Skip to main content

Advertisement

Log in

Hand workload and the metacarpal cortical index. A study of middle-aged teachers and dentists

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

We studied load-related predictors (handedness, occupation and workload history) of cortical bone mass as estimated by the metacarpal cortical index (MCI). After being randomly selected from trade-union registers, 295 female dentists and 248 teachers, aged 45–63 years (mean 54 years), participated in the study. The MCI was defined from the second metacarpal of both hands by analogue radiographs. Data regarding anthropometric measures, handedness, occupational exposure, number of pregnancies, hormonal therapy and contraceptive use, the presence of chronic diseases, dietary factors, smoking and leisure time physical activity were collected by questionnaire. Weight was measured. The dentists’ workload was assessed in detail in 10-year periods. Multivariate methods were used in the statistical analysis. The metacarpal index averaged 0.62 in the right hand and 0.61 in the left hand (P=0.02) among the right-handed subjects, while no differences by hand were observed among the left-handed or mixed-handed. The MCI of the teachers and dentists did not differ from each other, when we controlled for potential confounders. The MCI decreased similarly by age in both occupational groups. Among the dentists, workload history was inversely associated with the MCI in multivariate analyses by age group. Computer use was a positive predictor for MCI among dentists aged 55–63 years. Occupational factors seem to have contradictory effects on the MCI. Too heavy or one-sided manual work may be deleterious for cortical bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen SP (2001) The metacarpal index revisited. A brief overview. J Clin Densitom 4:199–207

    Article  CAS  PubMed  Google Scholar 

  2. Aguado F, Revilla M, Hernandez ER, Villa LF, Rico H (1996) Behavior of bone mass measurements. Dual energy X-ray absorptiometry outer body bone mineral content, ultrasound bone velocity, and computed metacarpal radiogrammetry, with age, gonadal status, and weight in healthy women. Invest Radiol 31:218–222

    Article  CAS  PubMed  Google Scholar 

  3. Fukunaga M, Tomomitsu T, Otsuka N, Imai H, Morita R, Nishii Y (1990) Indexes of bone mineral content on second metacarpal bone roentgenogram analyzed by digital image processing: a comparison with other bone mass quantifying methods. Radiat Med 8:230–235

    CAS  PubMed  Google Scholar 

  4. Hyldstrup L, Nielsen SP (2001) Metacarpal index by digital X-ray radiogrammetry: normative reference values and comparison with dual X-ray absorptiometry. J Clin Densitom 4:299–306

    Article  CAS  PubMed  Google Scholar 

  5. Garn SM, Mayor GH, Shaw HA (1976) Paradoxical bilateral asymmetry in bone size and bone mass in the hand. Am J Phys Anthropol 45:209–210

    CAS  PubMed  Google Scholar 

  6. Plato CC, Wood JL, Norris AH (1980) Bilateral asymmetry in bone measurements of the hand and lateral hand dominance. Am J Phys Anthropol 52:27–31

    CAS  PubMed  Google Scholar 

  7. Plato CC, Purifoy FE (1982) Age, sex and bilateral variability in cortical bone loss and measurements of the second metacarpal. Growth 46:100–112

    CAS  PubMed  Google Scholar 

  8. Osei-Hyiaman D, Ueji M, Toyokawa S, Takahashi H, Kano K (1999) Influence of grip strength on metacarpal bone mineral density in postmenopausal Japanese women: a cross-sectional study. Calcif Tissue Int 64:263–266

    Article  CAS  PubMed  Google Scholar 

  9. Egami I, Wakai K, Kunitomo H, Tamakoshi A, Ando M, Nakayama T, Ohno Y (2003) Associations of lifestyle factors with bone mineral density among male university students in Japan. J Epidemiol 13:48–55

