�, t, ω) �→ α�,t (ω) ∈ A

in which the random variables Ω � ω �→ α�,t (ω) are independent, like indepen-
dently mixed strategies, with respective marginal distributions π�,t .

Under this assumption, the measure αS not only describes the joint distribution
of the the continuum of potential agents’ triples (�, t, a) ∈ L × T × A. Relative to
the product probability measure (αS)N on the Borel product σ -algebra of the infinite
Cartesian product space (L × T × A)N of triple sequences (�N, tN, aN), it almost
surely also describes the distribution of the list of actual agents’ triples.

The market organizer, however, cannot observe any trader’s type. So we assume
that its decisions are based on the estimated marginal distribution α = margL×A αS ∈
Mλ(L; A) of observable label–action pairs (�, a) ∈ L × A.

A similar formulation will appear repeatedly in the subsequent analysis.

6 A demand revelation mechanism

6.1 The exchangeable commodity set

In our demand revelation (or DR) game, there will be one market organizer who
confronts a countably infinite set of agents whose label–type pairs (�k, tk)k∈N are
i.i.d. random draws from the non-atomic probability measure τ ∈ Mλ(L; T ) over the
Borel subsets of the Cartesian product set L × T of potential agents’ label–type pairs.

123



20 P. J. Hammond

For demand revelation to succeed in reaching a Walrasian equilibrium, that equi-
librium must exist. To ensure that it does, it is important to avoid the difficulty created
by Arrow’s (1951) exceptional case, especially in the later versions considered by
Koopmans (1957) and many others, including Hammond (2011). This difficulty can
be attributed to the misguided attempt to create a market for a good g ∈ G even when
no trader has any endowment of g, so g can never be traded.

Accordingly, the demand revelation game will start by having each actual trader
with the label–type pair (�, t) ∈ L × T announce an endowment set H �,t ⊆ G of
commodities that the trader claims to be able to supply in positive amounts. All the
actual traders’ announcements are assumed to give rise to an estimated statistical
strategy measure γ ∈ Mλ(L; 2G) over observable pairs (�, H) ∈ L × 2G of potential
agents’ labels and associated endowment sets, where 2G denotes the power set of all
subsets of the finite set G of potentially exchangeable commodities.

For each g ∈ G, define the set

2G
g := {H ∈ 2G | g ∈ H}

of subsets of G that contain the particular good g. Based on each possible estimated
measure γ , let

G(γ ) := {g ∈ G | γ (L × {H ∈ 2G | g ∈ H}) > 0} (30)

denote the trading set of those commodities which a non-null set of potential traders
have included in their announced endowment set. Often this set will be denoted simply
by K . In case #K < 2, essentially no trade is possible; so we assume from now on
that #K ≥ 2.

The demand revelation mechanism we construct will ignore all essentially non-
exchangeable commodities outside the set K := G(γ ). Accordingly, given K , define
the trading space R

K , as well as the new price simplex

PK :=
⎧
⎨

⎩
p ∈ R

K+
∣
∣
∣

∑

g∈G(γ )

pg = 1

⎫
⎬

⎭
(31)

with relative interior

P0
K :=

⎧
⎨

⎩
p ∈ R

K++
∣
∣
∣

∑

g∈G(γ )

pg = 1

⎫
⎬

⎭
(32)

and relative boundary bd PK := PK \P0
K .

6.2 Regular demands

Once the set K := G(γ ) of exchangeable commodities has been determined, the
budget correspondence of any trader is defined by the mapping
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P0
K � p �→→ BK (p) := {z ∈ R

K | p z ≤ 0} (33)

Then a possible net demand correspondence will be a mapping

P0
K � p �→→ Z(p;Z) ⊂ BK (p) (34)

also denoted by Z, that selects a non-empty subset Z(p;Z) of the budget set BK (p)

for each exchangeable goods price vector p ∈ P0
K .

Given the trading set K := G(γ ), we may as well replace each trader’s announced
endowment set H ⊂ G by the effective endowment set defined as the intersection
J := H ∩ K .

Recall that in (25) of Sect. 5.3 we introduced the notation ē ∈ R
G++ for the uniform

upper bound on traders’ endowment vectors. Given any announced effective endow-
ment set J ⊆ K , define ē J := (ē)g∈J ∈ R

J+ as the subvector of ē that results from
considering only goods g ∈ J , and (ē J , 0K\J ) ∈ R

K+ as the vector that results after
replacing by zero all the components (ēg)g∈K\J corresponding to the other goods.
Similarly, for each price vector p = (pg)g∈K ∈ PK , one can define the vector
pJ = (pg)g∈J of associated components.

Definition 1 Given the trading set K and the announced endowment set H ⊆ G
whose intersection with K is J , a net demand correspondence Z given by (34) is said
to be J -regular just in case it satisfies the following four conditions:

1. budget exhaustion: p z = 0 for all p ∈ P0
K and all z ∈ Z(p;Z);

2. feasibility: z � −(ē J , 0K\J ) for all p ∈ P0
K and for all z ∈ Z(p;Z);

3. continuity: the correspondence Z has a graph

ΓZ :=
{
(p, z) ∈ P0

K × R
K

∣
∣
∣ z ∈ Z(p;Z)

}
(35)

which is a relatively closed subset of P0
K × R

K ;
4. boundary condition: Suppose that (pN, zN) = (pn, zn)n∈N ∈ P0

K × R
K is any

infinite sequence of points in the graph ΓZ of Z defined by (35) with the property
that the price sequence pN converges to a point p̄ on the boundary of PK satisfying
p̄ J �= 0J—i.e. p̄ j > 0 for at least one j ∈ J . Then the sum

∑
g∈K zn

g → +∞.

The feasibility condition 2 implies that the trader cannot offer to supply any com-
modity that has not been included in the effective announced endowment set J . The
boundary condition 4 requires that, as one or more prices tend to zero, so total net
demand over all commodities g ∈ K tends to infinity whenever the “cheaper point”
property holds—i.e. whenever at least one of commodities in the effective announced
endowment subset J has a positive price in the limit.

We remark that if the set J is replaced by the larger set J̃ � J , then on the one hand
the feasibility condition 2 is less restrictive in the sense that zg can be negative for
g ∈ J̃\J . On the other hand, the boundary condition is more restrictive in the sense
that more components of any limit price vector p̄ can be nonzero, implying that total
net demand over all commodities g ∈ K tends to infinity for more price sequences
that converge to the boundary of the price simplex PK .
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Note in particular that J -regularity does not require any revealed preference axiom
or other rationality condition to be satisfied. Given any trading space K ⊆ G and
any endowment set J ⊆ K , let Z K

J denote the set of all J -regular net demand
correspondencesZ. Then eachZ ∈ Z K

J can be identified uniquely by its graphΓZ, and
so by continuity, with an appropriate subset of the family of all relatively closed subsets
of P0

K × R
K—or more precisely, of the set {(p, z) ∈ P0

K × R
K | z � −(ē J , 0G\J )}.

Finally, given the probability measure γ ∈ Mτ (L; 2G) and the trading space K :=
G(γ ) defined by (30), let

Z K :=
⋃

J⊆K

Z K
J (36)

denote the domain of all net demand correspondences that are J -regular for some
endowment set J ⊆ K .

6.3 A statistical demand revelation mechanism

We will now define a two-stage demand revelation mechanism.

1. At the first stage, each trader with label � ∈ L reports an endowment set H ⊆ G.
Moreover, following the discussion in Sect. 5.6, the traders’ reports are assumed
to determine an estimated distribution γ ∈ Mλ(L; 2G), and so a trading set K =
G(γ ) ⊆ G defined by (30), which is announced to each trader.

2. At the second stage, given the trading set K = G(γ ) defined by (30), each trader
who has been recorded as having the pair (�, H) ∈ L ×2G is next asked to report a
J -regular net demand correspondence Z ∈ Z K

J , where J = H ∩ K ∈ 2K . Based
on the list of all traders’ recorded triples (�, J,Z), the market organizer is assumed
to estimate the demand distribution ζ ∈ Mγ (L × 2K ;Z K ) which, by definition,
satisfies the extra regularity condition

ζ({(�, J,Z) ∈ L × 2K × Z K | Z ∈ Z K
J }) = 1 (37)

In the following, for each distribution γ ∈ Mλ(L; 2G) with associated trading set
K = G(γ ), letM ∗

γ denote the subset of probability measures ζ over triples (�, J,Z)

belonging toMγ (L × 2K ;Z K ) that satisfy (37).
Given the trading set K ∈ 2G , player 0’s task in the role of market organizer will be

to devise a statistical demand revelation (or DR) mechanism that, for each estimated
demand distribution ζ satisfying (37), selects: (a) a price vector p̄(ζ ) ∈ P0

K ; and (b)
a measurable allocation function

L × 2K × Z K � (�, J,Z) �→ z̄�(J,Z; ζ ) ∈ R
K (38)

that together constitute a market equilibrium satisfying, by definition:

– throughout the domain L × 2K × Z K , the selection condition

z̄�(J,Z; ζ ) ∈ Z( p̄(ζ );Z) (39)
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– the market equilibrium condition

0K =
∫

L×2K ×Z K
z̄�(J,Z; ζ ) ζ(d� × dJ × dZ) (40)

A discussion of how our regularity conditions ensure existence of such a market
equilibrium for each demand distribution ζ is deferred to Appendix 3.

