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Abstract This paper develops a general equilibrium framework to study the role of
preference structure (additive, multiplicative and a convex combination of the two)
in connecting consumption, health investment, stock of health and capital, and their
effects on the wage rate and on productivity. We show that the elasticities of health
production, health investment and health cost determine jointly how health influences
the wage rate.We examine the steady state and the equilibrium dynamics of themodel.
In the case of additive preferences, the existence of equilibrium and the stability of
the dynamic system require that the ratio of the elasticities of the cost of health and
health investment is greater than the elasticity of the production function of health.
Health stock can have either positive or negative effects on wages via a mechanism of
reservation wages. When preferences are multiplicative, the condition of the existence
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of equilibrium and the stability of the dynamic system reverse, and the effect of health
stock on wages is always positive. Longevity is a decreasing convex–concave function
of the elasticity of inter-temporal substitution of health. We also compare the relative
behavior of opportunity costs of health under preference structure.

Keywords Consumption · Health investment · Wage · Longevity ·
Opportunity costs

JEL Classification C61 · C62 · I15 · E21

1 Introduction

There is a widely established consensus on the causal relation between health and
longevity in the sense that better health conditions extend longevity. Some studieswere
even interested in the challenges of studying the conditions of a long healthy life, for
a long life will often go hand in hand with a decline in health (Kirkwood 2008). This
consensus crumbleswhen it comes to the link between health and productivity or health
and economic growth. This relationship has been the subject of heated debate since the
publication of the study by Acemoglu and Johnson (2007), where the authors casted
serious doubts on the fact that better health would lead to faster growth per capita.
Acemoglu and Johnson (2007) underlined that empirical studies that showed a sizable
positive effect of health on individual productivity have not resolved the question
of whether health differences are the cause of observed large differences in income
since these studies do not incorporate general equilibrium effects. The most important
general equilibrium effect comes from diminishing returns of work per effective unit.
This is, for example, the case when physical capital is supplied inelastically. Indeed, in
the presence of diminishing returns, estimations based on microdata overestimate the
benefits of aggregated productivity due to improved health, especiallywhen improving
health comes with increased population. Acemoglu and Johnson (2007) showed that
the increase in life expectancy associated with the increase in population may have
a negative effect on income per capita for the working age population. This result
is confirmed in particular for countries that have experienced high life expectancy,
leading to a kind of puzzle.

Following the study of Acemoglu and Johnson (2007), other authors such as Ashraf
et al. (2008) raised the same question.1 These authors used a simulation-based model
that incorporates both micro- and macrocomponents and takes into account the direct
effect of health on worker productivity. Contrary to the popular belief, they found a
very moderate effect of improving health on income per capita. Ashraf et al. (2008)
concluded that the rationale for health policies should then rely on humanitarian rea-
sons rather than economic ones. The specific econometric questions underlying the
debate are very well explained in Strittmater and Sunde (2013).2

1 See also Weil (2007, 2014).
2 See Acemoglu and Johnson (2014) and Bloom et al. (2014) to follow up the debate.
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This paper develops a theoretical framework to contribute to the debate by elaborat-
ing in depth on the structure of preferences. How would improving health status affect
consumption, wage income and productivity? Depending on the answer, the impact on
growth could be sizeable or small. This study aims at providing a theoretical answer
to this question by showing that the adopted preferences do matter. To the best of our
knowledge, the existing literature has not yet investigated the role of preferences in
this regard.

Indeed, from the AIDS empirical literature (e.g., Bloom and Mahal 1997a, b; Cud-
dington and Hancok 1994), we know that consumption and health are interconnected,
but we cannot make conclusions about the net effect of health investment.3 Indeed,
it seems analytically difficult to slice on the net effect of a high health deterioration
rate and low health productivity on health investment as not all diseases have the same
effects. From a theoretical perspective, in the Grossman’s (1972) standard model,
health is considered as capital stock that increases with investment. Agents’ prefer-
ences are separable in health and ordinary consumption. As a result, the returns from
these two goods are independent. However, evidences stressed the fact that ordinary
consumption is also crucial for health. Moreover, one of the main economic impli-
cations of health shock is a probable and significant distortion in savings behavior.
Chakraborty (2004) considered the problem of public investment in health within the
framework of overlapping generation models. The author showed that in poor coun-
tries where life expectancy is low, individuals are more likely to discount the future
and thus are less inclined to save. Cuddington and Hancok (1994) also stated that
health expenditure induces a decrease in savings at the expense of capital accumula-
tion. However, this is questionable due to the fact that health expenditure is harmful
to consumption. Therefore, there is an overriding issue as to how to deal with savings
in the context of health depreciation.

Our study contributes to the literature in several aspects. Firstly, we adopt a more
general setup by considering both separable and non-separable preferences (additive,
multiplicative and a convex combination of the two) in consumption and health, mean-
ing in the latter case consumption is also crucial for health. Second, we investigate
the effects of health status on the subsequent life cycle, in particular on productivity,
wage income and consumption in a general equilibrium setting. In order to have a
better picture of the life cycle aspect of the issue, we also include a final good sector
where productivity depends on the health stock. Thirdly, we characterize the analytical
solutions of the optimization problem to study the equilibrium dynamics.

We find that the picture is quite sophisticated, depending on the assumed prefer-
ences. For simplification, we consider in a first step, lifetime of individuals as infinite.
However, this facet of our approach is closely related to the framework of Grossman
(1972) and Ehrlich and Chuma (1990) that health capital is still a determinant of life-
time utility. Relying on this setting, we connect three factors: health production, health
investment and health costs.We show that the elasticities of these three variables deter-
mine jointly how health affects labor and hence productivity. The framework allows
us to relate the evolution of wage rate with respect to health status, the transmission

3 See also Corrigan et al. (2005) and McDonald and Roberts (2006).
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channel between wage rate and health being labor productivity. It also enables us to
study longevity as well as the opportunity cost of health investment.

The additive andmultiplicative nature of preferences should be related to exogeneity
versus endogeneity of health in marginal changes of welfare with respect to consump-
tion. Relying on Grossman (1972), several empirical studies (Grossman and Benham
1974; Lee 1982; Haveman et al. 1994; Cai 2009) showed that taking into account the
endogeneity of health significantly changes the results.4 These studies estimated the
simultaneous effects of health and wages in a structural framework, but the findings
remain mixed. While Grossman and Benham (1974) and Haveman et al. (1994) found
that taking into account the endogeneity of health increases the estimated effect of
health on wages, Lee (1982) showed that controlling for endogeneity reduces this
effect. The study of Cai (2009) supports the results of Grossman and Benham (1974)
and Haveman et al. (1994) showing that the exogeneity of health leads to an underes-
timation of the effect thereof on wages. Therefore, the structure of preferences is a key
factor in modeling the effects of health on wages. In our study, additive preferences
imply exogeneity of health in marginal changes of welfare relative to consumption,
whereas multiplicative preferences imply endogeneity of it. Exogeneity means that
the change in welfare following that of consumption is independent of the level of
health.

When preferences are additively separable, the existence of equilibrium and the
stability of the dynamic system require that the ratio of the elasticities of the cost of
health and health investment is greater than the elasticity of the production function
of health. The stock of health can have either positive or negative effects on the wage
rate. This finding provides further clarification on the relationship between reservation
wages and health. To our knowledge, few studies established this link (Gordon and
Blinder 1980; Brown et al. 2009). Most studies have focused on how reservation
wages influence the length of employment (Lancaster and Chesher 1983; Blackaby
et al. 2007). However, there are reasons to believe that health is a determinant of
reservation wages. Indeed, unhealthy people are entitled to higher reservation wages
due to the disutility of labor that stems from their health status. We show that if the
reservation wage is less than the market wage, the effect of health on wages is positive.
If the reservation wage is higher than the market wage, the effect of health on wages
becomes negative. This finding provides a general theoretical support to the empirical
evidence of Gordon and Blinder (1980). Indeed, as these authors, we obtain that health
has a positive effect on the reservation wage. However, while the results of Gordon
and Blinder (1980) suggest that the effect of health on the market wage is negative, we
theoretically show that this effect can be positive or negative depending on whether
the reservation wage is less or higher than the market wage.

When the preferences are multiplicative, the condition reverses—the ratio of the
elasticities of the cost of health and health investment should be lower than the elas-
ticity of the production function of health. Moreover, the effect of health stock on
wage rate is always positive. In the case of convex combination of additive and multi-
plicative preferences, the equilibrium dynamic of the stock of health and investment

4 Endogeneity of health may follow from unobserved factors such as preferences that affect both health
and wages. It can also be a result of reverse causality running from wages to health.
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in health is obtained as a function of time for which we observe an exponential decay.
However, the solution of the dynamic system is not analytically tractable. The struc-
ture of preferences determines the shape and existence of longevity with respect to the
elasticity of substitution of health. Lastly, we establish the conditions for comparing
the opportunity cost of health under preference structures.

In this paper, we abstract away from the pure literature on infectious diseases and
their modes of transmission (see e.g., Boucekkine and Laffargue 2010; Goenka and
Liu 2012; Goenka et al. 2014). It would have been interesting to incorporate this
issue in our dynamic setting to assess the impact of health on variables such as capital
accumulation, consumption andwages.Here,we donotmake any specific assumptions
on the nature of diseases (infectious or not) as well as on their transmission process.
Incorporating these mechanisms in our model will pose additional difficulties that we
leave for future research while focusing on the equally difficult issue of preference
structure.

The remainder of the paper proceeds as follows. Section 2 describes the general
framework including optimality conditions. In Sect. 3, we study the model with sepa-
rable additive preferences, where that health and consumption enter additively into the
utility function. Section 4 is devoted to the model with a multiplicative non-separable
preferenceswhich allows for an interaction between health and consumption. Section 5
considers a framework with a convex combination of the additive and the multiplica-
tive preferences. The penultimate Sect. 6 studies the opportunity costs of investment
in health and derives some policy implications. The last section concludes the study.
Proofs of propositions are relegated to the “Appendix.”

2 Motivational framework

This section introduces a set of generalities of the framework that will be used sub-
sequently. This includes functional hypotheses and optimality conditions that are
required for equilibrium solutions as well separability issues regarding the prefer-
ences. The model is based on infinitely lived consumers where agent’s welfare is
composed of utility derived from consumption goods and health.

2.1 Setting up and assumptions

We assume the following:

Assumption 1 The instantaneous utility function at time z,U (C(z)) : R+ → R+ is
C∞ withUC > 0,U ′

C < 0 and limC(z)→0UC = ∞, whereC(z) denotes consumption
at time z and subscript means derivative with respect to concerned argument hereafter.

Assumption 2 The healthy time function (or amount of healthy time) ϕ(M(z)) :
R+ → R+ isC∞ with ϕM > 0, ϕ′

M < 0, limM(z)→0 ϕM < ∞ and limM(z)→∞ ϕM =
0, where M(z) denotes the stock of health capital.

Assumption 3 The health production function ψ(m(z)) : R+ → R+ is C∞ with
ψm > 0, ψ ′

m < 0, limm(z)→0 ψm < ∞ and limm(z)→∞ ψm = 0, where m(z) denotes
the health investment.
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Assumption 4 The production function F(K (z), L(z)) : R2+ → R+ is C∞. More-
over,

(i) F1 > 0, F11 < 0, F2 > 0, F22 < 0, F12 = F21 > 0 and F11F22 − F12F21 > 0
where the place of the subscripts {1, 2} refers to the derivatives of the function
with respect to the first and second arguments, namely K and L .

(ii) limK (z)→0 F1 = ∞ and limK (z)→∞ F1 = 0
(iii) F(0, L(z)) = F(K (z), 0) = 0.

