Skip to main content
Log in

Trabecular bone score (TBS) in postmenopausal African American women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Trabecular bone score (TBS) is a newly developed parameter that can be derived from DXA scans of the spine and may reflect bone quality. This study provides TBS values in healthy postmenopausal women of African descent.

Introduction

African American women have a lower risk for osteoporotic fractures as a result of higher bone density and better bone quality. We examined TBS in postmenopausal African American women since there are no previous reports in this population.

Methods

This was a study of healthy African American volunteers using baseline values prior to their participation in two vitamin D intervention studies conducted at an ambulatory research center of an academic health center.

Results

The study population consisted of 518 healthy postmenopausal African American women with a mean age of 66 years and a BMI of 30.1. Mean TBS (L1 to L4) was 1.300(.100 SD). Significant negative correlations were found between TBS and age and BMI. None of the biochemical variables were significantly correlated with TBS whereas the various bone density sites were correlated with TBS.

Conclusion

TBS values for African American women are higher than those reported in the literature for white women and are inversely related to age and BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TBS:

Trabecular bone score

(HR-pQCT):

High-resolution peripheral quantitative computed tomography

(aBMD):

Areal bone mineral density

References

  1. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  2. Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27:854–859

    Article  PubMed  Google Scholar 

  3. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787

    Article  PubMed  Google Scholar 

  4. Winzenrieth R, Michelet F, Hans D (2013) Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 287–296

  5. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312

    Article  PubMed  Google Scholar 

  6. Akkari H, Bhouri I, Dubois P, Bedoui M (2008) On the relations between 2D and 3D fractal dimensions: theoretical approach and clinical application in bone imaging. Math Model Nat Phenom 3:48–75

    Article  Google Scholar 

  7. Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Gluer CC, Roux C (2013) Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone 57:232–236

    Article  PubMed  Google Scholar 

  8. Popp AW, Guler S, Lamy O, Senn C, Buffat H, Perrelet R, Hans D, Lippuner KE (2013) Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res 28:449–454

    Article  CAS  PubMed  Google Scholar 

  9. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176

    Article  PubMed  Google Scholar 

  10. Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109

    Article  CAS  PubMed  Google Scholar 

  11. Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181

    Article  PubMed  Google Scholar 

  12. Aloia JF, Vaswani A, Yeh JK, Flaster E (1996) Risk for osteoporosis in black women. Calcif Tissue Int 59:415–423

    Article  CAS  PubMed  Google Scholar 

  13. Aloia JF, Vaswani A, Ma R, Flaster E (1997) Comparison of body composition in black and white premenopausal women. J Lab Clin Med 129:294–299

    Article  CAS  PubMed  Google Scholar 

  14. Nelson DA, Jacobsen G, Barondess DA, Parfitt AM (1995) Ethnic differences in regional bone density, hip axis length, and lifestyle variables among healthy black and white men. J Bone Miner Res 10:782–787

    Article  CAS  PubMed  Google Scholar 

  15. Kleerekoper M, Nelson DA, Peterson EL, Flynn MJ, Pawluszka AS, Jacobsen G, Wilson P (1994) Reference data for bone mass, calciotropic hormones, and biochemical markers of bone remodeling in older (55-75) postmenopausal white and black women. J Bone Miner Res 9:1267–1276

    Article  CAS  PubMed  Google Scholar 

  16. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG (1991) Changes in vertebral bone density in black and white girls during childhood and puberty. N Engl J Med 325:1597–1600

    Article  CAS  PubMed  Google Scholar 

  17. Prentice A, Shaw J, Laskey A, Cole TJ, Fraser DR (1991) Bone mineral content of British and rural Gambian women aged 18–80+ years. Bone Miner 12:210–214

    Article  Google Scholar 

  18. Li JY, Specker BL, Ho ML, Tsang RC (1989) Bone mineral content in black and white children 1 to 6 years of age. Early appearance of race and sex differences. Am J Dis Child 143:1346–1349