6.4 A statistical game of incomplete information

The statistical DR mechanism specified in Sect. 6.3 generates a game of incomplete
information in strategic form with:

1. the probability space (L ,L , λ) of potential traders’ labels;
2. the type space T of potential traders’ taste–endowment pairs t = (θ, e) ∈ Θ × E ;
3. a type distribution in the form of a probability measure τ ∈ Mλ(L; T ) over label–

type pairs (�, t) ∈ L × T that describe potential traders;
4. for all traders, the common demand revelation strategy space

S :=
⋃

H∈2G

⎛

⎝{H} ×
∏

K∈2G

Z K
H∩K

⎞

⎠ (41)

of pairs s = (H,ZH ) which combine:
(a) an announced endowment set H ⊆ G;
(b) an entire profile

ZH = 〈ZK 〉K∈2G ∈
∏

K∈2G

Z K
H∩K (42)

specifying, for each possible trading set K ⊂ G that the market organizer
might announce, an associated H ∩ K -regular net demand correspondence
ZK ;

5. for each potential trader with label–type pair (�, t) ∈ L × T , a pay-off function

S × Mλ(L;S) � (s, σ ) �→ v�(s, σ ; t) (43)

defined for every individual trader’s demand revelation strategy s = (H,ZH ) ∈ S
and for every estimatedmeasure σ ∈ Mλ(L;S) over traders’ label–strategy pairs.
Its value is given by

v�(s, σ ; t) = v�(H,ZH , σ ; t) := u(z̄�(H,ZH
K (σ ), ζ(σ )) + e; θ) (44)

where
(a) for the population of all potential traders, K (σ ) := G(γ (σ )) denotes the

trading set induced by the relevant marginal distribution γ (σ ) := marg2G σ of
the strategy measure σ ;
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(b) given the demand set H that the trader has already announced, ZH
H∩K (σ ) is

the H ∩ K (σ )-regular net demand correspondence that forms the appropriate
component of the profile ZH defined by (42);

(c) for the population of all potential traders, ζ(σ ) ∈ M ∗
γ (σ ) denotes the induced

estimated demand distribution ζ over the set L × 2G × Z of all observable
triples (�, H,Z) which, for every Borel set V ⊂ L × 2G × Z K (σ ), satisfies

ζ(σ )(V ) := σ({(�, H,ZH ) ∈ L × S | (�, H,ZH
H∩K (σ )) ∈ V }) (45)

6.5 Walrasian demand revelation strategies

Definition 2 A trader whose true type is t = (θ, e) has a non-empty true endowment
set H(e) := {g ∈ G | eg > 0}, as well as for each trading space K ⊆ G:

1. a true budget correspondence

P0
K � p �→→ BK (p; e) := {z ∈ R

K | z � −(eJ , 0K\J ) and p z ≤ 0} (46)

where J denotes the set H(e) ∩ K = {g ∈ K | eg > 0}, whereas 0K\J denotes
the zero vector in R

K\J , and eJ = (eg)g∈J ∈ R
J .

2. a true Walrasian net demand correspondence ẐK ,t : P0
K →→ R

K defined by

P0
K � p �→→ Z(p; ẐK ,t ) := argmaxz{u(z + e; θ) | z ∈ BK (p; e)} (47)

Let
ŝ :=

(
H(e), ẐH(e)

)
=

(
H(e), 〈ẐK ,t 〉K∈2G

)
(48)

denote this trader’s (truthful) Walrasian demand revelation strategy.

By definitions (31) and (32), the domain P0
K excludes boundary points of the price

simplex PK . By the definition of J as {g ∈ K | eg > 0}, one has eJ ∈ R
J++, so

a standard argument based on the cheaper point lemma shows that this net demand
correspondence is upper hemi-continuous.

InAppendix 2, it is shown that, provided that preferences are continuous and strictly
monotone, the trueWalrasiannet demandcorrespondence ẐK ,t also satisfies thebound-
ary condition. Hence, ẐK ,t is J -regular according to the definition in Sect. 6.2.

6.6 Strategyproofness

For any actual trader whose true label–type pair is (�, t) ∈ L ×T , consider any change
to the demand revelation strategy s that this trader may choose from the strategy setS
defined by (41). Now, themeasures γ, σ and ζ(σ ) defined in Sects. 6.1 and 6.4 all have
a marginal distribution on L equal to the non-atomic measure λ. It follows from the
argument at the end of Appendix 1 that all these three measures are also non-atomic.
So this change in one trader’s demand revelation strategy s ∈ S has no effect on:
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1. the estimated endowment distribution γ ∈ Mλ(L; 2G);
2. the associated trading space K = G(γ ) ⊆ G defined by (30);
3. the estimated demand distribution ζ(σ ) ∈ M ∗

γ given by (45);

4. the associated Walrasian price vector p̄(ζ ) ∈ R
K specified in Sect. 6.3.

Accordingly, given this announcement strategy s = (H, 〈ZH
H∩K )〉K∈2G ) ∈ S as well

as the trading space K = G(γ ) ⊆ G and the associated endowment set J = H ∩ K ,
whatever net demand vector z̄�(J,Z; ζ ) ∈ Z( p̄(ζ );Z) is assigned to this trader by the
demand selection specified in (39), it must belong to the value Z( p̄(ζ );Z�,t ) of the
announced J -regular net demand correspondence Z�,t ∈ Z K

J at the particular price
p̄(ζ ), and so to the associated budget set BK ( p̄(ζ )) specified in (33).

Now, for this trader with true label–type pair (�, t) ∈ L ×T , any net demand vector
z̄�(ẐK ,t , ζ ) that is selected from the true Walrasian demand set Z(p; ẐK ,t ) must, by
definition, be one of the most preferred among the net trade vectors in the budget set
B( p̄(ζ ); e). In particular, it must be weakly preferred to the alternative net demand
vector z̄�(Z�,t , ζ ). It follows that, no matter what the demand distribution ζ may be,
this trader weakly prefers the truthful Walrasian demand revelation strategy ŝ ∈ S to
any allowed alternative s ∈ S. Moreover, when the alternative z̄�(Z�,t , ζ ) does not
belong to Z(p; ẐK ,t ), this preference is strict.

In this sense, truthfulness is always at least a weakly dominant strategy. So the
demand revelation mechanism is indeed at least weakly strategyproof. Thus, in our
limit economy with infinitely many traders, the market organizer can set up a demand
revelation game in order to implement Walrasian equilibrium with a strategyproof
mechanism.

Nevertheless, the objection raised in Sect. 3.4 still applies. Consider any trader
with true label–type pair (�, t) ∈ L × T , true endowment set J and true Walrasian net
demand correspondence ẐK ,t as specified inSect. 6.5. So far, no incentive has been pro-
vided for that trader to deliver the supply vector y�(J, ẐK ,t , ζ ) = −(z̄�(J, ẐK ,t , ζ )∧0)
required to reach a Walrasian allocation.

7 Demand revelation with warehousing

7.1 Traders’ warehouse supplies

The task now is to devise incentives for each potential trader with label–type pair
(�, t) = (�, θ, e) ∈ L×T not only to announceboth the true endowment set H(e) ∈ 2G

and true demand correspondence, but also to deliver the mandated supply vector to
the warehouse system. To do so, we shall extend the DR mechanism of Sect. 6 into
the kind of two-stage setting introduced in Sect. 4.1. Indeed, the estimated demand
distribution ζ = margL×Z σ ∈ M ∗

γ given by (45) is used in order to determine, for

each potential agent described by the recorded triple (�, J,Z) ∈ L ×2K ×Z K , where
J = H ∩ K , a mandated supply vector defined by

ȳ�(J,Z; ζ ) := −(z̄�(J,Z; ζ ) ∧ 0) (49)
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This vector plays a key role in determining the outcome of the second-stage market
mechanism. For each recorded triple (�, J,Z) ∈ L × 2K × Z K , any corresponding
actual agent is allowed to bring to the warehouse system any supply vector yS ∈ R

K+
satisfying yS � e. This vector will not be accepted, however. Indeed, oversupplies are
not allowed, so the accepted supply vector is y := yS ∧ ȳ�(J,Z; ζ ). This exclusion
makes it impossible for any trader to speculate that any good they oversupply could
be bought back more cheaply in the second-stage market.5

These supply vectors that the actual traders choose to bring to the warehouse are
assumed to determine a new strategic supply distribution in the form of an estimated
joint probability measure

η ∈ Mζ (L × 2K × Z K ; R
G+) (50)

over the space L × 2K ×Z K × R
G+ of all recorded quadruples (�, J,Z, y) of labels,

endowment sets, demand correspondences, and warehouse supply vectors; this mea-
sure is assumed to be consistent with the appropriate first-stage demand distribution ζ .

7.2 Distinguishing deviant from compliant agents

As in the corresponding mechanism with full information that was considered in
Sect. 4, the conclusion of the mechanism with incomplete information distinguishes
between:

compliant traders for whom y = ȳ�(J,Z; ζ );
deviant traders for whom y < ȳ�(J,Z; ζ ).

Now, the normal compliant case occurs when, for the given joint distribution η

of demand correspondences and warehouse supply vectors, almost all traders are
compliant—i.e.

η({(�, J,Z, y) ∈ L × 2K × Z K × R
G+ | y = ȳ�(J,Z; ζ )}) = 1 (51)

In this case:

1. any compliant trader is allowed to withdraw any commodity vector x ∈ R
G+

satisfying x � x̄�(J,Z; ζ ) := z̄�(J,Z; ζ ) ∨ 0;
2. any deviant trader is allowed towithdraw any commodity vector x ∈ R

G+ satisfying
the budget constraint p(ζ ) x ≤ p(ζ ) y, where p(ζ ) y < p(ζ ) ȳ�(J,Z; ζ ) because
p(ζ ) � 0 and y < ȳ�(J,Z; ζ ).

The game ceaseswhen all traders have completed theirwithdrawals, and any remaining
stock in the warehouse has been thrown away.

7.3 Warehouse supplies as endowments

In the alternative deviant case when (51) is violated, there will be a non-negligible
and observable discrepancy between:

5 My thanks to Michael Wickens for encouraging me to emphasize this point.
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– on the one hand, the measure η generated by the actual warehouse deposits;
– on the other hand, the function (�, J,Z) �→ ȳ�(J,Z; ζ ) specifying mandated
warehouse deposits.