Assumptions 1–4 are optimality conditions. They guarantee convexities of the opti-
mization problem. The specific functional forms that will be used subsequently fulfill
these postulates. Consistent with Ehrlich and Chuma (1990), we consider that the
stock of health capital can be maintained or increased through purposive investments
m(z). However, health is submitted to a natural biological deterioration at the rate
δM . Thus, in contrary to Ehrlich and Chuma (1990), we assume a constant rate of
health depreciation. However, the greater the health that one intends to maintain in
later years, the earlier one must initiate significant investments in counteracting the
depreciation of health. Let ρ denote the time preference or discount rate. Individuals
maximize lifetime utility, subject to the state variables. The general framework is stated
as:

max
∫ ∞

0
V {S [U (C(z)), ϕ(M(z))] , N [U (C(z)), ϕ(M(z))]} e−ρzdz (1)

subject to the law of motion of non-human assets and health:

Ȧ(z) = r(z)A(z) + w(z)ϕ(M(z)) − C(z) − h(m(z)) (2)

Ṁ(z) = ψ(m(z)) − δMM(z) (3)

where r(z) and w(z) are the interest and wage rate, respectively, and h(m(z))
denotes the cost of investment in health. The functions S[U (C(z)), ϕ(M(z))] and
N [U (C(z)), ϕ(M(z))] denote the additive and non-additive components of the felic-
ity V (S, N ), respectively. Subsequently, three different versions of V (S, N ), namely
separable, multiplicative and a convex combination of the two, will be studied. In all
these cases, the utility function U (C(z)) and health function ϕ(M(z)) will be taken
as the constant relative risk aversion (CRRA) representation. We will also consider, in
“Appendix 3,” examples of alternative preferences forU (C(z)) and ϕ(M(z)), namely
the logarithmic and the quadratic.

From the production side, we consider a representative firm with Cobb–Douglas
technology for the function F with the refinement that productivity depends on health
deep parameters. Moreover, we assume productivity in this sector as a function of the
health stock.5 This leads to Y (z) = B(M(z))F(K , L) where, Y (z), K (z) and L(z)
are, respectively, the output, capital and labor, while B(M(z)) is the productivity as a
function of the health stock M . Let the effective labor supply beN (z) = γ (M)L(z).
The fraction γ (M) shall depend on the level of health, L(z) being the total labor

5 We thank two anonymous referees for suggesting the incorporation of productivity into the final sector
as a function of the health stock and their suggestion to study the effect of health not only on felicity but
also on labor supply and wage income.
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input and γ (M) is an increasing function. As productivity depends on the stock of
health, B(M(z)) = a(z)γ (M)1−ε with 0 < ε < 1 and a(z) represents the technical
progress which corresponds also to the global productivity. For the limit conditions
of B(M), the minimum level of health is assumed M = Mmin ≥ 0. Furthermore,
B(Mmin) = a(z) if one assumes that γ (Mmin) = 1. We also assume that B(∞) =
Mmax (which implies that the productivity cannot increase indefinitely) and BMM ≤ 0.
Let us denote k̂ = K

L the capital–labor ratio. Then, the output per labor is given by

f (k̂) = Y (z)
L(z) = B(M(z))k̂(z)ε .

2.2 Optimality

Individuals maximize lifetime utility as stated in Eq. (1), subject to the state variables
Ȧ(z) and Ṁ(z) in Eqs. (2) and (3), respectively. The Hamiltonian of this optimal
control problem is given by:

H(C,m, M, A, λA, λM ) = V {S [U (C(z)), ϕ(M(z))] , N [U (C(z)), ϕ(M(z))]} e−ρz

+ λA [r(z)A(z) + w(z)ϕ(M(z))− C(z)−h(m(z))] e−ρz

+ λM [ψ(m(z)) − δMM(z)] e−ρz (4)

The optimality conditions (where, to ease notations, the argument z is removed
when it is not necessary) associated with this problem are given as:

∂H

∂C(z)
= e−ρz (−λA +UCVN NU +UCSUVS) = 0 (5a)

∂H

∂m(z)
= −e−ρzλAhm + e−ρzλMψm = 0 (5b)

∂H

∂M(z)
= e−ρz (−δMλM + ϕM

(
wλM + NϕVN + SϕVS

))

= e−ρz (ρλM − λ̇M
)

(5c)

∂H

∂A(z)
= e−ρz (rλA) = e−ρz (ρλA − λ̇A

)
(5d)

with the associated transversality conditions:

lim
z→∞ λA(z)e−ρz A(z) = 0 (6a)

lim
z→∞ λM (z)e−ρzM(z) = 0 (6b)

The functions λA(z) and λM (z) are the costates, and subscripts indicate the first
derivatives of functions w.r.t. mentioned arguments. The general dynamic system is
given by:

Ċ(z)

C(z)
= − (r − ρ)(VN NU + SUVS) − Ψ1Ṁ(z)ϕM

Ψ2

UC

C(z)
(7a)
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528 T. T. Azomahou et al.

ṁ(z)

m(z)
= − Φ

UC (VN Nϕ + SUVS)
(
ψmh′

m − hmψ ′
m

) ψm

m(z)
(7b)

Ṁ(z)

M(z)
= ψ(m(z))

M
− δM (7c)

k̇

k
= B(M)k̂ε−1 − Ĉ

k
− m̂

k
− δ (7d)

where δ ≥ 0 is the capital depreciation rate and w is the wage rate, and:

Ψ1 = VSSUϕ + VN NUϕ + Nϕ

(
VϕϕNU + SUVSN

)+ Sϕ

(
NϕVSN + SUVSS

)
Ψ2 = U ′

C (VN NU + SUVS)

+U 2
C

(
VϕϕN

2
U + 2SU NUVSN + VSSUU + VN NUU + S2UVSS

)

Φ = UC
(
VN Nϕ + SUVS

)
[wϕMψm − (δM + r)hm] + ϕMψm

(
NϕVN + SϕVS

)

Our objective consists in finding the optimal trajectories of the model key variables:
consumption, investment in health, health stock and capital. Given Assumptions 1–4,
our optimization program allows to get these optimal variables. It is worth noticing
that it would have been interesting to incorporate infectious diseases and their modes
of transmission in our dynamic setting to assess the impact of health on variables such
as capital accumulation, consumption and wages. Indeed, it is interesting to know
how health deterioration may affect the existence of solutions to the maximization of
welfare. As well documented in Goenka and Liu (2012) and Goenka et al. (2014), if
this damage was done by infectious diseases, then a problem of non-convexity arises
and one needs to check existence conditions for optimal solutions.6

Goenka and Liu (2012) and Goenka et al. (2014) discussed the optimal investment
in health, in the light of the interaction between the transmission of diseases and the
economy. If diseases affect the labor market, health investment choices also affect the
transmission of diseases. Health expenditures lead to the accumulation of health cap-
ital and thus reduce the spread of diseases and improve convalescence and recovery
from illness. However, the non-convexity of the dynamics of infection implies that one
should be careful in implementing the optimal control techniques. Indeed, to charac-
terize optimal solutions, the first-order conditions (and the transversality conditions)
of theHamiltonianmay be necessary but not sufficient. Then, theremay be jump issues
of state and co-state variables within the feasible set, whereas the existence of optimal
solutions relies on compactness of the set and absolute continuity of the state variables.
In this study, as stated earlier, we do notmake specific assumptions on the nature of dis-
eases (infectious or not) as well as their transmission mechanism. Incorporating these
mechanisms in our model will imply extra difficulties that we leave for future research
while focussing on the equally difficult separability issue in preference structure.

6 We are very much grateful to a referee who pointed out to clarify the potential non-convexity issues in the
study. Indeed, Goenka and Liu (2012) and Goenka et al. (2014) showed that given the internal propagation
mechanism of infectious diseases, there are non-convexities in the transmission process which make the
optimization problem subtle.
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Some general remarks can bemade before addressing the calculation of optimal tra-
jectories. Firstly, Eq. (5a) gives the expected evolution of optimal consumption which
can be disentangled into Ċ(z) = C1(z)+C2(z), with C1(z) = −(r−ρ)(VN NU+SU VS)UC

Ψ2

and C2(z) = Ψ1UC Ṁ(z)ϕM
Ψ2

. The term C1(z) denotes the Fisher conditions binding the
slope of consumption trajectory to the difference between the time preference and
interest rates. The term C2(z) reflects the interaction between the stock of health and
consumption. When time increases, the stock of health shall move toward its mini-
mum level, and the marginal loss of healthy time ϕM (M(z)) will reach its maximum,
thereby reducing consumption.

Secondly, the opportunity cost of health stock (or unit cost) can be retrieved from
Eq. (5b) as λM

λA
= g(z). At equilibrium, the instantaneous user cost of health stock

is equal to the instantaneous marginal benefit from one-unit increase in the stock of
health. The optimal health investment is determined by the intersection between the
curves representing these two elements. We have not chosen an explicit specification
for the cost function, but we can still derive some information from the expression of
the opportunity cost of health, based on co-state variables. Thus, it can be shown from
Eq. (5c) that

g(M(z))

(
δM + r − ġ(z)

g(z)

)
= ϕM

[
w + 1

λA(0)

(
NϕVN + SϕVS

)
e(ρ−r)z

]
(8)

The left-hand side of this equality stands for the user cost of health capital, the
form of which as can be seen is comparable to that of physical capital in the theory of
investment. It is also termed “marginal efficiency of capital” (Grossman 1972). The
right-hand side is the effect on the utility of an increase in the stock of health. Thus,
the user cost of health capital should be equal to the instantaneous marginal benefit
of an increase in the stock of health. The relations (Eq. 8) can be transformed into a
differential equation, say g(t), which after solving, shows that the opportunity cost is
proportional to:

g(M(z))

=
∫ ∞

z

[
ϕM (M(x))

(
w + 1

λA(0)

(
NϕVN + SϕVS

)
e(ρ−r)x

)]
e−(δM+r)(x−z)dx

(9)

This expression gives the present value of the benefits of health stock available on
the remaining life. We will use the opportunity cost later on in the penultimate section
for policy purposes. In the next section, we address the case where the expression of
V is specified to have a separable term and study the steady state and equilibrium
dynamics of the model.

3 Additively separable preferences

The interaction between health and the ways it affects felicity has been so far investi-
gatedwithin additive structure of preferences (Hall and Jones 2007). As a result, health
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status and consumption are additively separable functions. The additivity of prefer-
ences implies exogeneity of health, meaning that the marginal utility of consumption
is independent of health status. In terms of the optimality conditions in the previous
section, exogeneity means ∂2V

∂ϕ∂U = 0 or VSSUϕ = 0. While adopting this approach in
this section, let us remember that we add a final good sector to better understand the
life cycle aspect of the agent’s behavior. In that case, the welfare function V turns to
take the form:

V {S [U (C(z)), ϕ(M(z))] , N [U (C(z)), ϕ(M(z))]} = S [U (C(z)), ϕ(M(z))]

= U (C(z)) + ϕ(M(z)) (10)

We shall also resort to the constant relative risk aversion (CRRA) felicity function,
which has the following functional forms forU (C(z)) and ϕ(M(z)), and a decreasing
return in health investment for function ψ(m(z)):

U (C(z)) = C(z)1−σ1

1 − σ1
and ϕ(M(z)) = M(z)1−σ2

1 − σ2
(11)

h(m(z)) = πm(z)α and ψ(m(z)) = bmβ (12)

with σ1 < 1, σ2 < 1, b > 0, β > 0, π > 0 and 0 < α < 1. Here σ1 is the inverse of
elasticity of substitution between consumption at any twopoints in time, andσ2 denotes
the same for health capital.U (C(z)) and ϕ(M(z)) are strictly increasing and concave,
respectively, in C(z) and M(z).ψ(m(z)) represents the health investments function,
which is concave in m(z), reflecting the assumed diminishing returns in health invest-
ment. π is the productivity or efficiency of health investment. Increased healthcare
productivity not only shifts the health production function upward, but also causes each
unit of health care to have a larger contribution to health as well. Ehrlich and Chuma
(1990) also assumed that consumers choose death when the stock of capital M(z) is
under a certain minimal level Mmin. All these functions fulfill Assumptions 1–3.