    PubMed  Google Scholar 

  10. Yahata Y, Aoyagi K, Okano K, Yoshimi I, Kusano Y, Kobayashi M, Moji K, Takemoto T (2002) Metacarpal bone mineral density, body mass index and lifestyle among postmenopausal Japanese women: relationship of body mass index, physical activity, calcium intake, alcohol and smoking to bone mineral density: the Hizen–Oshima study. Tohoku J Exp Med 196:123–129

    Article  PubMed  Google Scholar 

  11. Roy TA, Ruff CB, Plato CC (1994) Hand dominance and bilateral asymmetry in the structure of the second metacarpal. Am J Phys Anthropol 94:203–211

    CAS  PubMed  Google Scholar 

  12. Horsman A, Simpson M, Armes F (1981) A left/right comparison of sequential bone loss from the metacarpals of postmenopausal women. Am J Phys Anthropol 54:457–460

    CAS  PubMed  Google Scholar 

  13. Rico H, Revilla M, Cardenas JL, Villa LF, Fraile E, Martin FJ, Arribas I (1994) Influence of weight and seasonal changes on radiogrammetry and bone densitometry. Calcif Tissue Int 54:385–388

    CAS  PubMed  Google Scholar 

  14. Osei-Hyiaman D, Satoshi T, Ueji M, Hideto T, Kano K (1998) Timing of menopause, reproductive years, and bone mineral density: a cross-sectional study of postmenopausal Japanese women. Am J Epidemiol 148:1055–1061

    CAS  PubMed  Google Scholar 

  15. Huachou Z, Kitazawa A, Kushida K, Nagano A (2001) Longitudinal study of age- and menopause-related metacarpal index changes in Japanese adult females. J Clin Densitom 4:43–49

    Article  CAS  PubMed  Google Scholar 

  16. Maggio D, Pacifici R, Cherubini A, Simonelli G, Luchetti M, Aisa MC, Cucinotta D, Adami S, Senin U (1997) Age-related cortical bone loss at the metacarpal. Calcif Tissue Int 60:94–97

    Article  CAS  PubMed  Google Scholar 

  17. Ginsburg E, Skaric-Juric T, Kobyliansky E, Karasik D, Malkin I, Rudan P (2001) Evidence on major gene control of cortical index in pedigree data from Inner Dalmatia, Croatia. Am J Human Biol 13:398–408

    Article  CAS  Google Scholar 

  18. Cohen Z, Kalichman L, Kobyliansky E, Malkin I, Almog E, Livshits G (2003) Cortical index and size of hand bones: segregation analysis and linkage with the 11q12–13 segment. Med Sci Monit 9:MT13–20

    Google Scholar 

  19. Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931

    CAS  PubMed  Google Scholar 

  20. Zhang Y, Kiel DP, Kreger BE, Cupples LA, Ellison RC, Dorgan JF, Schatzkin A, Levy D, Felson DT (1997) Bone mass and the risk of breast cancer among postmenopausal women. N Engl J Med 336:611–617

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Kiel DP, Ellison RC, Schatzkin A, Dorgan JF, Kreger BE, Cupples LA, Felson DT; Framingham Study (2002) Bone mass and the risk of prostate cancer: the Framingham Study. Am J Med 113:734–739

    Article  PubMed  Google Scholar 

  22. Ma D, Jones G (2003) The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case–control study. J Clin Endocrinol Metab 88:1486–1491

    Article  CAS  PubMed  Google Scholar 

  23. Valdimarsson O, Kristinsson JO, Stefansson SO, Valdimarsson S, Sigurdsson G (1999) Lean mass and physical activity as predictors of bone mineral density in 16–20-year old women. J Intern Med 245:489–496

    Article  CAS  PubMed  Google Scholar 

  24. Söderman K, Bergström E, Lorentzon R, Alfredson H (2000) Bone mass and muscle strength in young female soccer players. Calcif Tissue Int 67:297–303

    Article  PubMed  Google Scholar 

  25. Kerr D, Morton A, Dick I, Prince R (1996) Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res11:218–225

    Google Scholar 

  26. Kerr D, Ackland T, Maslen B, Morton A, Prince R (2001) Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res16:175–181