Indeed, let

Eη[y] :=
∫

L×2G×Z ×R
G+

y η(d� × dJ × dZ × dy) (52)

denote the available mean warehouse supply vector per head, and let

Eζ [x̄�(J,Z; ζ )] = Eζ [ȳ�(J,Z; ζ )] :=
∫

L×2G×Z
ȳ�(J,Z; ζ ) ζ(d�× dJ × dZ) (53)

denote the mean warehouse demand vector per head. Because y < ȳ�(J,Z; ζ ) on a
non-negligible set, one has Eη[y] < Eζ [x̄�(J,Z; ζ )]—i.e. when aggregated over all
traders, whether actual or potential, the mean supply is almost surely insufficient to
meet the mean demand.

In order to dealwith this discrepancy and to deter the failures to deliver themandated
warehouse deposits that must have occurred, the market organizer will institute a new
second-stage demand revelation mechanism. At the beginning of this second stage,
each potential trader is described by the combination (�, t, J,Z, y) of a label � ∈ L ,
a type t = (θ, e) ∈ T , a recorded endowment set J ∈ 2K , a recorded net demand
correspondence Z ∈ Z K

J , and the trader’s chosen warehouse supply vector y ∈ R
G+.

The endowment vector e is no longer relevant, however, because no trader is allowed
to deposit anymore of any good into thewarehouse system. Instead, the predetermined
supply vector y is treated as an endowment, even though it has already been delivered
to the warehouse system. Each trader, however, can choose how much of the effective
endowment y to reclaim for personal consumption, depending on the second-period
price vector.

7.4 A second-stage commodity space

The second-stage demand revelation mechanism will work with the restricted trading
space

G+(η) := {g ∈ G | Eη[yg] > 0} (54)

consisting of commodities for which themeanwarehouse deposit per trader is positive.
At the second stage, tradewill take place only in these commodities; traders’warehouse
deposits yg of all other goods g ∈ K\G+(η) are returned in their entirety to their
depositors, in order to ensure that no trader ever loses from making those deposits.

From now on, therefore, we consider the commodity space R
G+(η), as well as the

new version

Q :=
⎧
⎨

⎩
q ∈ R

G+(η)
+

∣
∣
∣

∑

g∈G

qg = 1

⎫
⎬

⎭
(55)
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of the unit simplex P ⊂ R
G of semi-positive normalized price vectors defined by (1)

of Sect. 2.1, together with the new version

Q0 :=
⎧
⎨

⎩
q ∈ R

G+(η)
++

∣
∣
∣

∑

g∈G

qg = 1

⎫
⎬

⎭
(56)

of the relative interior P0 ⊂ P defined by (2).
For each supply vector y = 〈yg〉g∈K ∈ R

K+ that a trader might supply, we introduce
the notation

y+ := 〈yg〉g∈G+(η) ∈ R
G+(η)
+ (57)

for the subvector whose components correspond to goods that the trader supplies in
positive amounts.

7.5 Second-stage regular demands

As the second stage starts, each actual trader has a record in the form of a quadruple
(�, J,Z, y+) that combines an observable label � ∈ L , a reported endowment set
H ∈ 2G such that J = H ∩ K , a reported J -regular net demand correspondence

Z ∈ Z K
J , and a chosen warehouse supply vector y+ ∈ R

G+(η)
+ defined by (57) for

those commodities g ∈ G+(η) that will be traded at the second stage. For each price
vector q ∈ Q0, the trader’s associated budget set of permissible demand vectors x+
in the trading space R

G+(η) is taken to be

BX (q; y+, η) :=
{

x+ ∈ R
G+(η)
+

∣
∣
∣ q x+ ≤ q y+}

(58)

For each price vector q ∈ Q0, this limits the trader’s allowable expenditure q x+ on

warehouse deliveries x+ ∈ R
G+(η)
+ to the value q y+ of the trader’s own recorded

warehouse supply vector.
Let z+ := x+ − y+ ∈ R

G+(η) denote the trader’s second-stage net trade vector. For
each price vector q ∈ Q0, the budget set (58) can then be expressed in the equivalent
form

B+(q; y+, η) := {z+ ∈ R
G+(η) | z+ � −y+ and q z+ ≤ 0} (59)

This is obviously analogous to the endowment constrained budget set defined by (4)
in Sect. 3.1.

Given the supply vector y+ ∈ R
G+(η)
+ , let

J (y+) := {g ∈ G+(η) | y+
g > 0} (60)

denote the set of goods that are supplied in positive amounts. Then letZ +
y+ denote the

set of all J (y+)-regular net demand correspondences Z+. These are multifunctions

Q0 � q �→→ Z+(q;Z+) ⊆ B+(q; y+, η) ⊂ R
G+(η) (61)
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which satisfy the budget exhaustion, feasibility, continuity, and boundary conditions
set out in Sect. 6.2, but with the commodity set K replaced by G+(η), and with the
endowment set J replaced by J (y+).

Given the vector ē of upper bounds specified in (25), as well as the supply distribu-
tion η, let ē+ := (ēg)g∈G+(η) ∈ R

G+(η) denote the vector of uniform upper bounds on
traders’ endowments, restricted to the set G+(η) of goods to be traded at the second
stage. Because each trader’s warehouse deposit vector y must satisfy the feasibility
constraint y � e � ē, it follows that the restriction y+ = (yg)g∈G+(η) ∈ R

G+(η) must
satisfy y+ � ē+. Accordingly, let

Z + := ∪0�y+�ē+Z +
y+ (62)

denote the domain of all regular net demand correspondences Z+—i.e. all net demand
correspondences Z+ that are y+-regular for some feasible y+ � ē+.

7.6 A second-stage demand revelation mechanism

As the second stage starts, player 0 has a record for each actual trader taking the
form of a quadruple (�, J,Z, y) that combines an observable label � ∈ L , a reported
endowment set J ∈ 2K , a reported J -regular net demand correspondence Z ∈ Z K

J ,
and a supply vector y ∈ R

G+. Furthermore, as in (50), player 0 has already used all
these records in order to estimate the supply distribution η over these quadruples.

We now specify a second-stage DRmechanism along the lines of the first-stage DR
mechanism set out in Sect. 7.1. Specifically:

1. First, player 0 as statistician uses definitions (54) and (57) to compute the set

G+(η) of commodities to be traded, as well as the restriction y+ ∈ R
G+(η)
+ of

each trader’s chosen warehouse supply vector y ∈ R
K to the subset G+(η) of

commodities g ∈ G.
2. Each trader with recorded quadruple (�, J,Z, y+) is required to report to player 0

a J (y+)-regular second-stage net demand correspondence Q0 � q �→→ Z+(q) ∈
R

G+(η), or Z+ ∈ Z +.
3. To each trader’s previous record (�, J,Z, y) ∈ L × 2K × Z K × R

G+, player 0
appends the reported second-stage net demand correspondence Z+ ∈ Z +, thus
forming the quintuple (�, J,Z, y,Z+).

4. Based on all the quintuples recorded at the previous step, player 0 estimates the
joint distribution ζ+ ∈ Mη(L ×2K ×Z K ×R

G+;Z +). Regularity of each trader’s
announced net demand correspondence implies that ζ+ must satisfy the additional
restriction

ζ+ ({
(�, J,Z, y,Z+) ∈ L × 2K × Z × R

G+ × Z + | Z+ ∈ Z +
y+

})
= 1 (63)

5. Depending on the distribution ζ+ ∈ Mη(L × 2K × Z K × R
G+;Z +) that was

estimated at Step 4, player 0 determines both a second-stage price vector q̄(ζ+)

and a second-stage allocation in the form of an integrable function
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L × 2K × Z K × R
G+ � (�, J,Z, y,Z+) �→ z̃�(J,Z, y,Z+; ζ+) ∈ R

G+(η) (64)

that together satisfy:
(a) the selection condition

z̃�(J,Z, y,Z+; ζ+) ∈ Z+(q(ζ+);Z+) ⊆ R
G+(η)

for ζ+ − a.e. (�, J,Z, y,Z+) ∈ L × 2K × Z × R
G+ × Z + (65)

(b) the market clearing condition

0 =
∫

L×2K ×Z ×R
G+×Z +

z̃�(J,Z, y,Z+; ζ+) ζ+(d� × dJ × dZ × dy × dZ+)

(66)
6. Each trader with the recorded quintuple (�, J,Z, y,Z+) is allowed to claim

from the warehouse any commodity vector x+ ∈ R
G+(η)
+ satisfying x+ �

x̃�(J,Z, y,Z+; ζ+), where

x̃�(J,Z, y,Z+; ζ+) := z̃�(J,Z, y,Z+; ζ+) + y+ (67)

denotes the demand allowance corresponding to the assigned net trade vector; the
game ceases when all traders have made their withdrawals within their specified
limit, after which player 0 disposes of any remaining surplus.

For each ζ+ in the relevant domainMη(L × 2K ×Z × R
G+;Z +) of second-stage

demand distributions, the existence theorem of Appendix 3 can be applied to show
that there is a price vector q̃(ζ+) ∈ Q0 and an allocation function which together
satisfy both (65) and (66).

8 A mechanism in twenty-two steps

8.1 Defining the extensive form game

The discussion so far has been sketched an extensive form game6 whose players are:

– the countably infinite set of traders k ∈ N whose respective label–type pairs
(�k, tk) ∈ L × T are independently drawn from the probability measure τ ∈
Mλ(L; T );

– player 0, who manages the market by combining all five roles of recording clerk,
statistician, auctioneer, principal, and warehouse manager.