3.1 Steady state

The first-order conditions with respect to C(z) and A(z) from the Hamiltonian (4)
yield the traditional Euler equations. One can see that Eqs. (7a) and (7b) turn to be,
respectively:

Ċ(z)

C(z)
= 0 ⇐⇒ (r − ρ)SUVS − [VSSUϕ + SϕSUVSS

]
Ṁ(z)ϕM = 0 (13)

and
ṁ(z)

m(z)
= 0 ⇐⇒ UCSU [wϕMψm − (δM + r) hm] + ϕMψmSϕ = 0 (14)

Thus, Eq. (13) defines a differential equation in M(t) which allows us to find
the value M∗(t) at equilibrium. The latter can then be introduced into (14) to find
consumption equilibrium C∗(t) given that the stock of health and investment are
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linked by the relation (7c). More specifically, using Eqs. (11) and (12), we obtain the
demand-side system:

Ċ

C
= r − ρ

σ1
(15a)

ṁ

m
= −ϕMψ2

m +UC [(r − ρ)hmψm + ((δM + ρ)hm − wϕMψm)]ψm

UCm
(
ψmh′

m − hm
)
ψ ′
m

(15b)

Ṁ

M
= bmβ

M
− δM (15c)

Proceedingwith the final good sector, remember that f (k̂) = Y (z)
L(z) = B(M(z))k̂(z)ε .

Then, the maximization of the profit function under perfect competition allows to
equalize the marginal cost of each factor with its marginal benefit. Therefore,

r(z) = εB(M(z))k̂(z)ε−1 − δ (16)

w(z) = f
(
k̂(z)
)

− k̂(z) f ′ (k̂(z)) = (1 − ε)B(M(z))k̂(z)ε (17)

Combining the demand and the supply sides, we can now characterize the equilib-
rium of the economy. We can write

˙̂k(z) = B(M(z))k̂(z)ε − Ĉ(z) − m̂(z) − (δ + n) k̂(z) (18)

where Ĉ(z) and m̂(z) are, respectively, the consumption and health expenditure per
labor and n is the population growth rate. Therefore, the dynamics of the economy
can be summarized by the following non-trivial four-dimensional system:

˙̂C(z)

Ĉ(z)
= r(z) − ρ

σ1
(19a)

˙̂m(z)

m̂(z)
= δM + r

α − β
− bβ (w + Cσ1) M−σ2mβ−α

πα(α − β)
(19b)

˙̂M(z) = bmβ − δM M̂(z) (19c)
˙̂k(z) = B(M(z))k̂(z)ε − Ĉ(z) − m̂(z) − δk̂(z) (19d)

including k̂(0) and M̂(0) as given and in addition the transversality conditions. The

steady-state values of Ĉ, m̂, M̂ and k̂ are obtained by equalizing ˙̂C, ˙̂m,
˙̂M,

˙̂k to zero.
We obtain:

Ĉ = w

1 − ε

(
1 − ε

r + δ

)
−
(

δM

b

) 1
β

M̂
1
β (20a)

m̂ =
(

δM

b

) 1
β

M̂
1
β (20b)
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M̂σ2−1+ α
β =

b
(

b
δM

)−σ2
β

π (δM + r) α

[
w+
(

w

1 − ε

(
1− ε

r + δ

)
−
(

δM

b

) 1
β

M̂
1
β

)σ1]
(20c)

k̂ = B(M)
1

1−ε

(
δ + ρ

ε

) 1
ε−1

(20d)

The following proposition characterizes the solution of the system.

Proposition 1 There is a unique solution to Eq. (20c).

Proof See “Appendix 1.”

The next proposition states the comparative statics of the model as regard the effect
of health stock on the wage rate. It also states the conditions of existence for the
equilibrium and the stability of the dynamic system.

Proposition 2 The effect of health stock on the wage rate is positive provided that
α ≥ β(1 − σ2) and α > β. Moreover, there exists a minimum wage rate w0 from
which the stock of health impacts positively on the wage rate.

Proof See “Appendix 1.”

The condition in Proposition 2 means that the ratio of the elasticities of the cost of
health and health investment is greater than the elasticity of the production function
of health. In addition, for the stock of health to have a positive effect on the wage
rate, it is necessary that the wage rate remains higher than a minimum level w0. We
seek for conditions under which the minimum level w0 can be determined. Relying
on Eq. (42, see “Appendix 1”), settingWN ≥ 0 andWD > 0 is equivalent to writing,
respectively, w ≥ f1(M) and w > f2(M) where

f1(M) = (r + δ)(1 − ε)

r + δ − ε

⎡
⎢⎢⎢⎣
(

δM

b

) 1
β

M
1
β

+

⎛
⎜⎜⎝
(

b
δM

)σ2( δM
b

)− 1
β
M

−1+α−β+βσ2
β π(δM + r)α(β − α − βσ2)

bβσ1

⎞
⎟⎟⎠

1
−1+σ1

⎤
⎥⎥⎥⎦

f2(M) = (r + δ)(1 − ε)

r + δ − ε

[(
σ1

ε − r − δ

(ε − 1)(r + δ)

) 1
1−σ1 +

(
δM

b

) 1
β

M
1
β

]

Figure 1 shows the curves f1(M) and f2(M). The dashed curve from the origin
becomes a solid line from M0, while the solid curve from w0 becomes a dashed line
from M0. We have:
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w, f1, f2

M0

f2(M )

∂w
∂M > 0

w0

∂w
∂M < 0

f1(M )

Fig. 1 Domains of wage rate

M0 =

⎡
⎢⎢⎣

r+δ−ε
(1−ε)(r+δ)

(
b

δM

) 1
β
+σ2

π(δM + r)α (α − β + βσ2)

bβ

⎤
⎥⎥⎦

β
1−α+β−βσ2

(21)

w0 = (r + δ)(1 − ε)

r + δ − ε

[
σ1

r + δ − ε

(1 − ε)(r + δ)

] 1
1−σ1

(22)

In fact, the influence of the stock of health on the wage rate is positive in the area
bounded by the y-axis and the solid curve, given that the minimum ordinate is w0.
This domain is sup( f1, f2)(M). It is therefore possible that the stock of health has a
negative effect on the wage rate and this finding is more related to the specification of
the welfare function. Indeed, in the case of additive preferences, we find that SUϕ and
VSS from Eq. (13) vanish. As a result, the solution M∗(z) is derived from Eq. (14).
Relying on Eq. (7b), the expression of the wage rate is obtained as:

w(M∗(z)) = (δM + r) hm
[
m∗(z)

]
ϕM [M∗(z)]ψm [m∗(z)]

− Sϕ

[
M∗(z)

]
UC [C∗(z)] SU [C∗(z)]

(23)

where the variables m∗(z) and C∗(z) are expressed in function of M∗(z).
In our framework, w0 can be interpreted as the minimum of reservation wages

for all possible levels of health. It is therefore a minimum level w0 corresponding to
the minimum of market wages from which the influence of health on the wages is
positive. This depends on the capital factor through the interest rate r . Indeed, the
derivative of w0 with respect to r is positive. This implies that when capital becomes
more expensive (the relative price of capital increases), labor demand from firms
will increase by substitution effect. These new job opportunities can lead workers to
update up their reservation wages, which leads to an increase in w0. As a result, if the
reservation wage is less than the market wage, the effect of health on wages is positive.
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If the reservation wage is higher than the market wage, the effect of health on wages
becomes negative.

Our finding also fills two gaps in the literature. The first is the absence of a compre-
hensive approach, which shows the role of health in a flexible theoretical framework,
without introducing morbidity constraints or constraints related to demographic pres-
sures of the population. Hence, our general equilibrium approach can show that the
economic effects of health, measured through the wage rate (and therefore productiv-
ity), may be positive, but only under certain conditions, especially related to quality
of health and costs of health investments. The second gap is the evidence of nega-
tive effects of health on the economic sphere. Acemoglu and Johnson (2007) showed
empirically that the effects of health (measured by longevity) on growth of GDP per
capita can be negative. We provide a theoretical basis to this finding. Intuitively, a high
stock of health may well have a negative effect on the wage rate if economic growth
(and hence the distribution of income) is reduced due to aging population, for example,
or because of high opportunity cost of health spending which harms economic sectors.
This is also possible if improved health leads to a reduction in capital per capita and
thus lower levels of income per capita.

3.2 Phase diagrams

Let us now study the equilibrium dynamics of the system with phase diagrams. To this
end, we express the variables in units of physical capital by setting: c = C

k ,m = m
k

and M = M
k . It follows that the variables follow the system:

ċ

c
= r − ρ

σ1
− r + δ(1 − ε)

ε
+ c + m (24a)

ṁ

m
= δM + r

α − β
− bβ (w + kσ1cσ1) M̄−σ2mβ−αkβ−α−σ2

πα(α − β)

−r + δ(1 − ε)

ε
+ c + m (24b)

Ṁ

M
= bmβkβ−1

M
− δM − r + δ(1 − ε)

ε
+ c + m (24c)

The condition in Proposition 2 also ensures the existence and uniqueness of the
steady state and guarantees the stability. Relying on the implicit behavior of m̄ and
values of parameters, we prove below that this leads to the existence and uniqueness
of the solution. We are now interested in the changes in the equilibrium, when some
health parameters are modified. We propose a geometrical representation by drawing
the phase diagrams associated with the system (24a)–(24c). The diagrams are plotted
on different planes while fixing each of the variables. Lemma 1 elaborates on the phase
diagrams in Figs. 2, 3 and 4.

Lemma 1 We have:

(i) For m̄ fixed, the curve ċ = 0 is a horizontal line and the locus ˙̄M = 0 is an
increasing and concave function. Moreover, we have limM̄→∞ c = b2 for b2
given.
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(ii) For c fixed, the curve ˙̄M = 0 monotonically increases and the locus ˙̄m = 0 is a
decreasing and convex function with limm̄→0 M̄ = 0 and limm̄→b− M̄ = ∞.

(iii) For M̄ fixed, the curve ċ = 0 is a decreasing straight line and the locus ˙̄m = 0 is
an increasing function over a real support and it decreases monotonically from
m̄0.

E0

C

b2

b1

a0 a1

˙̄M = 0

M̄

Ċ = 0
E1

Fig. 2 Phase diagram for additive separable preferences, plane (C, M̄)

m̄

M̄
C1 C2

E0

E1

−a −am̄2

Fig. 3 Phase diagram for additive separable preferences, plane (M̄, m̄)

123



536 T. T. Azomahou et al.

C0

E1

E0

m̄0 d0
m̄

C

d0

d1

Fig. 4 Phase diagram for additive separable preferences, plane (C, m̄)

Fixing m̄ = m̄0 leads to the phase diagram onto the plane (c, M̄) (see Fig. 2).
We have two curves. The first one (ċ = 0) is independent of the stock of health. An
increase in the rate of health depreciation (δM ) implies a shift of the second curve

( ˙̄M) toward the left. This curve is increasing with both consumption and health. The
shift induces a decrease in health from the steady state E0 to a new one, E1, where
consumption remains constant.

The second phase diagram in Fig. 3 is plotted onto the plane (m̄, M̄) by fixing c.
The two curves are increasing with the variables m̄ and M̄ , but the stock of health
grows faster than the flow of investment. An increasing rate of health depreciation
leads to a high reduction in the stock of health which is not fully compensated by the
investment. So the two curves shift to the left toward the steady state E1.

Fixing M̄ gives the third diagram in Fig. 4 on the plane (c, m̄). Relying on the
equation (ċ = 0), there is a linear relation between the flow of investment and con-
sumption. The stable manifold is in the zones on the left-hand side of E0 above the
curve and the right-hand side of E0 below the curve.Within these two zones, the trajec-
tories converge to the steady-state values. An increase in δM generates a higher level
of investment flows. Moreover, a crowding effect appears and consumption jumps
backward from the first steady state E0 to the second one, E1.

4 Multiplicative preferences

In the previous section, consumption and health enter into the utility function in an
additive way. As a result, the marginal utility of consumption is independent from
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health, which reflects a strong limitation as consumption is also crucial for health.
The alternative model in this section seeks to account for this important aspect. Mul-
tiplicative preferences imply endogeneity of health meaning that the marginal utility
of consumption depends on health status. In terms of the optimality conditions, endo-
geneity means VN NUϕ > 0. The welfare function V now takes the form:

V {S [U (C(z)), ϕ(M(z))] , N [U (C(z)), ϕ(M(z))]} = N [U (C(z)), ϕ(M(z))]

= U (C(z))ϕ(M(z)) (25)

In order to be able to consistently compare the results, we use the same CRRA
felicity functional forms forU (C(z)) and ϕ(M(z)) as in Eq. (11), as well as the same
health functions h(m(z)) and ψ(m(z)) as in Eq. (12). The description of final sector
is the same. Given this new setup, we can study the steady state and equilibrium
dynamics of the non-separable multiplicative preferences model.