    Google Scholar 

  27. Brahm H, Mallmin H, Michaelsson K, Strom H, Ljunghall S (1998) Relationships between bone mass measurements and lifetime physical activity in a Swedish population. Calcif Tissue Int 62:400–412

    Article  CAS  PubMed  Google Scholar 

  28. Uusi-Rasi K, Nygard CH, Oja P, Pasanen M, Sievanen H, Vuori I (1994) Walking at work and bone mineral density of premenopausal women. Osteoporos Int 4:336–340

    CAS  PubMed  Google Scholar 

  29. Bidoli E, Schinella D, Franceschi S (1998) Physical activity and bone mineral density in Italian middle-aged women. Eur J Epidemiol 14:153–157

    Article  CAS  PubMed  Google Scholar 

  30. Coupland CA, Grainge MJ, Cliffe SJ, Hosking DJ, Chilvers CE (2000) Occupational activity and bone mineral density in postmenopausal women in England. Osteoporos Int 11:310–315

    Article  CAS  PubMed  Google Scholar 

  31. Greendale GA, Huang MH, Wang Y, Finkelstein JS, Danielson ME, Sternfeld B (2003) Sport and home physical activity are independently associated with bone density. Med Sci Sports Exerc 35:506–512

    PubMed  Google Scholar 

  32. Hu JF, Zhao XH, Chen JS, Fitzpatrick J, Parpia B, Campbell TC (1994) Bone density and lifestyle characteristics in premenopausal and postmenopausal Chinese women. Osteoporos Int 4:288–297

    CAS  PubMed  Google Scholar 

  33. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, Pols HA (1998) Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 147:871–879

    CAS  PubMed  Google Scholar 

  34. Krall EA, Dawson-Hughes B (1999) Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res 14:215–220

    CAS  PubMed  Google Scholar 

  35. Rapuri PB, Gallagher JC, Balhorn KE, Ryschon KL (2000) Smoking and bone metabolism in elderly women. Bone 27:429–436

    Article  CAS  PubMed  Google Scholar 

  36. Välimäki MJ, Kärkkäinen M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkinen J, Impivaara O, Mäkelä P, Palmgren J, Seppänen R, Vuori I and the Cardiovascular Risk in Young Finns Study Group (1994) Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ 309:230–235

    PubMed  Google Scholar 

  37. Ilich JZ, Brownbill RA, Tamborini L, Crncevic-Orlic Z (2002) To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? J Am Coll Nutr 21:536–544

    PubMed  Google Scholar 

  38. Trivitayaratana W, Bunyaratavej N, Trivitayaratana P, Kotivongsa K, Suphaya-Achin K, Chongcharoenkamol T (2000) The use of historical and anthropometric data as risk factors for screening of low mBMD & MCI. J Med Assoc Thai 83:129–138

    CAS  PubMed  Google Scholar 

  39. Feskanich D, Korrick SA, Greenspan SL, Rosen HN, Colditz GA (1999) Moderate alcohol consumption and bone density among postmenopausal women. J Womens Health 8:65–73

    CAS  PubMed  Google Scholar 

  40. Ganry O, Baudoin C, Fardellone P (2000) Effect of alcohol intake on bone mineral density in elderly women: the EPIDOS study. Epidemiologie de l’Osteoporose. Am J Epidemiol 151:773–780

    CAS  PubMed  Google Scholar 

  41. Rapuri PB, Gallagher JC, Balhorn KE, Ryschon KL (2000) Alcohol intake and bone metabolism in elderly women. Am J Clin Nutr 72:1206–1213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Finnish work environment fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Vehmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vehmas, T., Solovieva, S., Riihimäki, H. et al. Hand workload and the metacarpal cortical index. A study of middle-aged teachers and dentists. Osteoporos Int 16, 672–680 (2005). https://doi.org/10.1007/s00198-004-1742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1742-y

Keywords

Navigation