This game can be set out in full detail using the following twenty-two steps:

1. Player 0 announces a finite set G of all possible goods that are candidates for
trade.

6 Strictly speaking, according to the usual definition of an extensive form game, players are allowed to
move only one at a time. Our formulation follows Dubey and Kaneko (1984) and others in allowing many
players to move simultaneously.
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2. Successive traders numbered k = 1, 2, . . . appear in turn before player 0, and
signal their intention to participate in the market by reporting a non-empty
endowment set Hk ⊆ G, whereupon each is assigned a random label �k drawn
independently from the constant probability measure λ on L .

3. Player 0 as clerk records the infinite list of all reported pairs (�k, Hk) ∈ L × 2G .
4. Player 0 as statistician estimates the joint endowment distribution γ ∈ Mλ(L; 2G)

of all the pairs (�, H) ∈ L × 2G that were recorded at Step 3.
5. Given the endowment distribution γ that was estimated at Step 4, player 0, now

acting as market manager:
(a) constructs for each good g ∈ G the set

Lg := {(�, H) ∈ L × 2G | g ∈ H} (68)

of pairs where the endowment set H includes good g;
(b) calculates and then publicly announces the trading set

K := G(γ ) := {g ∈ G | γ (Lg) > 0} (69)

6. Each trader with record (�, H) ∈ L ×2G , who therefore faces the relevant trading
set J := H ∩K , is required by player 0 to report a first-stage J -regular net demand
correspondence Z ∈ Z K

J . Any trader with record (�, H) who refuses to report
such a correspondence is penalized by being recorded as having the autarkic net
demand correspondence Zaut that satisfies Z(p,Zaut) = {0K } for all p ∈ P0

K .
7. Player 0, acting as clerk, updates each trader’s pair (�, H) ∈ L × 2G that was

recorded at Step 3 by:
– first replacing H with J := H ∩ K ;
– then appending to (�, H) this trader’s reported net demand correspondence
Z ∈ Z K

J .
The resulting new record is a triple (�, J,Z) ∈ L × 2K × Z K .

8. Player 0, acting as statistician, estimates the joint distribution ζ ∈ M ∗
γ of all the

triples (�, J,Z) ∈ L × 2K × Z K recorded at Step 7. Because of Step 6, this
distribution must satisfy the regularity condition (37).

9. Conditional on the demand distribution ζ that was estimated at Step 8, player 0,
acting as market equilibrator, determines:
(a) a first-stage price vector p̄(ζ ) ∈ P0

K ;
(b) an allocation in the form of an integrable selection

L × 2K × Z K � (�, J,Z) �→ z̄�(J,Z; ζ ) ∈ Z( p̄(ζ );Z) ⊂ R
K

from the J -regular demand correspondences announced at Step 6.
These two must satisfy the market clearing condition (40).

10. Player 0, acting as warehouse manager, opens up the warehouse to accept traders’
deposits, and then, as each trader arrives at the warehouse, player 0, acting as
clerk:
(a) consults each trader’s triple (�, J,Z) ∈ L × 2K × Z K that was recorded at

Step 6;
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(b) uses the allocation found at Step 9(b) in order to calculate and then announce
to each trader the mandated warehouse supply vector

ȳ�(J,Z; ζ ) := −[z̄�(J,Z; ζ ) ∧ 0] ∈ R
K+

11. Each trader who has the unobserved endowment vector e brings to the warehouse
any supply vector yS ∈ R

K+ satisfying yS � e.
12. Player 0, acting as warehouse manager, when confronted by a trader who is

described by the triple (�, J,Z) recorded at Step 7, and who at Step 11 brings the
supply yS to the warehouse, accepts as deposit the vector y := yS ∧ ȳ�(J,Z; ζ ).

13. Player 0, acting as clerk, appends the deposit vector y accepted at Step 12 to the
triple (�, J,Z) recorded at Step 7, so the trader’s updated record takes the form
of a quadruple

(�, J,Z, y) ∈ L × 2K × Z K × R
G+

14. Player 0, acting as statistician, uses the list of all the quadruples (�, J,Z, y) that
were recorded at step 13 in order to estimate:
(a) the corresponding supply distribution η ∈ Mζ (L × 2K × Z K ; R

G+);
(b) the measure η(C(ζ )) of the set

C(ζ ) := {(�, J,Z, y) ∈ L × 2K × Z K × R
G+ | y = ȳ�(J,Z; ζ )} (70)

of all compliant quadruples (�, J,Z, y).
15. Consider first the compliant case when η(C(ζ )) = 1. Here, player 0 acting as

warehouse manager allows each trader with the quadruple (�, J,Z, y) that was
recorded at Step 13 to withdraw any demand vector x � 0 satisfying:
(a) in case (�, J,Z, y) is a compliant quadruple in C , the rationing constraint

x � x̄�(J,Z; ζ ) := [z̄�(J,Z; ζ ) ∨ 0] ∈ R
G+, where z̄�(J,Z; ζ ) is specified at

Step 9 ;
(b) in case (�, J,Z, y) is a deviant quadruple outside C , the budget constraint

p̄(ζ ) x ≤ p̄(ζ ) y, where p̄(ζ ) is the market clearing price in P0 that was
chosen at Step 8.

In this case where almost all traders are compliant, player 0 follows this Step 15
by jumping directly to the concluding Step 22 of the game.

16. Alternatively, in the deviant case when η(C) < 1, player 0 constructs the set
G+(η) defined by (54) of goods g ∈ K whose mean supply per trader is positive,
thus allowing good g to be traded in the second-stage market. If the number of
such goods satisfies #G+(η) < 2, then trade is impossible. Therefore, in this case
player 0 returns each deposit of every good to its depositor and declares that there
is autarky.
Otherwise, if #G+(η) ≥ 2, then player 0:
– announces the set G+(η);
– returns any deposits of goods g ∈ G\G+(η) to the depositors;
– starting at Step 17, institutes a second-stage demand revelation mechanism
like that specified in Sect. 7.6.
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17. Each trader, given the already recorded deposit vector y+ ∈ R
G+(η)
+ , is required

to report to player 0 a J (y+)-regular second-stage net demand correspondence
Q0 � q �→→ Z+(q) ∈ R

G+(η), or Z+ ∈ Z +.
Any trader with recorded quadruple (�, J,Z, y+) who fails to report such a net
demand correspondence is recorded as having the autarkic net demand corre-
spondence (Z+)aut that satisfies Z+(q, (Z+)aut) = {0G+(η)} for all q ∈ Q0.

18. Player 0, acting as clerk, updates each trader’s quadruple (�, J,Z, y) ∈ L ×2K ×
Z K × R

G+ that was recorded at Step 13 by appending the same trader’s second-
stage net demand correspondence Z+ ∈ Z + that was recorded at Step 17, thus
extending the trader’s record to the quintuple (�, J,Z, y,Z+) ∈ L ×2K ×Z K ×
R

G × Z +.
19. Given all the quintuples (�, J,Z, y,Z+) ∈ L × 2K × Z K × R

G+ × Z + that
were recorded at Step 18, player 0 acting as statistician estimates the associated
demand distribution ζ+ ∈ Mη(L × 2K × Z K × R

G+;Z +).
20. Given the distribution ζ+ estimated at step 19, player 0, acting as market equili-

brator, next determines:
(a) a second-stage price vector q̃(ζ+) ∈ Q0;
(b) from the J (y+)-regular demand correspondences announced at Step 18, a

measurable selection specified by (65), which also satisfies the market clearing
condition (66).

21. Each trader with the quintuple (�, J,Z, y,Z+) that was recorded at Step 18, and
so with the second-stage net trade vector z̃�(Z, ζ, y,Z+; ζ+) that was specified in
Step 20, is allowed to withdraw from the warehouse any demand vector x+ � 0
which satisfies x+ � x̃�(J,Z, y,Z+; ζ+) for the allowance specified by (67).

22. When all traders have made their allowed withdrawals, player 0 disposes of any
remaining surplus.

8.2 Two rounds of eliminating dominated strategies

Following the discussion in Sect. 4.9 for the case of an economy with complete infor-
mation and a finite number of traders, suppose that player 0, as a market manager
who combines the five roles of recording clerk, statistician, auctioneer, principal, and
warehouse manager, is committed to a specified sequence of actions at Steps 1, 3–5,
7–10, 12–16, 18–20, and 22 of the extensive form game set out in Sect. 8.1. Con-
ditional upon these commitments, there is a game of incomplete information with a
countably infinite set of traders who must all select a five-part strategy. The first three
parts specify the trader’s moves at Steps 2, 6, and 11. Furthermore, in case the spot
market needs to reopen after a non-negligible set of traders have failed to deliver at
Step 11 the supply vectors which player 0 had mandated at Step 10, there are two
extra parts that specify the trader’s moves at Steps 17 and 21 of the extensive form
continuation game that arises in this “non-compliant” case.

This extensive form gamewill be analysed using backward recursion, starting at the
penultimate Step 21. There, because preferences are assumed to be strictly monotone,
the obvious strictly dominant strategy for each trader is to withdraw the full allowance
x̃�(J, ζ+,Z, ζ, y,Z+) defined by (67).
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Next, working backwards to the demand revelation mechanism at Step 17, we
recognize that by then each trader’s endowment has effectively become the vector y+ ∈
R

G+(η)
+ which has already been deposited in the warehouse system. Then the argument

in Sect. 6.6 shows that revealing one’s true Walrasian demand correspondence is a
weakly dominant strategy.

8.3 The warehouse supply subgame: strategies

Moving further backwards through the extensive form game between all the traders,
we come next to the key Step 11, which is reached after:

1. all the traders have already announced both endowment sets H at Step 2 and net
demand correspondences Z at Step 6;

2. these announcements have been recorded as Step 7 and then used at Step 8 in order
to estimate the demand measure ζ ∈ M ∗

γ ;

3. each trader with the recorded triple (�, J,Z) ∈ L ×2K ×Z K , where J = H ∩ K ,
has been informed at Step 10 of both the mandated demand vector x̄�(J,Z; ζ ) and
the mandated supply vector ȳ�(J,Z; ζ ).