4.1 Steady state

Here, Eqs. (7a) and (7b) turn to be (respectively):

Ċ(z)

C(z)
= 0 ⇐⇒ (r − ρ)VN NU − [VN NUϕ + NϕNUVϕϕ

]
Ṁ(z)ϕM = 0 (26)

and
ṁ(z)

m(z)
= 0 ⇐⇒ UC [wϕMψm − (δM + r) hm] + ϕMψm = 0 (27)

As previously stated, Eq. (26) defines a differential equation in M(t) which allows
us to find the value M∗(t) at equilibrium. The latter can then be plugged into (27) to
retrieve equilibrium consumption C∗(t), thanks to relation (7c). The dynamics of the
economy at equilibrium is driven by the following system:

˙̂C(z)

Ĉ(z)
= (r − ρ)M(z) + (δMM(z) − bm(z)β

)
(σ2 − 1)

M(z)σ1
˙̂m(z)

m̂(z)
= 1

πα(α − β)(1 + σ1)M(z)1+σ2

[
π (δM + r) αM(z)1+σ2 (1 + σ1)

− bβm(z)β−α
(
wM(z)(1 + σ1) + C(z)M(z)σ2

)
(1 + σ2)

]

˙̂M(z) = −δM + bmβ

m(z)
˙̂kz = B(M(z))k̂(z)

ε − Ĉ(z) − m̂(z) − δk̂(z)

(28)
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with k̂(0) and M̂(0) given, plus the transversality conditions. The steady-state values

of Ĉ, m̂, M̂ and k̂ are obtained by equalizing ˙̂C, ˙̂m,
˙̂M and ˙̂k to zero. Doing so gives:

Ĉ = w

1 − ε

(
1 − ε

r + δ

)
−
(

δM

b

) 1
β

M̂
1
β (29a)

m̂ =
(

δM

b

) 1
β

M̂
1
β (29b)

M̂σ2+ α
β
−1 = bβ

π (δM + r) α

(
δM

b

) β−α
β

[
w +
(

w(2(r + δ) − δε)

(r + δ)(1 − ε)
−
(

δMM

b

) 1
β

)
M̂σ2−1 σ2 − 1

σ1 − 1

]
(29c)

k̂ = B(M)
1

1−ε

(
δ + ρ

ε

) 1
ε−1

(29d)

The following results hold:

Proposition 3 (i) The dynamic system (29a)–(29d) admits a stable solution.
(ii) The effect of health stock onwage rate is positive provided thatβ(1−σ2) ≤ α < β.

Proof See “Appendix 1.”

To study how the wage rate behaves in this case, one can rely on Eq. (29c). Solving
the latter with respect to wage leads to:

w(M) =

(
δM
b

) α
β
M−1+σ2π (δM + r) α

⎛
⎝M α

β + δM

(
δM
b

)− α
β
(

δMM
b

) 1
β

β(−1+σ2)

π(δM+r)α(−1+σ1)

⎞
⎠

δMβ
(
1 + M−1+σ2 (2r+2δ−δε)(−1+σ2)

(r+δ)(1−ε)(−1+σ1)

)
(30)

which is fully expressed in terms of M . Here, one can check w(M) is an increasing
function of M (see “Appendix 1,” proof of Proposition 3).

As we can see from Propositions 2 and 3, the conditions for the wage rate to be
positively related to health stock are different. Both cases share a common condition,
which is α ≥ β(1− σ2). However, whereas in the additive case one needs in addition
α > β, themultiplicative preference requiresα < β leading to the inequality condition
in Proposition 3. The latter states that the ratio of the elasticities of the cost of health
and health investment must be lower than the elasticity of the production function of
health. The stock of health has throughout a positive effect on the wage rate. Compared
to the additive preference, we no longer have the domain of negative effect of stock
of health on the wage rate which was displayed in Fig. 1. Formally, this result clearly
follows from the structure of preferences. However, from an economic and empirical
perspective, how could one explain this change in wage rate with respect to preference
structure.
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In the case of additive preferences, health status and consumption are additively
separable in the utility function, implying that the marginal utility of consumption
is independent of health status. This does not fit in, for instance, with the notion
that good nutrition is also important for health. Indeed, healthy eating might lead
to a reduction in mortality from chronic illness, and appropriate dietary advice can
prevent physical and mental deterioration and improve the quality of life. Evidence
from Friis and Michaelsen (1998) supports this rationale. Therefore, consumption is
also crucial for health. The case of multiplicative non-separable preference highlights
the interaction between consumption and health although it is very difficult to slice on
the net effect of a high health deterioration rate and low health productivity on health
investment.

Another way to interpret the common relationship α ≥ β(1 − σ2) between the
Propositions 2 and 3 is to consider the changes in inter-temporal substitution of
health with respect to health investment and the cost of that investment. Indeed,
it appears that the higher the health investment (i.e., β), the lower the elasticity of
substitution. Inter-temporal substitutability of health can become zero if the cost of
investment in health becomes increasingly high. In order to improve substitutabil-
ity of health stock over time, justifying a reduction in inertia of household health
behavior, there must be a combination of two phenomena: a gradual decrease in the
elasticity of health production and a simultaneous increase in the costs of health
investment. This may seem against intuition. However, it should be noted that if
households determine the level of current health stock taking into account its level
in the previous period, this may affect the future marginal utility of health stock.
Indeed, any increase in the level of health of the current period increases the future
marginal utility of health. The effect of inter-temporal substitution between present
and future stocks becomes weak if health habits are persistent. In this case, the rep-
resentative household has to spend much more wealth between the current period
and the future period to improve the stock of future health. And even with a low
rate of health depreciation, the costs of health investments become increasingly
high.

4.2 Phase diagrams

We now elaborate on how the health parameters affect the steady-state values, notably
the health investment variable and the consequences on consumption, capital stock
and savings. To this end, we study the equilibrium dynamics of this economy. Using
the same variable definitions as above, the dynamic system is computed as:

ċ

c
= −(r − ρ)M + (−1 + σ2)

(−δMM + bmβk−β+1
)

−σ1M
− r + δ(1 − ε)

ε
+ c + m

ṁ

m
= cσ1m1−αMσ2k−σ2+α−1

((
bm−1+βM−σ2kσ2−β+1

(
c1−σ1

−1 + σ1
+ wc−σ1

(
M1−σ2kσ2−1

−1 + σ2

))
+ π(−δM − r)αc−σ1m−1+αk1−α
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(
M1−σ2kσ2−1

−1 + σ2

))
(−1 + σ2)

)/(
πα(α − β)

((
−Mk−1

)))

− r + δ(1 − ε)

ε
+ c + m

Ṁ

M
= bmβkβ+1

M
− δM − r + δ(1 − ε)

ε
+ c + m (31)

Here again, we turn to the analysis of the changes in equilibrium when some health
parameters are modified. Lemma 2 documents on the phase diagrams in Figs. 5, 6 and
7 which are associated with the system in Eq. (31).

Lemma 2 We have:

(i) For m̄ fixed, the curve ċ = 0 is a horizontal line and the locus ˙̄M = 0 is an
increasing and concave function, with limM̄→∞ c = a′ for a′ given.

(ii) For c fixed, the curves ˙̄m = 0 and ˙̄M = 0 are convex and monotonically increas-
ing with limm̄→a M̄ = ∞ and limm̄→a′ M̄ = ∞ for a and a′ given.

(iii) For M̄ fixed, the curve ċ = 0 is decreasing, and the locus ˙̄m = 0 is an increasing
function up to m̄1 from which it monotonically decreases.

We fix m̄ and get the diagram in Fig. 5 onto the plane (c, M̄). As for the additive
case, the curve ċ = 0 does not depend on the stock of health M̄ . The consumption
depends though only on the flow of investment and on the rate of health depreciation.

The curve ˙̄M = 0 is concave and increases with both variables. Starting from the
steady state E0, an increase in δM shifts upward the level of consumption, leading to
the final equilibrium point E1. The depreciation of health reduces the stock of health,

M̄

C

C1

E0

E1

M̄1M̄00

C0

Fig. 5 Phase diagram for multiplicative non-separable preferences, plane (C, M̄)
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m̄

M̄
C1 C2

E0

E1

−a −am̄2

Fig. 6 Phase diagram for multiplicative non-separable preferences, plane (M̄, m̄)

m̄

C

C2

C1

C0

m̄1

E0

E1

Fig. 7 Phase diagram for multiplicative non-separable preferences, plane (C, m̄)

but this reduction is mote than offset by the shift of consumption. The result is a net
increase in health.

The second phase diagram (Fig. 6) is plotted onto the plane (m̄, M̄) by fixing c.
The two curves are increasing with the variables m̄ and M̄ , but the stock of health
grows faster than the flow of investment. An increasing rate of health depreciation
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leads to a high reduction in the stock of health which is not fully compensated for by
the investment. So the two curves shift to the left to yield the steady state E1.

The third diagram (Fig. 7) is obtained onto the (c, m̄) plane by fixing M̄ . There
is a linear relation between c and m̄ that gives the monotonically decreasing curve.
An increase in the depreciation rate shifts upward the consumption and the flow of
investment in health on the curve ċ = 0. We have the same upward shift in the curve
˙̄m = 0. The final steady state is reached at E1 where both variables increase.
Let us discuss insights from the equilibrium dynamics considering the effects of

parameters in the different models and taking into account the dynamics of transition.
We assume that the economy is on balanced growth path when a parameter varies, and
analyze the adjustments to the new equilibrium path. Let us take the example of the
phase diagram where we consider a variation in the rate of depreciation of health δM .
Fixing m̄, the phase diagrams are obtained on the plane (ċ, Ṁ) of Figs. 2 and 5wherein
there are two curves for both the additive and multiplicative cases. In both cases, the
ċ = 0 curves are independent of the stock of health. The curves M = 0 are concave
and growwith both variables. In the case of the separable utility, an increase in the rate
of impairment of health implies a movement of the second curve (Ṁ = 0) to the left.
This induces a reduction in the stock of health by the move from the stable equilibrium
E0 to a new equilibrium E1 where consumption remains constant. Conversely, in the
multiplicative case, starting from the steady state E0, an increase in δM shifts up the
level of consumption, leading to the end point of equilibrium E1. Impairment of health
reduces the stock of health, but this decrease is more than offset by the increase in
consumption. The result is a net increase in the stock of health.

Fixing c̄ gives Figs. 3 and 6 on the (ṁ, Ṁ) plane that relate the stock of health to
health investment. For the additive as well as for the multiplicative case, the curve
(Ṁ = 0) increases, but the health stock increases faster than investment flows. When
impairment of health increases, this implies a lower level of health stock. The curve
ṁ = 0 moves to the left. But the flow of investment increases, which means that the
final steady state is reached when the curve Ṁ = 0 shifts to the right. The final state
of equilibrium point is E1 where the stock of health is lower than the first equilibrium
point E0.

Fixing M̄ produces Figs. 4 and 7 in the (ċ, ṁ) plane. For the additive case, start-
ing from the equation (ċ = 0), we see that there always exists a linear relationship
between the flow of health investments and consumption. The trajectories converge to
equilibrium from the areas of stability for values on the left of E0. An increase in δM
generates a high level of investment flows. In addition, a crowding out effect appears
and consumption declines from E0 to E1. For the multiplicative case, the equilibrium
is reached at point E1 where both variables increase simultaneously.

5 Convex combination of preferences

In this section, we combine both cases in a general framework. Indeed, in between
purely additive and multiplicative preferences, there might be a range of choices
depending on parameter link that may drive agents’ behavior. The welfare function V
now takes the form:
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V (·) = sU (C(z))ϕ(M(z)) + (1 − s) [U (C(z)) + ϕ(M(z))] (32)

and s is a parameter link such that 0 ≤ s ≤ 1. If s = 1, then the individual preference
becomes additive and, for s = 0, it is multiplicative.