    Article  CAS  PubMed  Google Scholar 

  19. Luckey M, Meier DE, Mandeli JP, DaCosta MC, Hubbard ML, Goldsmith SJ (1989) Axial and appendicular bone density in white and black women: Evidence of racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69:762–770

    Article  CAS  PubMed  Google Scholar 

  20. Liel Y, Edwards J, Shary J, Spicer KM, Gordon L, Bell NH (1988) The effect of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women. J Clin Endocrinol Metab 66:247–1250

    Article  Google Scholar 

  21. Cohn SH, Abesamis C, Yasumura S, Aloia JF, Zanzi I, Ellis KJ (1977) Comparative skeletal mass and radial bone mineral content in black and white women. Metabolism 26:171–178

    Article  CAS  PubMed  Google Scholar 

  22. Garn S (1975) Bone loss and aging. In: Goldman R, Me R (eds) Physiology and pathology of human aging. Academic, New York, pp 39–57

    Google Scholar 

  23. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, Mahboubi S, Fan B, Frederick MM, Winer K, Shepherd JA (2007) The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab 92:2087–2099

    Article  CAS  PubMed  Google Scholar 

  24. Cauley JA, Lui LY, Ensrud KE, Zmuda JM, Stone KL, Hochberg MC, Cummings SR (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA 293:2102–2108

    Article  CAS  PubMed  Google Scholar 

  25. Schnitzler CM, Pettifor JM, Mesquita JM, Bird MD, Schnaid E, Smyth AE (1990) Histomorphometry of iliac crest bone in 346 normal black and white South African adults. Bone Miner 10:183–199

    Article  CAS  PubMed  Google Scholar 

  26. Schnitzler CM, Mesquita JM (2006) Cortical bone histomorphometry of the iliac crest in normal black and white South African adults. Calcif Tissue Int 79:373–382

    Article  CAS  PubMed  Google Scholar 

  27. Putman MS, Yu EW, Lee H, Neer RM, Schindler E, Taylor AP, Cheston E, Bouxsein ML, Finkelstein JS (2013) Differences in skeletal microarchitecture and strength in African-American and Caucasian women. J Bone Miner Res 28:2177–2185

    Article  PubMed Central  PubMed  Google Scholar 

  28. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N (2013) Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int 24:2837–2846

    Article  CAS  PubMed  Google Scholar 

  29. Aloia JF, Talwar SA, Pollack S, Yeh J (2005) A randomized controlled trial of vitamin D3 supplementation in African American women. Arch Intern Med 165:1618–1623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Aloia JF, Dhaliwal R, Shieh A, Mikhail M, Islam S, Yeh JK (2013) Calcium and vitamin D supplementation in postmenopausal women. J Clin Endocrinol Metab 98:E1702–E1709

    Article  CAS  PubMed  Google Scholar 

  31. Dixon W (1953) Processing data for outliers. Biometrics 9:74–89

    Article  Google Scholar 

  32. Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78

    Article  Google Scholar 

  33. Parisien M, Cosman F, Morgan D, Schnitzer M, Liang X, Nieves J, Forese L, Luckey M, Meier D, Shen V, Lindsay R, Dempster DW (1997) Histomorphometric assessment of bone mass, structure, and remodeling: a comparison between healthy black and white premenopausal women. J Bone Miner Res 948–957

  34. Cauley JA (2011) Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res 469:1891–1899

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bousson V, Bergot C, Sutter B, Levitz P, Cortet B (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–1501

    Article  CAS  PubMed  Google Scholar 

  36. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Sharon Sprintz for her work with our bone density studies.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Aloia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloia, J.F., Mikhail, M., Usera, G. et al. Trabecular bone score (TBS) in postmenopausal African American women. Osteoporos Int 26, 1155–1161 (2015). https://doi.org/10.1007/s00198-014-2928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2928-6

Keywords

Navigation