At Step 11, as already explained in Sect. 8.2, using backward recursion to eliminate
dominated strategies leaves each trader with only the strategy of truthfully revealing
their Walrasian net demand correspondence at Step 17, and then of withdrawing all
they are allowed at Step 21. So, given the history ζ that player 0 estimates at Step 8,
as well as the key variables that player 0 specifies at Steps 9 and 10, the traders at
Step 11 are confronted with a one-shot continuation game of incomplete information,
denoted byG(ζ ), for which we now determine the strategy sets and pay-off functions.

In this game G(ζ ), each trader’s full description involves the recorded triple
(�, J,Z) ∈ L × 2K × Z K supplemented by the hidden type t = (θ, e). Though
the type remains hidden, the endowment vector e limits what warehouse supply vec-
tor y ∈ R

K+ the trader can choose, whereas the mandated supply vector ȳ�(J,Z; ζ )

limitswhat thewarehousemanagerwill accept. Accordingly,we introduce the notation

ȳ�
e (J,Z, ζ ) := e ∧ ȳ�(J,Z; ζ ) (71)

for the upper bound on the vector of supplies that the trader can deliver to thewarehouse
system, and then

Y �
e (J,Z, ζ ) := {y ∈ R

K+ | y � ȳ�
e (J,Z, ζ )} (72)

for the strategy set of a trader described by the quadruple (�, J, t,Z) with hidden type
t = (θ, e), when the estimated demand measure is ζ . Though it depends on the hidden
endowment e, the constraint y � e is obviously self-enforcing when applied to actual
rather than to promised deliveries.

8.4 The warehouse supply subgame: pay-offs

In the game G(ζ ) with strategy sets specified by (72), the traders’ choices at Step
11 of the extensive form game are assumed to determine the supply distribution η ∈
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Mζ (L × 2K × Z K ; R
G+) that player 0 estimates at Step 14. The estimated supply

distribution η determines player 0’s next choices at Steps 15 and 16. Hence, each
trader’s pay-off function in the subgame G(ζ ) depends not only on the trader’s own
supply vector y, but also on the measure η, as well as on the trader’s own hidden type
t = (θ, e) and the previously recorded triple (�, J,Z). Of course, since the measure
η is non-atomic, no trader’s choice of supply vector y can affect it. This leaves two
cases to consider, depending on whether the proportion of compliant agents satisfies
η(C) = 1 or η(C) < 1.

In the compliant case when η(C) = 1, player 0 is committed to follow Step 15.
The typical trader described by the quadruple (�, J, t,Z) has a pay-off that depends
then on whether:

– y = ȳ�(J,Z; ζ ). This is only possible when ȳ�(J,Z; ζ ) � e. Then the trader is
compliant and receives the pay-off

w�(ȳ�(J,Z; ζ ), ζ ; θ, e,Z) = u(z̄�(J,Z; ζ ) + e; θ) (73)

from the mandated net demand vector z̄�(J,Z; ζ ).
– y < ȳ�(J,Z; ζ ). Then the trader is deviant and receives the pay-off

w�(y, ζ ; θ, e,Z) = max
z

{u(z + e; θ) | z � −ȳ�(J,Z; ζ ) and p(ζ ) z ≤ 0} (74)

But the mandated net demand vector z̄�(J,Z; ζ ) solves the maximization problem
in (74) when the constraint z � −ȳ�(J,Z; ζ ) is replaced by the constraint z � −e.
When the trader is compliant and so ȳ�(J,Z; ζ ) � e, the constraint z � −e is weaker.
Hence

w�(ȳ�(J,Z; ζ ), ζ ; θ, e,Z) ≥ w�(y, ζ ; θ, e,Z)

for all y < ȳ�(J,Z; ζ ). Since this is true for all measures ζ and all compliant η, it
implies that compliance is a weakly dominant strategy in this case.

In the alternative case when η(C(ζ )) < 1, player 0 is committed to follow Step 16,
and to reopen markets for goods g ∈ G+(η). We consider this case next.

8.5 Dominant warehouse supply strategies

Consider any joint distribution ζ+ ∈ Mη(L × 2K ×Z K ×R
G+;Z +) with associated

price vector q̃(ζ+) that player 0 is committed to choose at Step 20. Each trader’s
anticipated pay-off in the game G(ζ ) will then depend not only on the trader’s own
supply vector y and the measure ζ+, but also on the trader’s own previously recorded
triple (�, J,Z), as well as the hidden type t = (θ, e). Hence, this trader’s pay-off can
be written as

w�(y, ζ+; θ, e, J,Z) = max
x

{u(x − y + e; θ) | x � 0 and q̃(ζ+) x ≤ q̃(ζ+) y} (75)

Introducing the change of variable z = x − y, with y � e fixed, one can rewrite (75)
as
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w�(y, ζ+; θ, e, J,Z) = max
z

{u(z + e; θ) | z � −y and q̃(ζ+) z ≤ 0} (76)

Because ȳ�(J,Z; ζ ) � e, we can replace y by ȳ�(J,Z; ζ ) in (76) to obtain

w�(ȳ�(J, J,Z; ζ ), ζ+; θ, e, J,Z)

= max
z

{u(z + e; θ) | z � −ȳ�(J,Z; ζ ) and q̃(ζ+) z ≤ 0} (77)

But the requirement that y � ȳ�(J,Z; ζ ) implies that the constraint z � −y in (76) is
at least as restrictive as the corresponding constraint z � −ȳ�(J,Z; ζ ) in (77). Hence

w�(y, ζ+; θ, e, J,Z) ≤ w�(ȳ�(J,Z; ζ ), ζ+; θ, e, J,Z) (78)

Recall that the inequality (78) holds for all possible probability measures ζ+ ∈
Mη(L × 2K ×Z K × R

G+;Z +) that could be estimated at Step 19. It follows that for
any agent described by the triple (�, J,Z) and any measure ζ ∈ M ∗

γ over such triples,

the compliant warehouse supply strategy with y = ȳ�(J,Z; ζ ) weakly dominates any
alternative y satisfying the requirements that 0 � y � e and y � ȳ�(J,Z; ζ ).

As further intuition for (78), note that supplying any vector y � ȳ�(J,Z; ζ ) in effect
offers the free option to repurchase some of those supplies in case this is optimal ex
post given the price vector q̃(ζ+) that is used to clear the second submarket. For this
reason, among those warehouse supply vectors that satisfy y � ȳ�(J,Z; ζ ), a larger
vector y always weakly dominates any smaller one.

8.6 Dominant demand revelation

A standard argument was provided in Sect. 6.6 to show that the Walrasian demand
revelation strategy ŝ := (H(e), ẐH(e)) = (H(e), 〈ẐK ,t 〉K∈2G ) specified in (48) is
dominant for each trader. That argument presumed that the final allocation would be
a net demand vector in the value of the announced demand correspondence at the
equilibrium price vector chosen by player 0.

In the game being considered here, the situation is somewhat more involved. Nev-
ertheless, after eliminating all weakly dominated strategies for each trader at Step 21,
then Step 17, and finally Step 11, each trader at Steps 2 and 6 participates in what
is equivalent to the game G of demand revelation that was considered in Sect. 6. All
traders face the common strategy set S specified in (41). The pay-off of each trader
with label � ∈ L and type t = (θ, e) ∈ T can be expressed as a function

w�(s, ζ ; θ, e) = u(x̄�(J,Z; ζ ) − ȳ�(J,Z; ζ ) + e; θ) = u(z̄�(J,Z; ζ ) + e; θ) (79)

of their own strategy s ∈ S, as well as of the joint distribution ζ ∈ M ∗
γ of observable

triples (�, J,Z). The right-hand side, of course, is exactly the same as in (44) provided
that one takes J = K (σ ),Z = ZH

K (σ ), and ζ = ζ(σ ). So the truthfulWalrasian demand
revelation strategy ŝ given by (48) remains the unique weakly dominant strategy in
the game G.
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8.7 Subgame perfect Bayesian strategyproofness

To summarize, for each trader described by the triple (�, θ, e) ∈ L × T , one now has
the following results.

– The assumption of strictly monotone preferences implies that, in the continuation
game that arises after the market organizer has completed Step 20 and specified the
maximum possible withdrawal vector z̃�(J,Z, y,Z+;μ) for this trader, at Step 21
the maximal demand strategy of withdrawing this full amount is strictly dominant.

– In the continuation game that arises after the market organizer has completed Step
16 and announced that markets have to reopen, a weakly dominant strategy for
the trader at Step 17 is to announce the true Walrasian demand correspondence
Z+ ∈ Z +, followed by the above full withdrawal strategy at Step 21.

– In the continuation game that arises at Step 11, after the market organizer has
completed Step 10 and announced the trader’s mandated warehouse supply vector
ȳ�(J, z, ζ ), the trader’s unique dominant strategy is endowment constrained com-
pliance. That is, the supply strategy is to deposit the vector ȳ�

e (J,Z, ζ ) defined by
(71). Starting at Step 17, this is followed by the above continuation strategy.

– At Step 6 of the game, when the trader is called upon to announce a first-stage
regular net demand correspondence Z ∈ Z �, a weakly dominant strategy is to
announce the true Walrasian net demand correspondence ẐK .t given the trader’s
true type t , followed by the above continuation strategy starting at Step 11.

– At Step 2 of the game, when the trader is called upon to announce an endowment
set H ⊆ G, a weakly dominant strategy is to announce the true endowment set
H(e), followed by the above continuation strategy starting at Step 5.

In this sense, for our twenty-two step game in extensive form, a subgame per-
fect Bayesian equilibrium in unique subgame perfect dominant or weakly dominant
strategies consists of the strategy profile where every trader:

1. starts by revealing the true endowment set at step 2;
2. then, at step 6, reveals the true Walrasian net demand correspondence;
3. then, at step 11, follows the minimal compliant supply strategy in choosing a

warehouse deposit;
4. then, at step 17, if markets need to reopen, reveals the new true Walrasian net

demand correspondence given what was supplied at the previous stage;
5. finally, at step 21, withdraws as much from the warehouse as player 0 allows.