The dynamic system is then obtained by solving Eqs. (7a)–(7d). The optimization
Eqs. (5a)–(5d) provide sufficient conditions for maximizing welfare because of the
concavity of the utility function, the production of health and health investment. The
Hamiltonian is a concave function of the state variables and control variables. The
following result holds:

Proposition 4 The equilibrium values of health stock are located on a trajectory
which is time dependent and given by the relation:

M̂(z, s) =
[
θ0(s) + θ1e

−z(r−ρ)
] 1
1−σ2 (33)

with θ0(s) = −s 1−σ2
1−s and θ1 = λ̄(1 − σ2) where λ̄ is an integration constant.

Proof See “Appendix 1.”

Proposition 4 is interesting as it shows that the balance of health variables M̂ and
m̂ can be expressed as a function of time, regardless of other real variables such as
consumption and capital per capita. However, as Eqs. (7a)–(7d) of the general system
establish the links between the variables in the model, the equilibrium expression of
these variables can be recovered. But this approach is analytically complicated, if
not impossible. Moreover, as we have documented in “Appendix 2,” studying analyt-
ically the equilibrium dynamics of the model in the case of convex combination of
preferences is unbearable.

The expression of health investment at equilibrium, m̂(z), is then obtained:

m̂(z) =
(

δM

b

) 1
β [

θ0(s) + θ1e
−z(r−ρ)

] 1
β(1−σ2)

(34)

Relying on Eq. (7b) and using Sϕ[M∗(z)] = (1− s)ϕM [M∗(z)] and SU [C∗(z)] =
(1 − s)UC [C∗(z)], the expression of wage rate is obtained:

w(M∗(z)) = (δM + r) hm
[
m∗(z)

]
ϕM [M∗(z)]ψm [m∗(z)]

− ϕM
[
M∗(z)

]
U 2
C [C∗(z)]

(35)

where M∗(z) and m∗(z) are replaced by their expressions.
Figure 8 shows the evolution of the stock of health and health investment. The

curves depart from an initial value at time z = 0 given by the expressions M̂(0, s) and
m̂(0, s) as described below. As in the model of Ehrlich and Chuma (1990), M̂ and m̂
are decreasing and each tends to its minimum.

Furthermore, Proposition 4 allows us to study the limit behavior of stock and
investment in health. We can distinguish two cases: (i) infinite horizon (z → ∞)

123



544 T. T. Azomahou et al.

m(s, z)

M (s, z)

z

M (s, 0)

m,M

m(s, 0)

mmin(s)

Mmin(s)

Fig. 8 Evolution of stock of health and health investment

and (ii) finite horizon (z → T ). In the first case, taking the limit of Eqs. (33)

and (34), we obtain, respectively: limz→∞ M̂(z, s) = M̂(∞, s) = [θ0(s)]
1

1−σ2 and

limz→∞ m̂(z, s) = m̂(∞, s) =
(

δM
b

) 1
β [θ0(s)]

1
β(1−σ2) . For z = 0, we have M̂(0, s) =

[θ0(s) + λ̄(1 − σ2)]
1

1−σ2 and m̂(0, s) =
(

δM
b

) 1
β [θ0(s) + λ̄(1 − σ2)]

1
β(1−σ2) . Infinite

horizon also implies high health deterioration meaning that health will tend to

its minimum. It follows that M̂min(∞, s) = [θ0(s)]
1

1−σ2 and m̂min(∞, s) =(
δM
b

) 1
β [θ0(s)]

1
β(1−σ2) .

The case of finite horizon is of particular interest because it provides the expression
of the time limit for the stock of health to be low, and that life ends at some T (·, s).
We have:

lim
z→T

M̂(z, s) = M̂(T, s) =
[
θ0(s) + λ̄(1 − σ2)e

−T (r−ρ)
] 1
1−σ2 (36)

When T is reached, health reaches its minimum given by Eq. (36). Figure 9 displays
the graph for that case. M̂(T, s) decreases and reaches its minimum at horizon T (s).

An interesting theoretical issue is what would be the value of time horizon T , if
the minimum level of health is known. Let us recall our approach to better understand
the theoretical importance of the finite time horizon. In the model, we looked for the
optimal paths of consumption, capital and health variables for infinite horizon. The
framework of convex combination of preferences leads to purely temporal expression
of health stock and health investment. These variables depend on what we call the
structure parameter or convexity of the model, s. The latter allows us to balance the
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M (z)

z

Mmin(s)

M (s, 0)

T (s)

Fig. 9 Evolution of stock of health in finite horizon

model between the two polar cases: additive and multiplicative welfare functions. The
benefit of having optimal variables that are expressed in terms of time is that one can
identify the limits which in turn depend on the model parameters. Therefore, setting s,
and making assumptions about the minimum value of the stock of health, we can infer
a temporal horizon that represents longevity, i.e., life duration over which health keeps
economic activities ofwork, consumption and investment. Suppose theminimumstock
is not zero. Then, T can be obtained from Eq. (36) for M̂(T, s) = M̂min(s) and be
expressed in terms of other model parameters as:

T = 1

r − ρ
ln

(
λ̄ (1 − σ2)

M̂min(s) − θ0(s)

)
= T0 + 1

r − ρ
ln

(
1 − σ2

M̂min(s) + s 1−σ2
1−s

)
(37)

with T0 = 1
r−ρ

ln λ̄. The study of function T with respect to parameters is interesting
from two points of view. First, this horizon should ideally be the farthest as possible
from zero. Therefore, it is crucial to understand the role of each parameter to achieve
this goal. Secondly, we have not explicitly sought optimal longevity as in Ehrlich and
Chuma (1990). However, our approach leads to a model of optimal lifetime which
generalizes (Ehrlich and Chuma 1990). Indeed, as the authors, we find the same para-
meters that determine life span. In addition, here, life span also depends on the way
welfare is chosen, i.e., parameter s. If we elaborate only on the effect of the parameter
σ2, we have the plot of T in Fig. 10.

Here, σ̄2 = 1− (1−s)
2s M̂min(s), ¯̄σ2 = 1− (1−s)

λ̄(1−s)−s
M̂min(s) and T (σ̄2, s) is given by

Eq. (37) evaluated at σ̄2. Figure 10 also shows interesting aspects of themodeling. First
of all, observe the vertical dotted line that stresses the constraint σ2 < 1. The longevity
T curve shows a convex–concave shape. Indeed, the first portion of the curve which
departs from T (s, 0) decreases convexly to reach the inflection point (T (σ̄2, s), σ̄2)
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T (s, σ2)

1 σ2

T (s, σ̄2)

T (s, 0)

σ̄2
¯̄σ2

Fig. 10 Evolution of longevity

where the curve becomes concave till the point ¯̄σ2. Therefore, longevity is a decreasing
function of the elasticity of inter-temporal substitution of health σ2. We also see that
as long as σ2 < ¯̄σ2, life span is strictly positive. This indicates that there is a maximal
bound for σ2 beyond which the stock of health is minimal. Thus, the choice of σ2 will
impact the longevity modeling. Indeed, if σ2 ∈] ¯̄σ2, 1[, longevity is zero. This means
that the stock of health has no effect on real variables. As a result, there is no longer
life: M̂(z, s) = M̂min(s) = 0 for all z. However, if one chooses σ2 ∈] ¯̄σ2, 1[, it is still
possible to give a positive value to T provided that it is possible to identify the structural
parameter s which gives more weight to either the additive preference (s → 0) or the
multiplicative one (s → 1). For s = 1 (multiplicative), we have σ̄2 = ¯̄σ2 = 1. So
one can choose σ2 in the range [0, 1[ and therefore T > 0. In other words, opting
for multiplicative preferences rules out the problem of existence of T . However, if an
additive preference (s = 0) is chosen, one should care about the issue of existence of T .

Some comments related to Propositions 2–4 are in order. In economic theory, the
effect of health care is often approached indirectly. Indeed, it is straightforward to
measure health inputs and the indirect effects of health on the economy (through
indicators that are positively correlated with good health conditions, such as increased
life expectancy and low morbidity rates). Although the quality of health is not directly
measurable, our model allows us to specify conditions for good health, by connecting
three quantitative factors, namely health production, health investment and health
costs. We have shown that the elasticities (α, β and σ2) of these three variables work
together to define how health status influences labor. The model enables us to link the
evolution of wage rates to health. The transmission belt between the wage rate and
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β(1 − σ2)

β

s = 1

E

s = 0

α > β

α < β

O

α = β

O

E α < β

α > β

α

O

O

Fig. 11 Combination of elasticities

health is labor productivity. As better health conditions enhance human capacities, the
values created in the production process are improved in turn.

Two problems arise: those of causality and indeterminacy. There is a causality
problem because when wage rates become too high, the most productive agents, that
is to say, thosewith highest wages, consumemore andmore goods that improve health.
Thus, causality can pass fromgreater labor productivity to better health, not fromhealth
to productivity. This is typically a reverse causality issue. The indeterminacy arises
with the model specification. Indeed, there are values of the elasticities (α = β) for
which the model may not have equilibrium and the influence of health on the wage
rate becomes indeterminate. This also coincides with the fact that the opportunity
cost of health stock becomes time independent. Figure 11 shows the combination of
parameters α and β that allow our models to have solutions.

The axis OO′′ makes an angle of 45◦ with the axis Oβ. And the combination of
solutions which have the properties of additive and multiplicative cases is delimited
by the bold lines of the trapezium (OO′O ′′O ′′′), once the parameters α and β are set.
This is actually a combination of points belonging to the surfaces of triangles (OO′O ′′
(additive preferences) on the one hand andOO′′O ′′′ (multiplicative preferences) on the
other. These points are on the segmentO ′E ′. However, the intersection point E with the
segmentOO′′ is excluded from the model because it fits the equality condition α = β.

It is worth to notice a recurring problem in the field of health investment. Indeed,
usually the aim is to look for the second best optimum in order to conciliate efficiency
and social equity by proposing an optimal tax system and subsidies. Indeed, according
to neoclassical theory, efficiency is reached when all agents behave competitively, and
optimal allocations are then first best. Equity can be achieved through redistribution
of income between healthy workers, workers whose health stock is low, and investors.
This would have allowed us to disconnect the “final distribution of health stock”
from that resulting from the ex-post prices and elasticities structure of production and
investment. But at this stage of our model, the issue is not that of equity. Our intuition
is that we could have come up with explanations for the difference in results between
the additive and the multiplicative preferences. We leave this for future research.
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6 Opportunity costs of health

In this section, we compare the opportunity costs of health investment under the three
alternative preferences. Such comparison is useful for policy analysis. Indeed, for a
decision maker, it is interesting to know what investment alternative is the most effec-
tive in face of limited resources. Actually, for public policy reasons, the health sector
is in competition with other economic sectors. As a result, the less costly alternative
might be privileged. However, cost is only one input of the decision, as the latter should
also consider the expected benefit from the investment in order to have a full picture
of the decision options. This usually leads to an empirical cost–benefit analysis. Our
objective here is to shed a theoretical light on the cost aspect of that mechanism.

In Sect. 2, we established in Eq. (9) the expression for the opportunity cost in a very
general way. This provides the present value of the benefits of health stock available on
the remaining life. We can derive the analogue of Eq. (9) for each type of preference.
In the additive case, we have:

g1(M(z)) =
∫ ∞

z

[
ϕM (M(x))

(
w(M) + 1

λA(0)

(
SϕVS
)
e(ρ−r)x

)]
e−(δM+r)(x−z)dx

(38)
where the wage rate w is given by Eq. (20c). For multiplicative preference, we have:

g2(M(z)) =
∫ ∞

z

[
ϕM (M(x))

(
w(M) + 1

λA(0)

(
NϕVN

)
e(ρ−r)x

)]
e−(δM+r)(x−z)dx

(39)
where thewage ratew is given by Eq. (30). For the convex combination of preferences,
we have:

g3(M(z))

=
∫ ∞

z

[
ϕM (M(x))

(
w(M) + 1

λA(0)
(sU + (1 − s)) e(ρ−r)x

)]
e−(δM+r)(x−z)dx

(40)

where the wage rate w is given by Eq. (35). The functions or distributions
g1(M(z)), g2(M(z)) and g3(M(z)) for 0 ≤ z ≤ ∞ can be compared using the notion
of stochastic dominance. Define the distributions gi (M(x)) for preference structure
i = 1, 2, 3 (additive, multiplicative and convex combination, respectively) as

gi (M(x)) = ϕM (M(x))

(
wi (M(x)) + 1

λA(0)
Φie

(ρ−r)x
)
e−(δM+r)(x−z) (41)

whereΦ1 = SϕVS, Φ2 = NϕVN andΦ3 = sNϕVN +(1−s)SϕVS . We can then write

gi (M((z)) =
∫ ∞

z
gi (M(x))dx
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implying that gi (M(z)) is the complementary cumulative distribution of M(x). That
is gi (M(z)) = 1−F (M(z)) whereF (M(z)) = ∫ z−∞ gi (M(x))dx is the cumulative
distribution of M(x).

Definition 1 A complementary cumulative distribution (CCD)F is said to first-order
stochastically dominate (FOSD) another distribution G if and only if F (x) ≥ G (x)
for all values of x . A CCDF is said to second-order stochastically dominate (SOSD)
another distribution G if and only if

∫∞
z F (x)dx ≥ ∫∞

z G (x)dx for all z, with a strict
inequality for at least some values of z.

Note that if F and G in Definition 1 were cumulative distributions rather than
CCDs, then the inequalities would reverse. In relation to the expressions of opportunity
costs, gi (M(z)) FOSD g j (M(z)) for i �= j implies that the opportunity cost under
preference structure i is greater than the opportunity cost under preference structure
j for all values of M(z). The following result holds:

Proposition 5 Let the structure of opportunity costs be as in Eqs. (38–40) and let
〈M(x)〉wi denote the expected value of M(x) under wage rate distribution wi (M(x)).

If C(x) ≥ (1 − σ1)
1

1−σ1 for all x, then:

(i) g2(M(z)) FOSD g1(M(z)) whenever w1(M(x)) = w2(M(x)) for all M(x) or
〈M(x)〉w2 ≥ 〈M(x)〉w1 ,

(ii) g2(M(z)) FOSD g3(M(z)) whenever w2(M(x)) = w3(M(x)) for all M(x) or
〈M(x)〉w2 ≥ 〈M(x)〉w3 ,

(iii) g3(M(z)) FOSD g1(M(z)) whenever w1(M(x)) = w3(M(x)) for all M(x) or
〈M(x)〉w3 ≥ 〈M(x)〉w1 .

Proof See “Appendix 1.”

Remark 1 There are two possible ways to determine whether 〈M(x)〉wi ≥ 〈M(x)〉w j

or to establish conditions on the model parameters for the inequality to be true. The
first is to directly solve for the average values 〈M(x)〉wi for all i = 1, 2, 3 and com-
pare the resulting functions. That is, for each i, 〈M(x)〉wi = ∫∞

−∞ M(x)wi (M(x))dx .
The difficultly with this approach is that computing the respective integrals is not
necessarily feasible, specially when the relationship between wi (M(x)) and M(x) is
implicit as it is the case for the additive preferences (see Eq. 20c). Moreover, even
when the integration is feasible, the resulting expressions are too complex for direct
comparison. The second techniquewould be to solve for the value ofM(x) (denoted by
M∗(x)) for whichwi (M(x)) = w j (M(x)). For example, in the case ofw1(M(x)) and
w2(M(x)), M∗(x) can be obtained by solving the steady-state simultaneous equations.
Once M∗(x) is obtained, one could then obtain the derivative (tangent) of wi (M(x))
at M∗(x) for each i . The idea would then be to compare the resulting values, such
that if the derivative ofwi (M(x)) at M∗(x) is greater than the derivative ofw j (M(x))
at M∗(x) then 〈M(x)〉wi ≥ 〈M(x)〉w j . This approach is equally infeasible due to
complexity of each wi (M(x)).

Proposition 5 allows us to study the relative behavior of the opportunity costs for
different types of modeling. Are these costs minimized or exaggerated, if an additive,
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multiplicative or a convex combination of the two is assumed? To answer this question,
we have made assumptions about the wage rates to simplify calculations. We find that
(i) the opportunity cost is higher in themultiplicative model than in the additive model,
(ii) it is higher in themultiplicativemodel than in the convex combinationmodel, (iii) it
is higher in the convex combinationmodel than in the additivemodel. The relationships
described above are also based on the condition that consumption has a lower limit
set defined by the terms of stochastic dominance.

To understand the intuition behind these results, it is worth noticing that in this gen-
eral equilibrium setting in which labor productivity depends on health, any increase in
health investment has an opportunity cost, at least in terms of consumption. Presum-
ably if the inter-temporal substitution of health becomes stronger, it would contradict
the gradual depreciation of the stock of health over time. Thus, substitutability cannot
grow indefinitely, unless it is accompanied by higher investment costs, which explains
the upper limit imposed on the elasticity of inter-temporal substitution.

In terms of policy implication, two contrasting visions appear. First, it is plausible
to assume that opportunity costs (in terms of consumption) of investments in health are
greater in developing countries than in developed countries, although the constraints
on the impact of health on the wage rate appear to be identical for both. The multi-
plicative preferences are therefore more appropriate for developing countries where
the inertia in health behaviors is much higher. Similarly, additive preferences that
consider consumption and health spending as separable in the welfare function seem
more appropriate for developed countries. The dilemma is that in order for health to
have a strong influence on the wage rate and therefore on wage income, it must bear
higher and higher costs of health investment. This calls for a trade-off which is not
always easy for developing countries. A solution for these countries would be first to
implement public policies aimed at facilitating access to low-cost health care. This
implies increased cooperation with developed countries which have advanced social
and health protection systems, while developing social security schemes. Fight against
epidemics is a good illustration.

7 Conclusion

In this study, we develop a general equilibrium framework to study the role of prefer-
ence structure.We connect the stock of health consumption, capital, wage rate, interest
rate and parameters such as time preference and elasticities of inter-temporal substitu-
tion. We have shown that there is a unique value of the stock of health, which ensures
the equilibrium dynamic of the economy, regardless of the form of the welfare func-
tion. We find that there are three parameters that play a crucial role not only for the
existence of the equilibrium values, but also for the effect of health on the wage rate:
the elasticity of substitution of health between two periods, the elasticity of investment
in health and that of the dual cost of this investment relative to investment flows itself.

Themain questionwe addressed is how the stock of health affects thewage rate. The
answer is not straightforward as it might look at first glance. Indeed, if the preferences
are additive, the effect of the stock of health on the wage rate is positive only under
some parameter constraints defined by the optimization problem. We find that there
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is a reservation wages mechanism under play. If the reservation wage is less than
the market wage, the effect of health on wages is positive. If the reservation wage
is higher than the market wage, the effect of health on wages becomes negative.
When the preferences are multiplicative, the effect of health on wages is positive
everywhere.

Several challenges remain to be addressed. Some of them include investigating:
(i) the role for preventive health care along with having the consumer’s wage and
working time dependent on health, (ii) the heterogeneity and population uncertainty
(e.g., young/old, insured/uninsured), (iii) infectious diseases and their modes of trans-
mission in our dynamic setting to study as to how health deterioration may affect
the existence of solutions to the optimization problem as well to assess the impact
of health on variables such as capital accumulation, consumption, wage rates and
productivity.
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Appendix 1: Proofs

Proof of Proposition 1

The proof is quite intuitive. Indeed, let w∗ denote the equilibrium wage rate. The left-
hand side of Eq. (20c) is strictly increasing in M̂ , while the right-hand side is strictly
decreasing, and the latter is equal to zero when

M̂ = b

δM

[
w∗

1 − ε
− (−w∗) 1

σ1 − w∗ε
(r + δ)(1 − ε)

]β

and equals to
b
(

b
δM

)−σ2
β

π(δM+r)α

[
w∗ +

(
w∗
1−ε

(
1 − ε

r+δ

))σ1]
if M̂ = 0, which implies that

there is a unique solution M̂ to Eq. (20c). ��

Proof of Proposition 2

The proof of the first inequality α ≥ β(1 − σ2) results from studying the variation of
w with respect to health stock M . Equation (20c) can be rewritten in terms of output
as:
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f (M) = M̂σ2−1+ α
β −

b
(

b
δM

)−σ2
β

π(δM + r)α

[
w +
(

w

1 − ε

(
1 − ε

r + δ

)
−
(

δM

b

) 1
β

M̂
1
β

)σ1]

Relying on the implicit function theorem, after rearranging the terms of the deriv-
ative below, one gets:

∂w(M)

∂M
= − ∂ f (M)/∂M

∂ f (M)/∂w(M)
= WN

WD
(42)

where

WN =
(

b

δM

)σ2

π(δM + r)α

⎡
⎢⎢⎢⎢⎢⎣

b
(

b
δM

)−σ2
(

δM
b

) 1
β
M−1+ 1

β

(
−
(

δM
b

) 1
β
M

1
β + w

(
1− ε

r+δ

)
1−ε

)−1+σ1

σ1

π(δM + r)α

+ M−2+ α
β
+σ2

(
−1 + α

β
+ σ2

)
⎤
⎥⎥⎥⎥⎥⎦

and

WD = bβ

⎡
⎢⎢⎢⎣1 +

(
1 − ε

r+δ

)(
−
(

δM
b

) 1
β
M

1
β + w(1− ε

r+δ
)

1−ε

)−1+σ1

σ1

1 − ε

⎤
⎥⎥⎥⎦

It follows from WN and WD that the effect of the health stock on the wage rate is
positive if α ≥ β(1− σ2). The proof of the second inequality α > β follows from the
stability of equilibria. We introduce this in the following lemma.

Lemma 3 The dynamic system is stable iff α > β and α ≥ β(1 − σ2).

Proof The proof of this lemma requires studying the determinant of the Jacobian
matrix of the system (24a)–(24c). After deriving and rearranging terms of calculations,
the Jacobian is given by

J =
⎛
⎝J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞
⎠
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where J11 = J12 = J31 = 1,J13 = 0 and

J21 = 1 − bc−1+σ1kσ1−σ2−α+βm−α+βM
−σ2

σ1β

πα(α − β)

J22 = 1 − bk−σ2−α+βm−1−α+βM
−σ2

(cσ1kσ1 + w)β(−α + β)

πα(α − β)

J23 = 1 − bk−σ2−α+βm−α+βM
−1−σ2

σ2 (cσ1kσ1 + w) β

πα(α − β)

J32 = 1 + bk−1+βm−1+ββ

M

J33 = −bk−1+βmβ

M
2

The determinant of J is computed as:

det(J ) = − 1

cπα(α − β)

[
b2k−1−σ2−α+2βm−1−α+2βM

−2−σ2
β
(
cσ1kσ1mσ1

+ c1+σ1kσ1 (α + (−1 + σ2)β) + cw (α + (−1 + σ2)β)
)]

(43)

which is negative if α > β to ensure the positivity of the denominator. This also
implies the existence of a saddle point. The stability also depends on the sign of the
trace of the matrix. The trace is computed as

Tr(J ) = 2 − bk−1+βmβ

M
2 + bk−σ2−α+βm−1−α+βM

−σ2
(cσ1kσ1 + w)β

πα
(44)

which is positive. ��

Proof of Proposition 3

To prove (i), it is straightforward to check that the left-hand side of Eq. (29c) is
increasing, whereas the right-hand side is decreasing. The inequality in (ii) can be
split into two parts: α ≥ β(1− σ2) and α < β. The proof of the first part relies on the
study of Eq. (29c). Solving this relation with respect to wage leads to:

w(M) =

(
δM
b

) α
β
M−1+σ2π(δM + r)α

⎛
⎝M α

β + δM

(
δM
b

)− α
β
(

δMM
b

) 1
β

β(−1+σ2)

π(δM+r)α(−1+σ1)

⎞
⎠

δMβ
(
1 + M−1+σ2 (2r+2δ−δε)(−1+σ2)

(r+δ)(1−ε)(−1+σ1)

)

(45)
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The derivative of (45) is given by

∂w(M)

∂M
= WN

WD
(46)

where

WN = M1+αα

(
1 + M−1+σ2(2r + 2δ − δε)(−1 + σ2)

(r + δ)(1 − ε)(−1 + σ1)

)

+

⎛
⎜⎜⎜⎜⎝
Mσ2 (2r + 2δ − δε)

(
Mα + δM

(
δM
b

)−α
β(−1+σ2)

2

π(δM+r)α(−1+σ1)

)

(r + δ)(1 − ε)(−1 + σ1)

⎞
⎟⎟⎟⎟⎠

+ M

⎛
⎜⎝Mα +

δM

(
δM
b

)−α

β(−1 + σ2)

π(δM + r)α(−1 + σ1)

⎞
⎟⎠

×
(
1 + M−1+σ2(2r + 2δ − δε)(−1 + σ2)

(r + δ)(1 − ε)(−1 + σ1)

)(
−1 + 1

β
+ σ2

)
(47)

and

WD = δMβ

(
1 + M−1+σ2(2r + 2δ − δε)(−1 + σ2)

(r + δ)(1 − ε)(−1 + σ1)

)2
(48)

which proves the first inequality in (ii). The proof of the second inequality α < β

follows from the stability of equilibria. We introduce the following lemma.