Of course, this strategy profile does implement the Walrasian equilibrium desired by
player 0 who combines the five roles of auctioneer, clerk, statistician, principal, and
warehouse manager. In every second-stage submarket, our mechanism also allows
an amended Walrasian equilibrium to be reached with unique dominant or weakly
dominant strategies of demand revelation and warehouse withdrawal.

Finally, following the analysis in Hammond (1987, 2011) as well as Guesnerie
(1998), we note that the demand revelation mechanisms built around Steps 6 and 17
are multilaterally strategy proof in the sense that, for each finite coalition C ⊂ L × T ,
there is no combination of misreported demand correspondences and hidden trades
on the side that makes every member of C better off.
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9 Concluding remarks

The analysis has been limited to a static system of spot markets, in which many
competing traders interact with an omnipotent principal whomay have no information
regarding traders’ preferences or endowments. Demand revelation allows Walrasian
equilibrium to be reached, at least in principle, provided that onemakes no concessions
to computational limitations. In practice, a demand revelation process could require
traders to submit a trading algorithm. This could take the form of a selection from a
menu of approved standard algorithms which differ from each other depending on a
variable high-dimensional parameter vector that the trader can choose.

When traders cannot trust each other to fulfil supply contracts, perhaps because
endowments can be hidden and consumed away from the market, one also needs a
warehouse system, along with a procedure for deterring defaulters.

9.1 Production

It would be routine to allow each agent to choose production activities at any combi-
nation of the following three stages:

1. before supplies are deposited in the warehouse;
2. after supplies have been deposited in the warehouse, but before demands are with-

drawn;
3. after demands have been withdrawn.

It should also be routine to allow the warehouse deposits to be used as inputs in a
production process that generates new outputs available for withdrawal. That would
allow a system of local warehouses, between which goods can be transported at some
cost.

9.2 Other possible extensions

Much bigger challenges are posed by:

– Financialmarkets, of even the simplest kind, in a two-period riskless economywith
a pure credit market. Any such financial market poses the problem of enforcing
promises to repay loans which cannot be secured by warehouse deposits, because
some second-period commodities may not even exist in the first period. Using
durable goods as collateral for loans can help alleviate these moral hazard issues,
but cannot obviate them entirely.

– Labour markets, where unless employers and employees trust each other to some
extent, it seems difficult to ensure subgame perfect strategyproofnesswithout some
form of coercive contract enforcement.

– Public goods financed by taxation, aggregate non-convexities in production, insur-
ance markets with adverse selection, etc.
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Appendix 1: Probability in Polish spaces

Polish spaces

Definition 3 A topological space (U,U ) is:

1. separable just in case U is the closure in U of a countable subset of U ;
2. metrizable just in case there is a metric d : U ×U → R+ such thatU is generated

by the family Bε(u) := {v ∈ U | d(v, u) < ε} of open balls, as u varies over U
and ε varies over positive reals.

3. completely metrizable if it is metrizable by a metric which makes the space U
complete in the sense that each Cauchy sequence converges.7

A space is Polish just in case it is separable and completely metrizable.

It is easy to check that the topological product (U1 × U2,U1 ⊗ U2) of two Polish
spaces (U1,U1) and (U2,U2) is also Polish.

The Glivenko–Cantelli theorem

Let (U, d) be any separable metric space, and let α be any probability measure on its
Borel σ -algebra. Let αN denote the infinite product measure on the collection UN of
countably many copies of (U, d), equipped with its product σ -algebra.

For each infinite sequence uN = (uk)k∈N ∈ UN and for each n ∈ N, let

αn(uN) := 1

n

n∑

k=1

δuk (80)

7 An infinite sequence uN = (un)n∈N of points un ∈ U is a Cauchy sequence just in case, for each ε > 0,
there exists nε ∈ N such that, whenever both m > nε and n > nε , then one has d(um , un) < ε.
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denote the empirical measure on U which is generated by {u1, u2, . . . , un}—i.e. the
first n elements of uN. The Glivenko–Cantelli theorem can be stated as follows:

Theorem 1 Let (U, d) be any separable metric space, and α be any probability mea-
sure on its Borel σ -algebra. Then, for αN-a.e. uN ∈ UN, the empirical measure αn(uN)

defined by (80) converges weakly to α.

Following Parthasarathy (1967), whose work builds on that of Varadarajan (1958),
the theorem can be seen as the implication of two prior results. First, for every Borel set
B ⊆ U , apply the (strong) law of large numbers to the random variables defined by the
indicator functionU � u �→ 1B(u) ∈ {0, 1}. It implies that there exists an exceptional
set NB ⊂ UN of sequences uN such that αN(NB) = 0 and, unless uN ∈ NB , one has

αn(uN)(B) = 1

n

n∑

k=1

1B(uk) → α(B) (81)

Second, because the metric space (U, d) is separable, there is a countable collection
vN = {vk}k∈N of points vk ∈ U such that the Borel σ -algebra of (U, d) is generated
by the countable collection

B(vN) :=
⋃

{Br (v
k) | (k, r) ∈ N × Q+}

of open balls Br (v
k) as k varies over N and the radius r varies over the set Q+ of

positive rational numbers. For each (k, r) ∈ N × Q+, let Nkr denote the exceptional
set of sequences uN with the property that αn(uN)(Br (v

k)) �→ α(Br (v
k)) as n → ∞.

It follows that αn(uN)(B) → α(B) for all Borel sets B ∈ B(vN) simultaneously
except when uN belongs to the αN-null set ∪k∈N ∪r∈Q+ Nkr . It can then be shown
that this convergence of measures on the countable collection B(vN) implies weak
convergence.

Stochastic transitions

Starting in Sect. 5.4, the paper considersmany spaces such asMλ(L; T ), defined as the
set of all probability measures τ on the product measurable space (L × T,B(L × T ))

whose marginal measure margL τ on L equals the fixed measure λ—i.e. τ(K × T ) =
λ(K ) for every Borel set K ⊆ L

For every Borel set B ⊆ L × T and every � ∈ L , let B� denote the section
{t ∈ T | (�, t) ∈ B} of B.

Definition 4 A stochastic transition or measure disintegration of a probability mea-
sure τ ∈ M (L × T ), which is also a regular conditional probability measure, is
defined uniquely for λ-a.e. � ∈ L as a measurable mapping L � � �→ τ� ∈ M (T )

that, for every Borel set B ⊆ L × T , satisfies

τ(B) =
∫

L
τ�(B�) λ(d�) (82)
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Given any Borel set K ⊆ L , applying (82) to the Borel set K ×T gives τ(K ×T ) =∫

L τ�((K × T )�) λ(d�). But the sections (K × T )� of the set K × T evidently satisfy
(K × T )� = T in case � ∈ K , but (K × T )� = ∅ in case � /∈ K . This obviously
implies that τ(K × T ) = ∫

K τ�(T ) λ(d�) = λ(K ). Since this is true for all Borel sets
K ⊆ L , one has margL τ = λ.

Conversely, given any fixed Borel set F ⊆ T , consider the function

L � B �→ λF (B) := τ(B × F)

It is easy to see that this defines λF as a Borel measure on L . Moreover,

λF (B) = τ(B × F) ≤ τ(B × T ) = λ(B)

for all Borel sets B ⊆ L , and so λ(B) = 0 �⇒ λF (B) = 0. It follows that themeasure
λF is absolutely continuous w.r.t. the measure λ. So there exists a Radon–Nikodym
derivative in the form of a Borel measurable mapping L � � �→ EF (�) with the
property that τ(B × F) = λF (B) = ∫

B EF (�) λ(d�) for all Borel B ⊆ L .
Consider now the σ -algebraL ⊗{∅, T } formed from the product of the σ -algebra

L on L with the trivial σ -algebra {∅, T } on T . Note that any function L × T �
(�, t) �→ f (�, t) is L ⊗ {∅, T } measurable if and only if there is an L measurable
function L � � �→ g(�) such that f (�, t) = g(�), independent of t , for λ-a.e. � ∈ L .

After taking account of important technical details, it can now be shown that for
each fixed Borel set F ⊆ T , the mapping L � � �→ EF (�) corresponds to a version
of the L ⊗ {∅, T }-measurable mapping

L × T � (�, t) �→ Eτ [1L×F (�, t)|L ⊗ {∅, T }](�, t)

that determines the conditional expectation given this product σ -algebra of the indica-
tor function L × T � (�, t) �→ 1L×F (�, t) ∈ {0, 1} defined by the requirement that its
value is 1 iff (�, t) ∈ L×F , or equivalently, iff t ∈ F . It can nowbe shown that for each
fixed �, the mapping F �→ EF (�) is a conditional probability measure P(·|�) on the
Borel subsets of T . Moreover, the mapping � �→ EF (�) can be made L -measurable
for each Borel set F ⊂ T in a way which ensures that τ(B) = ∫

L EB�
(�) λ(d�) for all

Borel B ⊂ L×T . This implies that themapping L×T � (�, F) �→ EF (�) is a version
of a stochastic transition L × T � (�, F) �→ τ�(F) := EF (�) that satisfies (82).