Lemma 4 The dynamical system is stable iff α < β and α ≥ β(1 − σ2).

Proof The proof of this lemma requires studying the determinant of the Jacobian
matrix of the system (31). After deriving and rearranging terms of calculations, the
Jacobian is given by

J =
⎛
⎝J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞
⎠

where J11 = J31 = 1 and

J12 = 1 − bk1−βm−1+ββ(−1 + σ2)

Mσ1

J13 = −k−β
(
δMMkβ − bkmβ

)
(−1 + σ2)

M2σ1

J21=−Mπα2−bk1+α−βm−α+ββ−Mπαβ + Mπα(−α + β)σ1+bk1+α−βm−α+ββσ2

Mπα(α − β)(−1 + σ1)
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J22 = 1

πα(−1 + σ1)
k−βm−1−αM−1−σ2

(−kβm1+αM1+σ2πα − bck1+αmβMσ2β

− bkα+σ2mβMwβ + M
(−kβm1+αMσ2πα − bkα+σ2mβ

)
σ1+bck1+αmβMσ2βσ2

)

J23 =
bkα−βm−α+βM

−2−σ2
β
(
−ckM

2 +
(
ckM

2 − kσ2Mw + kσ2Mwσ1

)
σ2

)

πα(α − β)(−1 + σ1)

J32 = 1 + bk1+βm−1+ββ

M

J33 = −bk1+βmβ

M
2

The determinant of J is computed as:

det(J ) = (α − β)

πα(1 − σ1)σ1
bk−2βm−1−α+βM

−4−σ2
β

(
bk1+α+2β+σ2mβM

2
wσ 2

1 (α − β + βσ2)

[
(1 − σ2)

(
bk1+αmβM

(
kM

σ2
(m + cα) + kσ2Mw

)

−δMMkβ
(
kα+σ2M

2
w + bk2+α+βmβM

σ2
β

+k1+αM
1+σ2

(m + c)
)

+ k1+α
(
δMMkβM

σ2 (mM + cM + bk1+βmββ
)

+ bmβM
(
−kM

σ2
(m + cα) + kσ2Mwβ

))
σ2

)

+Mσ1

(
δMMkβ

(
−kα+σ2Mw + k1+2βmαM

σ2
πα
)

bk1+βmβ
(
k1+2βM

σ2
(m + cα) + kσ2Mwk2β+σ2Mw

)

+
(
δMMkβ

(
−kα+σ2Mw + k1+2βmαM

σ2
πα
)

+ bk1+βmβ
(
k1+2βM

σ2
(m + cα) + kσ2Mw(α − 2β) − k2β+σ2Mw

))
σ2

+bk1+α+σ2mβMwβσ 2
2

))]
(49)

which is negative if α < β to guarantee the positivity of the denominator. This also
implies the existence of a saddle point. The stability depends on the sign of the trace
of the matrix. It is computed as:

Tr(J ) = 1

πα(1 − σ1)

(
2πα − bk1+βmβπα

M
2

+ bck1+α−βm−1−α+ββ

M
+ bkα−β+σ2m−1−α+βM

−σ2
wβ
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+
((

−2 + bk1+βmβ

M
2

)
πα − bkα−β+σ2m−1−α+βM

−σ2
wβ

)
σ1

−bck1+α−βm−1−α+ββσ2

M

)
(50)

which is positive. ��

Proof of Proposition 4

The proof follows from the general system. Indeed, Eq. (7a) in the system becomes a
differential equation of the form:

s(r − ρ) + (1 − s)(r − ρ)M(z)1−σ2

1 − σ2
+ (1 − s)M(z)−σ2 Ṁ(z) = 0 (51)

This differential equation is linear in Ṁ(z), and it is straightforward to check that
the analytical solution is given by the expression of M̂(z, s) (Eq. 33) in the proposition.

��

Proof of Proposition 5

The proof follows from pairwise comparison of gi (M(z))’s. Generally,

gi (M(z)) − g j (M(z)) =
∫ ∞

z
ϕM (M(x))

(
wi (M(x)) − w j (M(x))

+ 1

λA(0)

(
Φi − Φ j

)
e(ρ−r)x

)
e−(δM+r)(x−z)dx (52)

implying that the crucial components when performing pairwise comparisons are
wi j (M(x)) = wi (M(x)) − w j (M(x)) and Φi j (z) = Φi − Φ j . Since ϕM (M(x)) ≥ 0
for all M(x), it follows that gi (M(z)) − g j (M(z)) ≥ 0 (that is gi (M(z)) FOSD
gi (M(z)) if either; (a)wi j (M(x)) > 0 and Φi j (x) ≥ 0 for all x hence all M(x),
or (b)wi j (M(x)) = 0 and Φi j (x) ≥ 0 for all x hence all M(x), (c) or Φi j (x) ≥ 0
for all x and there exists an x∗, and hence M(x∗), such that wi j (M(x)) > 0 for all
M(x) ≥ M(x∗).

If 〈M(x)〉wi is the expected value of M(x) under wage rate distribution wi (M(x)),
the conditions that wi j (M(x)) > 0 for all M(x) and that there exists an M(x∗) such
that wi j (M(x)) > 0 for all M(x) ≥ M(x∗), are equivalent to saying that 〈M(x)〉wi ≥
〈M(x)〉w j . Thefirst condition for gi (M(z)) toFOSD g j (M(z)) is then that 〈M(x)〉wi ≥
〈M(x)〉w j . What remains is to show the condition under which Φi j (x) ≥ 0 for each
pair of i and j .

(i) For the case of additively separable and multiplicative preferences, we have
that
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Φ21(x) = NϕVN − SϕVS

From the expression of V, N and S, we have that VN = VS = Sϕ = 1 and
Nϕ = U (C(x)), such that NϕVN = U (C(x)) and SϕVS = 1.Φ21(x) then becomes

Φ21(x) = U (C(x)) − 1 = 1

1 − σ2
C(x)1−σ2 − 1,

implying that Φ21(x) ≥ 0 if C(x) ≥ (1 − σ1)
1

1−σ1 for all x .
(ii) Similarly, for the multiplicative and convex combination preferences,

Φ23(x) = NϕVN − (sNϕVN + (1 − s)SϕVS
) = (1 − s)U (C(x)) − (1 − s)

= (1 − s)(U (C(x)) − 1)

Since 0 < s < 1, it follows that Φ23(x) ≥ 0 if U (C(x)) − 1 ≥ 0 for all

x ⇒ C(x) ≥ (1 − σ1)
1

1−σ1 for all x .
(iii) Finally, for the convex combination and additive preferences,

Φ31(x) = sNϕVN + (1 − s)SϕVS − SϕVS = s(U (C(x)) − 1)

Hence, Φ31(x) ≥ 0 if C(x) ≥ (1 − σ1)
1

1−σ1 for all x . ��

Appendix 2: Note on the convex combination of preferences

For the convex combination of preferences, the steady state of the model is governed
by the system:

˙̂C(z)

Ĉ(z)
= (−1+s)(r−ρ)M(z)+s(r−ρ)M(z)σ2 (−1+σ2) − (−1+s)(−1+σ2)

(−δMM(z)+bm(z)β
)

σ1 ((−1+s)M(z)+sM(z)σ2 (−1+σ2))

˙̂m(z)

m̂(z)
= C(z)σ1m(z)1−αM(z)σ2

(
bβm(z)−1+βM(z)−σ2

(
−s − (−1 + s)C(z)1−σ1

−1 + σ1

+wC(z)−σ1

(
−s − (−1 + s)M(z)1−σ2

−1 + σ2

))
+ π(−δM − r)αC(z)−σ1m(z)−1+α

×
(

−s − (−1+s)M(z)1−σ2

−1+σ2

))
(−1+σ2))

/(
πα(α−β)

(
(−1+s)M(z)+sM(z)σ2 (−1+σ2)

))

˙̂M(z) = −δM + bm(z)β

m(z)

˙̂kz = B(M(z))k̂(z)
ε − Ĉ(z) − m̂(z) − δk̂(z) (53)
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with k̂(0) and M̂(0) given, plus the transversality conditions. The steady-state values

Ĉ, m̂, M̂ and k̂ can be obtained by equalizing ˙̂C, ˙̂m,
˙̂M,

˙̂k to zero. The dynamics of
the economy is driven at the equilibrium by the following system:

ċ

c
= (−1+s)(r−ρ)Mk−1+s(r − ρ)M

σ2k−σ2 (−1+σ2) − (−1+s)(−1+σ2)
(−δMMk−1+bmβk−β

)
σ1

(
(−1+s)Mk−1+sM

σ2k−σ2 (−1+σ2)
)

− r + δ(1 − ε)

ε
+ c + m

ṁ

m
= Cσ1m1−αM

σ2k−σ2+α−1
((

bβm−1+βM
−σ2kσ2−β+1

(
−s − (−1 + s)C1−σ1

−1 + σ1

+ wC−σ1

(
−s − (−1 + s)M

1−σ2kσ2−1

−1 + σ2

))
+ π(−δM − r)αC−σ1m−1+αk1−α

×
(

−s − (−1+s)M
1−σ2kσ2−1

−1+σ2

))
(−1+σ2)

)/

(
πα(α − β)

(
(−1 + s)Mk−1+sMσ2k−σ2 (−1+σ2)

))

− r + δ(1 − ε)

ε
+ c + m

Ṁ

M
= −δM + bmβkβ+1

M
− r + δ(1 − ε)

ε
+ c + m (54)

The Jacobian of this system is given by

J =
⎛
⎝J11 J12 J13
J21 J22 J23
J31 J32 J33

⎞
⎠

where J11 = J13 = J21 = J31 = 1 and

J12 = 1 − bk1−βm−1+β(−1 + s)β(−1 + σ2)

σ1

(
M(−1+s)

k + k−σ2M
σ2s(−1 + s)

)

J13 = −k−β
(
δMMkβ − bkmβ

)
(−1 + σ2)

M2σ1

J22 =
(
k−βm−1−αM

−σ2
(
bk1+α+σ2mβM

σ2
(−1 + s)βC (−1 + σ2)

+ bk1+α+σ2mβM
σ2sβCσ1(−1 + σ1)(−1 + σ2) +

(
kβm1+αM

σ2
π α

+ bkα+σ2mβwβ
)
(−1 + σ1)

(
kσ2M(−1 + s) − kM

σ2s + kM
σ2sσ2

)))/

(
πα(−1 + σ1)

(
kσ2M(−1 + s) − kMσ2s + kM

σ2sσ2
))

J23 =
(
bkα−β+σ2m−α+βM

−1−σ2
β(w(−1+σ1)σ2

(
kσ2M(−1+s) − kM

σ2s + kM
σ2sσ2

)2

+ kM
σ2

(−1 + s)C(−1 + σ2)
(
kσ2M(−1 + s) − kM

σ2sσ2 + kM
σ2sσ 2

2

)
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+ kM
σ2sCσ1(−1 + σ1)(−1 + σ2)

(
kσ2M(−1 + s) − kM

σ2sσ2 + kMσ2sσ 2
2 )
))

/(
πα(α − β)(−1 + σ1)

(
kσ2M(−1 + s) − kM

σ2s + kM
σ2sσ2

)2)

J32 = 1 + bk1+βm−1+ββ

M

J33 = −bk1+βmβ

M
2

The determinant of J is computed as:

det(J ) = 1

M2 k
−2β((kσ2m−1−α

(
δMMkβ − bkmβ

)
M1−σ2 (−1 + s)(−1 + σ2)

(
kσ2M(−1 + s) − kMσ2sσ2 + kMσ2sσ 2

2

)(
bk1+α+σ2mβMσ2 (−1 + s)

βC(z)(−1 + σ2) + bk1+α+σ2mβMσ2sβC(z)σ1(−1 + σ1)(−1 + σ2)

+(kβm1+αMσ2πα + bkα+σ2mβwβ
)
(−1 + σ1)

(
kσ2M(−1 + s) − kMσ2s

+ kMσ2sσ2
)))/(

πα(−1 + σ1)σ1
(
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)3)

+
(
bkα+β+σ2m−α+βM1−σ2β

(
1 − bk−βm−1+β(−1 + s)β(−1 + σ2)

σ1(
M(−1+s)

k + k−σ2Mσ2s(−1 + σ2)

)

(
w(−1 + σ1) × σ2

((
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)2
+kMσ2 (−1 + s)C(z)(−1 + σ2)

(
kσ2M(−1 + s) − kMσ2sσ2 + kMσ2sσ 2

2

)

+kMσ2sC(z)σ1(−1 + σ1)(−1 + σ2)
(
kσ2M(−1 + s) − kMσ2sσ2 + kMσ2sσ 2

2

)))
/(

πα(α − β)(−1 + σ1)
(
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)2)− bk1+3βmβ

×
(
1 − bk−βm−1+β(−1 + s)β(−1 + σ2)

σ1
(M(−1+s)

k + k−σ2Mσ2s(−1 + σ2)
+ (k−βm−1−αMσ2

(
bk1+α+σ2mβMσ2 (−1 + s)βC(z) × (−1 + σ2) + bk1+α+σ2mβMσ2s

βC(z)σ1(−1 + σ1)(−1 + σ2) + (kβm1+αMσ2πα + bkα+σ2mβwβ
)

× (−1 + σ1)
(
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)))
/(

πα(−1 + σ1)
(
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)))

−
(
kβ+σ2M

(
1 + bk1+βm−1+β

)
β
)

M

)
((

δMMkβ − bkmβ
)
(−1 + s)(−1+σ2)

(
kσ2M(−1+s)−kMσ2sσ2+kMσ2sσ 2

2

)
σ1

+ 1
/(

πα(α − β)(−1 + σ1)
)
bkαm−α+βM−σ2β(w(−1 + σ1)σ2

(
kσ2M(−1 + s)

− kMσ2s + kMσ2sσ2
)
2 + kMσ2 (−1 + s)C(z)(−1 + σ2)(

kσ2M(−1 + s) − kMσ2sσ2 + kMσ2sσ 2
2

)+ kMσ2sC(z)σ1(−1 + σ1)
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(−1 + σ2)
(
kσ2M(−1 + s) − kMσ2sσ2 + kMσ2sσ 2

2

))))/
(
kσ2M(−1 + s) − kMσ2s + kMσ2sσ2

)2)

and the trace is

Tr(J )

= 1 − bk1+βmβ

M
2 +

(
k−βm−1−αM

−σ2
(
bk1+α+σ2mβM

σ2
(−1 + s)βC(−1 + σ2)

+ bk1+α+σ2mβM
σ2sβCσ1(−1 + σ1)(−1 + σ2) +

(
kβm1+αM

σ2
πα

+ bkα+σ2mβwβ
)
(−1 + σ1)

(
kσ2M(−1 + s) − kM

σ2s + kM
σ2sσ2

)))/

× (πα(−1 + σ1)
(
kσ2M(−1 + s) − kMσ2s + kM

σ2sσ2
))

One can see that studying analytically the stability properties of this case (con-
vex combination of preferences) is simply unbearable given the expression of the
determinant.

Appendix 3: Examples of alternative preferences

In order to illustrate various aspects of the general results, we provide two examples
of alternative utility functions: the logarithmic and the quadratic. The former is well
known to be a special case of the CRRA utility function.

The logarithmic utility

We use a simple logarithm form for the utility functions of consumption and health.
The other functions remain the same: U (C) = ln(C), ϕ(M) = ln(M), ψ(m) = bmβ

and h(m) = πmα . We assume that the preferences are additive. The dynamic system
of the economy becomes:

˙̂C(z)

Ĉ(z)
= r(z) − ρ (55)

˙̂m(z)

m̂(z)
= −bβ(w + C(z))m(z)β−α

πα(α − β)M(z)
+ δM + r(z)

α − β
(56)

˙̂M(z) = −δM + bmβ

M(z)
(57)

˙̂k(z) = B(M(z))k̂(z)ε − Ĉ(z) − m̂(z) − δk̂(z) (58)

As we can see, there is a unique root, say f (M) for the system (55)–(58). To
obtain f (M), we set (56)–(58) to zero for k = ε

(1−ε)(r+δ)
w. Then, replacing m by its

expression from (57) leads to:
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0.1 0.2 0.3 0.4 0.5
Health Stock

0.06

0.08

0.10

0.12

Wage rate

0.02 0.04 0.06 0.08 0.10
Health Stock

5. 10 14

1. 10 13

1.5 10 13

2. 10 13

2.5 10 13

Wage rate

Fig. 12 The logarithmic utility: relation between wage rate and health stock for parameter values

f (M) = M
α
β −

δMβ
(

δM
b

)− α
β

π(δM + r)α

[
2(r + δM ) − δε

(1 − ε)(r + δ)
w −
(

δM

b

) 1
β

]
M

1
β (59)

The unique solution follows from the fact that when we set f (M) = 0, then the
first component increases with M and the second decreases. We now show how the
wage rate depends on health. For that, we express w as a function of M by solving
f (M) = 0:

w(M) = (r + δ)(1 − ε)

δMβ(2r + 2δ − δε)

(
δM

b

) 1
β
[(

δM

b

)α

(δM + r) παM
α
β + δMβM

1
β

]

(60)

The wage rate is an increasing function of the stock of health. Its evolution depends
on the relative values of the degrees of homogeneity of the health production and
the cost of investment function (i.e., on α and β). This is shown in a simulation
exercise as plotted in Fig. 12. The left-hand side figure displays the relation for
parameter values {α, β, δM , r, b, ε, δ, π} = {0.2, 5, 0.01, 0.02, 1, 0.4, 0.05, 2} and
the right-hand side is for {4, 0.2, 0.01, 0.02, 1, 0.4, 0.05, 2}. Albeit in both cases, the
wage rate is an increasing function of the stock of health, the pattern of increase
differs.

Indeed, when the growth rate of investment in health is lower than the one of its
cost, meaning when β > α, the stock of health increases faster than the wage rate, up
to a certain level, say M0, which is an inflexion point after which the relative evolution
of the two variables changes (w growing faster than M). To obtain this inflexion point,

we observe that w(M) is of the form aM
α
β + bM

1
β . Setting the second derivative of

that expression to zero yields:

M0 =
[

β − 1

πα(α − β)(δM + r)

(
δM

b

)−α
] β

α−1

(61)
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In the case where β < α, there is no inflexion point at which the curve becomes
concave. To complete the example, let us briefly study the equilibrium dynamics. In
that case, the Jacobian matrix turns out to be:

J =
⎛
⎜⎝

1 1 0

1 − bkα−βm−α+ββ
Mπα

1 − bk1+α−βm−1−α+β( c
k +w)β(−α+β)

Mπα

bk1+α−βm−α+β( c
k +w)β

M2πα

1 1 + bk1−βm−1+ββ
M − bk1−βmβ

M2

⎞
⎟⎠

The determinant of J is computed as:

det(J ) = −βb2k1+α−2βm−1−α+2β(m + (c + k + w)α)

M3πα(α − β)

Tr(J ) = 2 − bk1−βmβ

M2 + bkα−βm−1−α+β(c + kw)β

Mπα

One can easily check that det(J ) < 0 if α > β. This leads to the conclusion that
the system admits a saddle point if α > β. One of the conclusions that we can draw
from the specific logarithmic utility is that, although this specification is free of the
elasticity of substitution parameter used in CRRA utility framework, the core findings
hold.

The quadratic utility

Unlike the preceding example inwhich the logarithmic specification is a particular case
of theCRRA, the quadratic function departs sufficiently from it. Here,wewill illustrate
the three cases of preferences: additive, multiplicative and the convex combination.
We assume functions of the forms:

U (C(z)) = C(z) − η1(C(z))2

ϕ(M(z)) = M(z) − η2(M(z))2

with η1 �= 0 and η2 �= 0. As before, the health functions ψ and h maintain the same
functional form: ψ(m(z)) = bmβ and h(m(z)) = πmα , and we also assume the same
production function.

Separable additive case

In this setting, the equilibrium values are given by c̄∗ = 1
2η1

, M̄∗ = 1
2η2

, m̄∗ =(
δM
b

) 1
β 1

(2η1)
1
β

, k̄∗ = ε
2(r+δ−δε)η1

[
1 + η1

(
2η2 b

δM

)− 1
β

]
and w∗(M) = (r+δ)(1−ε)

2(r+δ−δε)η1[
1 + η1

(
2η1 b

δM

)− 1
β
M∗ 1

β

]
. We see that the equilibrium value of wage rate w∗ is

determined by the stock of health under the conditions of Proposition 2.

123



Optimal health investment and preference structure 563

M ∗

w

w∗

w̄

M

Fig. 13 The quadratic utility: evolution of equilibrium stock of health for additive preferences

Figure 13 shows the relationship between the wage rate and the stock of health. The
vertical line represents the stock of health equilibrium M∗ and w∗ the wage rate at
equilibrium; w̄ = (r+δ)(1−ε)

2(r+δ−δε)η1
denotes the intercept or the minimum wage. The wage

rate in this example is an increasing function of the stock of health.

Multiplicative case

The equilibrium value of the stock of health is:

M̄∗(z) = 1 −√1 − 4η2e−(r−ρ)z

2η2
(62)

Consumption at equilibrium is given by:

c̄∗ = 1

2η1
+ a0

a1
+ a2w +

√
1

4η21
+
(
a0
a1

+ a2w

)2
(63)

where a0 = π(r + δM )η1

(
δM
b

) α
β
(M̄∗)

α
β (M̄∗ − η2M̄∗2), a1 = bβ δM

b M̄∗(1− 2η2M̄∗)
and a2 = −M̄∗ + η2M̄∗2. The balanced wage rate w∗(M) can be retrieved from
Eq. (63). However, its expression is rather complex. From Eq. (62), one observes that
M̄∗(z) depends on time z and can be represented as in Fig. 14.
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1
2η2

M

zz0

Fig. 14 The quadratic utility: evolution of equilibrium stock of health

The graph shows an initial time z0 = ln(4η2)
r−ρ

under which there is no balance of

stock of health. Moreover, the balanced path of the initial stock of health
(

1
2η2

)
in

the multiplicative model corresponds to the balanced path of the stock of health in
the additive model, the latter being represented by the horizontal line. In other words,

there exists a maximum level
(

1
2η2

)
that the stock of health cannot exceed. The stock

of health in the multiplicative model decreases over time to the minimum value of
zero. One conclusion we can draw from this example is that the multiplicative model
is more general as it provides information on the steady state of the additive model.

Convex combination

The equilibrium value of the stock of health is given by:

M̄∗(z) = 1

2η2
−
√

(1 − s)(r − ρ) + 4s(r − ρ)η2κ(s)e−(r−ρ)z

2η2
√

(1 − s)(r − ρ)
(64)

where κ(s) ∝ −4e(1−s)(r−ρ)η2 . The equilibrium value is closely linked to parameter
s, and it can be shown that M̄∗(z) increases with s. The longevity T is computed as:

T = T0 − 1

r − ρ
ln
(
s + Mmin(1 − s) − η2M

2
min(1 − s)

)
(65)

where T0 = 1
r−ρ

ln
(

κ(s)
4(r−ρ)

)
.
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