Extended probability measures are non-atomic

Suppose that τ ∈ Mλ(L; T ) and let L � � �→ EF (�) be any stochastic transition
satisfying (82). Let B be any Borel subset of L × T for which τ(B) > 0. Define the
set J := {� ∈ L | τ�(B�) > 0}. Then (82) implies that, because τ(B) > 0, one must
haveλ(J ) > 0.Now,wehave assumed that the probabilitymeasureλ is non-atomic. So
there exists ameasurable subset H of J such that 0 < λ(H) < λ(J ). Then the partition
of J into the pairwise disjoint subsets H and J\H induces a corresponding partition of
B into the pairwise disjoint subsets A := (H × T )∩ B and B\A = [(J\H)× T ]∩ B,

123



42 P. J. Hammond

whose respective probabilities satisfy

τ(A) =
∫

H
τ�(B�) λ(d�) > 0 and τ(B\A) =

∫

J\H
τ�(B�) λ(d�) > 0

It follows that 0 < τ(A) < τ(B). This proves that τ , like λ, is non-atomic.

Appendix 2: Regular demands

True Walrasian demands are regular

Let K = G(γ ) ⊆ G denote the trading set. Consider an individual trader with
endowment vector e ∈ R

K+ and so the effective trading set J = {g ∈ K | eg > 0}. Let

P J
K :=

{
p ∈ PK

∣
∣ pJ > 0J

}
(83)

denote the subset of the price simplex in R
K where at least one good g ∈ J has a

positive price. For the effective trading set J , a J -regular net demand correspondence
was defined in Sect. 6.2 as a multifunction P0

K � p �→→ Z(p;Z) ⊂ R
K satisfying:

(i) [budget exhaustion] p z = 0 for all p ∈ P0
K and all z ∈ Z(p;Z).

(ii) [feasibility]: z � −(ē J , 0K\J ) for all p ∈ P0
K and for all z ∈ Z(p;Z).

(iii) [continuity]: The correspondence Z has a graph

ΓZ := {(p, z) ∈ P0
K × R

K | z ∈ Z(p;Z)} (84)

which is a relatively closed subset of P0
K × R

K .
(iv) [boundary condition]: If the infinite sequence (pn, zn)n∈N in ΓZ is such that pn

converges to a point p̄ on the boundary of P J
K , then the sum

∑
g∈K zn

g → +∞.

Lemma 1 Let e ∈ R
K be any endowment vector satisfying e � ē, let J := {g ∈

K | eg > 0} denote the associated endowment set, and let � be the restriction
to R

K × {0G\K } of any preference ordering on R
G+ that is continuous and strictly

monotone. Define the extended Walrasian budget correspondence

P J
K � p �→→ B J (p; e) := {z ∈ R

K | z � −e and p z ≤ 0} (85)

along with the extended Walrasian net demand correspondence

P J
K � p �→→ Z J (p; e) := {z ∈ B J (p; e) z̃ � z �⇒ p z̃ > 0} (86)

with graph
Γ J := {(p, z) ∈ P J

K × R
K | z ∈ Z J (p; e)} (87)

Then:

1. Z J (p; e) = ∅ if p ∈ bd PK = PK \P0
K ;
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2. Γ J is a relatively closed subset of P J
K × R

K ;
3. the restrictionZ of p �→→ Z J (p; e) to the subdomain P0

K is a J -regular net demand
correspondence.

Proof (i) If z ∈ B J (p; e) with p z < 0, then there exists z̃ � z satisfying p z̃ < 0.
Monotonicity implies that z̃ � z, and so z /∈ Z J (p; e). The contrapositive implies
the budget exhaustion condition requiring that p z = 0 for every z ∈ Z J (p; e).

(ii) The feasibility condition is an obvious implication of (86).
(iii) Suppose that (pn, zn)n∈N is a sequence of points in Γ J which converges to a

limit ( p̄, z̄) with p̄ ∈ P J
K . Then the definitions (86) and (85) evidently imply

that z̄ ∈ B J ( p̄; e). Also, because of the budget exhaustion property (i) that we
have already demonstrated, one has pn zn = 0 for all n ∈ N. Taking the limits
as n → ∞, it follows that p̄ z̄ = 0.
Consider any net trade vector z̃ � −e satisfying z̃ � z̄. For any scalar γ ∈ (0, 1),
define the convex combination

zγ := γ z̃ + (1 − γ )(−e) (88)

Continuity of preferences now implies that: (a) there exists a scalar γ ∈ (0, 1)
such that zγ � z̄; (b) zγ � zn for all large n ∈ N. Because (pn, zn) ∈ Γ J for
all n ∈ N, combining the definition (86) with budget exhaustion implies that
pn zγ > 0 = pn zn for all large n ∈ N. Taking the limit as n → ∞ implies
that p̄ zγ ≥ 0 = p̄ z̄. By hypothesis, one has eJ � 0J and p̄ ∈ P J

K , implying
that p̄ J > 0J and so p̄ J eJ > 0. Because in addition p̄ z̄ = 0, it follows that
p̄(z̄ + e) > 0 and also, because of the definition (88), that

γ p̄(z̃ − z̄) = p̄[zγ − (1 − γ )(−e) − γ z̄] ≥ (1 − γ ) p̄(z̄ + e) > 0

Hence p̄ z̃ > 0.
Finally, since this argument holds for every z̃ � z̄, definition (86) implies that
z̄ ∈ Z J ( p̄; e). This proves that Γ J is a relatively closed subset of P J

K ×R
K , and

also that ΓZ defined by (84) is a relatively closed subset of P0
K × R

K .
(iv) Suppose that (pn, zn)n∈N is any sequence of points in Γ J with the property

that (pn)n∈N converges to a limit p̄ on the boundary of P J
K . Then p̄g = 0

for at least one good g ∈ K . Hence, strict monotonicity of preferences
implies that Z J ( p̄; e) = ∅. Because the graph Γ J of the correspondence
P J

K � p �→→ Z J (p; e) is a relatively closed subset of P J
K × R

K , it follows
that the sequence (zn)n∈N cannot have any limit point. In particular, it can have
no convergent subsequence, and so

∑
g∈K |zn,g| → ∞ as n → ∞. Because

zn � −e for all n ∈ N, it follows that
∑

g∈K zn,g → +∞ as n → ∞. ��

The space of regular net demand correspondences

This section of the appendix uses the abbreviation AB to indicate the frequent page
references to the book by Aliprantis and Border (1999).
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Let (RK ,T ) denote the finite-dimensional Euclidean space R
K with its Euclid-

ean metric topologyT . We give an alternative characterization of regular net demand
correspondences using the standardmathematical concept of the one-point compactifi-
cation of (RK ,T )—seeAB, p. 56. This is defined as the topological space (RK∞,T∞)

where:

1. the set R
K∞ := R

K ∪ {∞} is defined by appending to the Euclidean space R
K one

extra “point at infinity” denoted by ∞;
2. the topology T∞ is made up of the topology T of R

K , together with the comple-
ment R

K∞\V of each compact subset V ⊂ R
K .

Note that each compact subset of (RK ,T ) remains a compact subset of (RK∞,T∞).
Note too that (RK ,T ) is locally compact, in the sense that every point of R

K has a
compact neighbourhood. It is also separable—i.e. the closure of a countable subset,
such as the set Q

K of all points with rational coordinates. It follows (AB, Corollary
3.33, p. 88) that (RK∞,T∞) is metrizable. Let d∞ denote any metric. Then (RK∞, d∞)

is a compact metric space.
We now give the price simplex P ⊂ R

K the Euclidean metric dP of R
K , and we

give the Cartesian product P × R
K∞ the sup metric defined by

d((p, z), ( p̃, z̃)) := max{dP (p, p̃), d∞(z, z̃)}

This makes (P × R
K∞, d) a compact separable metric space.

Following (36), let Z K denote the set of all net demand correspondences P0
K �

p �→→ Z(p) ⊂ R
K that are J -regular for some J ⊆ K . We identify each correspon-

dence Z ∈ Z K with the closure Γ̄Z in the metric space (PK × R
K∞, d) of its graph

ΓZ ⊂ P0
K × R

K . Because of the boundary condition (iv), this closure is easily seen to
be

Γ̄Z = ΓZ ∪ (bd PK × {∞})

This identification establishes an injection Z �→ ΓZ from the set Z K into the space
K (PK ×R

K∞) of compact subsets of the metric space (PK ×R
K∞, d). Giving the latter

space its Hausdorff metric d H makes (K (P × R
K∞, d H ) a Polish space (AB, p. 111).

Then we can define the metric dZ onZ K so that the distance dZ (Z′,Z′′) between any
pair of regular demand correspondences Z′,Z′′ ∈ Z K equals the Hausdorff distance
d H (Γ̄Z′ , Γ̄Z′′) between the closures of their respective graphs. This constructionmakes
(Z K , dZ ) a Polish space.

Appendix 3: Existence of an equilibrium price

Here we prove existence of a market clearing equilibrium in a continuum economy
when there is a well-defined measure over the set of regular net demand correspon-
dences. The proof involves extending the arguments of, for example, Hammond (2011,
Section 11, pp. 114–121) from Walrasian demand correspondences to general upper
hemi-continuous demand correspondences that satisfy the Walrasian budget con-
straint, without necessarily corresponding to any preference–endowment pair. That
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proof in turn uses key ideas from Yamazaki (1978, 1981) and Khan and Yamazaki
(1981).

A sequence of restricted price domains

Let 1K := (1, 1, . . . , 1) denote the vector in R
K whose components all equal 1. For

each k ∈ N, define the non-empty price domain

Pk
K := {p ∈ PK | pg ≥ 1/(#K + k) (all g ∈ K )} (89)

This is a closed subset of the relative interior P0
K of the price simplex P . Initially k

will be treated as fixed. Later, k will be allowed to go to infinity in order to prove that
a Walrasian equilibrium exists.

As in (25) of Sect. 5.3, assume there is a uniform upper bound ē ∈ R
K++ on traders’

endowment vectors e ∈ R
K+ . For each k ∈ N and p ∈ P0

K , define the maximal budget
set

B̄(p) := {z ∈ R
K | z � −ē and p z ≤ 0} (90)

Then B̄(p) has the property that the budget set of any trader with endowment e ∈ E
satisfies

B(p; e) := {z ∈ R
K | z � −e and p z ≤ 0} ⊂ B̄(p) (91)

Note that for any z ∈ B̄(p) and any good g ∈ K , one has

− pg ēg ≤ pg zg ≤ −
∑

h∈G\{g}
ph zh ≤

∑

h∈G\{g}
ph ēh (92)

Define the scalar ω := maxg∈K {ēg}. Because each p ∈ P0
K is normalized to satisfy

∑
g∈K pg = 1, Eq. (92) implies that any net trade vector z ∈ B̄(p) must satisfy

pg zg ≤
∑

h∈K\{g}
ph ēh ≤

∑

h∈K

ph ēh ≤
∑

h∈K

ph ω = ω

and so zg ≤ ω/pg for all g ∈ K . Whenever p ∈ Pk
K , and so pg ≥ 1/(#K + k)

by definition (89), it follows that zg ≤ ω(#K + k) for all g ∈ K . Hence, any z ∈
∪p∈Pk

K
B(p; e) must belong to the bounded convex set

B̄k := {z ∈ R
K | z � −ē and z � ω(#K + k)1K } (93)

So must any z ∈ ∪p∈Pk
K

Z(p;Z), therefore, for any demand correspondence Z which

is regular because, by the definition given in (36), it belongs to the domain Z K =
∪J⊆KZ

K
J .

To conclude, regularity of the demand correspondenceZ implies that p �→→ Z(p;Z)

restricted to the domain Pk
K ⊂ P0

K defined by (89) has a graph ΓZ which is a closed
subset of the compact set Pk

K × B̄k , where B̄k is defined by (93).
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A convergent sequence of restricted fixed points

Given the fixed probability measure ζ ∈ M ∗
γ describing the distribution of regular

demand correspondences, define for each k ∈ N and associated restricted price domain
Pk

K the restricted mean excess demand correspondence

Pk
K � p �→→ Fk(p) :=

∫

L×2K ×Z K
Z(p;Z) ζ(d� × dJ × dZ) ⊂ R

K (94)

The integral on the right-hand side of (94) exists and is non-empty because for any
price vector p ∈ Pk

K and any regular demand correspondence Z ∈ Z , the demand
set Z(p;Z) is a non-empty closed subset of the fixed compact set B̄k . Indeed, by
Hildenbrand (1974, p. 73, Prop. 7), the integral is a compact subset ofR

K , and actually
Fk(p) ⊆ B̄k for all p ∈ Pk

K . It follows from Hildenbrand (1974, p. 73, Prop. 8) that
the graph of p �→→ Fk(p) restricted to Pk

K is also a closed subset of Pk
K × B̄k .

Because margL ζ = λ and the measure λ is non-atomic, so is each distribution ζ ∈
M ∗

γ . It follows that each restricted mean excess demand correspondence p �→→ Fk(p)

is convex-valued.
Next, for each k = 1, 2, . . ., consider the two correspondences

B̄k � z �→→φk(z) := argmaxp{p z | p ∈ Pk
K } ⊆ Pk

K

and
Pk

K × B̄k � (p, z) �→→ ψk(p, z) := φk(z) × Fk(p) ⊂ Pk
K × B̄k (95)

The correspondencedefinedby (95) has non-empty convexvalues throughout a domain
Pk

K × B̄k which is the Cartesian product of two convex sets, so convex. The graph of
ψk is the set

Γψk = {(p, z, p′, z′) ∈ Pk
K × B̄k × Pk

K × B̄k | z′ ∈ Fk(p) and p′ ∈ φk(z)}

This set is easily seen to be the Cartesian product

Γφk × ΓFk ={(z, p′) ∈ B̄k × Pk
K | p′ ∈ φk(z)} × {(p, z′) ∈ Pk

K × B̄k | z′ ∈ Fk(p)}

of the graph of φk with the graph of Fk , and so compact as the Cartesian product of two
compact sets. Hence, the conditions for Kakutani’s theorem to hold all apply. For each
k = 1, 2, . . ., therefore, the correspondence defined by (95) has a fixed point, which
we denote by (pk, mk) ∈ Pk

K × B̄k . This fixed point satisfies (pk, mk) ∈ ψk(pk, zk)

and so pk ∈ φk(zk), mk ∈ Fk(pk).
Note how, for all p ∈ Pk

K , the definition of φk , the budget exhaustion property of
regular demand correspondences implies that

p mk ≤ pk mk = 0 (96)
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Then, because the vector (#K )−1(1, 1, . . . , 1) ∈ Pk
K for all k ∈ N, this result and

regularity of all the demand correspondences Z ∈ Z together imply that

mk ∈ M :=
⎧
⎨

⎩
m ∈ R

K
∣
∣
∣
∣ m � −ē and

1

#K

∑

g∈K

mkg ≤ 0

⎫
⎬

⎭

Now, because each fixed point of the sequence (pk, mk)∞k=1 lies in the compact subset
P × M of R

K × R
K , there must be a convergent subsequence. Retaining only the

terms of this subsequence, we can assume that the sequence (pk, mk)k∈N converges
to some limit pair ( p̂, m̂) ∈ P × M .

Next, note that any p ∈ P0
K satisfies p ∈ Pk

K for all large k, so by (96) the convergent
sequence (pk, mk)k∈N of fixed points in P × M must satisfy p mk ≤ pk mk = 0 for
all k ∈ N. Taking limits as k → ∞ yields p m̂ ≤ 0 for all p ∈ P0

K , and so

m̂ � 0 (97)

Positive prices

Suppose ( p̃k)k∈N is an arbitrary infinite sequence of price vectors satisfying p̃k ∈ Pk
K

for each k ∈ N which converges to a limit p̃ on the boundary of P . Let (m̃k)k∈N be
an associated sequence of mean net demand vectors satisfying m̃k ∈ Fk( p̃k) for each
k ∈ N. Then for each k ∈ N, the definition (94) implies that there is an integrable
selection

L × T � (�, t) �→ z̃�
tk ∈ Z( p̃k;Z�,t

tk )

from the values of the traders’ demand correspondences at the price vector p̃k such
that

m̃k =
∫

L×2K ×Z K
z̃�

tk ζ(d� × dJ × dZ) (98)

Butwehave constructed the commodity space K in order tomake themean endowment
vectorEτ [e] = ∫

L×T e τ(d�×dt) strictly positive. Soobviously p̃ (Eτ e) = Eτ [ p̃ e] >

0. It follows that there is a subset V ⊆ L × T such that τ(V ) > 0 and p̃ e > 0 for
all (�, θ, e) ∈ V . Now, the net demand correspondence Z�,t of each trader with label
� ∈ L and type t = (θ, e) ∈ T is J (e)-regular, where J (e) = {g ∈ K | eg > 0}.
So the boundary condition for a J (e)-regular net demand correspondence implies that
for all (�, θ, e) ∈ V one has

∑

g∈K

z̃�
tkg → +∞ as k → ∞ (99)
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But regularity also requires that z̃�
tk � −ē for all (�, t) ∈ L × T , so (98) implies that

∑

g∈K

m̃kg ≥ [1 − ζ(V )]
∑

g∈K

(−ēg) +
∫

V

⎛

⎝
∑

g∈K

z̃�
tkg

⎞

⎠ ζ(d� × dJ × dZ)

But then (99) evidently implies that

∑

g∈K

m̃kg → +∞ as k → ∞ (100)

Now, the argument of the previous paragraphs leads to the conclusion (100) for any
sequence ( p̃k)k∈N of price vectors satisfying p̃k ∈ Pk

K for each k ∈ Nwhich converges
to a limit p̃ on the boundary of P . So (97) implies that, given the convergent sequence
(pk, mk)k∈N of fixed points in P × M , the associated sequence (pk)k∈N of price
vectors cannot converge to the boundary of P . Hence the limit price vector p̂ must
satisfy p̂ ∈ P0

K .

Market clearing

We have just proved that, after choosing a subsequence if necessary, the sequence
(pk, mk)k∈N of fixed points converges to some pair ( p̂, m̂) ∈ P × R

K with

p̂ ∈ P0
K and m̂ � 0 (101)

But (96) implies that pk mk = 0 for each k ∈ N, so p̂ m̂ = 0 in the limit as k → ∞.
Because (101) implies that m̂ cannot have any positive components, so m̂ = 0.

Finally, therefore, we can conclude that 0 ∈ ∫

L×2K ×Z K Z( p̂;Z) ζ(d�× dJ × dZ),
as required for p̂ to be a Walrasian equilibrium price vector.

Existence of Walrasian equilibrium

Section 6 considers a spot market system where traders’ endowments are observable.
We have just concluded the proof that, for each ζ ∈ M ∗

γ , there is an equilibrium

price vector p(ζ ) ∈ P0
K along with an integrable equilibrium allocation function

L × 2K × Z K � (�, J,Z) �→ z�(J,Z; ζ ) satisfying the requirements of Sect. 6.3.
This confirms that player 0 can carry out Step 9 in the extensive form game set out in
Sect. 8.1.

Finally, Sect. 7.6 considers a spot market demand revelation mechanism after each
trader described by an observable pair (�, J,Z) ∈ L×Z has supplied to thewarehouse
a vector y ∈ R

K satisfying y � e ∧ ȳ�(J,Z; ζ ), where ȳ�(J,Z; ζ ) is the mandated
supply vector. In effect, each trader’s endowment vector has become y instead of e.

Introducing the second-stage net trade vector z+ := x+−y+ with y+ fixed converts
the second-stage budget constraintq x+ ≤ q y+ set out in (58) of Sect. 7.5 to the simple
constraint q z+ ≤ 0 of a pure exchange economywith a trivial wealth distribution rule.
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It also converts the feasibility constraint x+ � 0 to z+ � −y+, as in an exchange
economy where y+ is the initial endowment vector. Thus, our existence proof applies
to this economy also.
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