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Abstract Results of a numerical simulation of steady
axisymmetric supersonic flows in convergent conical ducts
and in overexpanded jets are presented. The characteris-
tic feature of these compression flows is the formation of
an initial longitudinally curved shock wave with intensity
increasing downstream and toward the flow axis, which is
finalized by the generation of a central Mach disk. Computa-
tions have demonstrated patterns of an irregular interaction
of these shocks followed by the formation of a triple-shock
configuration, including a reflected shock and a shear layer
with entropy varying across the layer. The formation of
triple-shock configurations is analogous to the configura-
tions known for the steady inviscid two-dimensional flows
where the irregular reflection of a wedge-generated shock
from a wall with Mach stem formation occurs. Either a sin-
gle triple-shock Mach configuration occurs or a triple-shock
configuration corresponding to the von Neumann paradox
condition is formed at the considered flow Mach numbers
and initial angles of deflection to the axis of the flow behind
the longitudinally curved shock wave.
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1 Introduction

The topic of the present paper is steady axisymmetric super-
sonic flows in convergent conical ducts. Let us briefly
consider the state of research on this subject.

Early studies of these flows related to the first-time devel-
opment of turbojet-powered supersonic aircraft designed
for flight Mach numbers up to M = 1.5–2. Ferri and
Nucci [1] analyzed the capabilities of the simplest internal-
compression inlets in the form of a conical funnel as applied
to such aircraft. Ferri presented an example of calculating
an axisymmetric flow in such an inlet at M = 1.6 using the
method of characteristics [2,3].

An initially conical internal shock wave (the flow velocity
behind which converges to the axis) forms immediately at
the circular leading edge of this inlet. The shock develops
further downstream into a shock in the form of a longitudi-
nally curved surface of revolution. This shock is incident onto
the duct axis; its slope and intensity continuously increase
as the shock approaches the axis; the flow velocity behind
the shock decreases appropriately. The axisymmetric flow
downstream of the longitudinally curved shock was calcu-
lated by Ferri [2,3] up to a point where the velocity behind
the shock became sonic. According to the problem statement,
a reflected shock arose here with its development continuing
up to the conical funnel wall. The supersonic compression
flow of interest was calculated from the initial incident shock
up to the reflected shock. According to Ferri [2,3], another
hypothetical strong shock wave, the flow behind which is
subsonic, has to form in the direction from the sonic point to
the axis with its gradual transformation into a normal shock
at this axis. Instead of this, a central transverse shock close to
the normal one, i.e., a Mach disk, arises in the steady axisym-
metric supersonic flows. This is explained, for example, in
the work of Courant and Friedrichs [4] by showing that a
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conical shock wave with the flow behind it converging to the
axis cannot reflect from this axis in a regular manner.

A large size of a Mach disk at M < 2 results in a low
pressure recovery factor of the internal-compression inlets
in the form of a funnel duct and worsening of the perfor-
mance of such inlets as compared to external-compression
inlets with a nose cone body [5]. The problems associated
with inlet starting are complicated for internal-compression
inlets. These and other problems were apparently responsible
for the lack of substantial progress in the development of the
mentioned internal-compression inlets, and for a long time
there was little interest in studying axisymmetric supersonic
compression flows with a Mach disk. Some investigations
on this subject were carried out due to the development of
hypersonic flying vehicles powered by ramjets or scramjets.
The flows in inlets in the form of a conical funnel in the range
M= 1.6–12 were computed by Gutov and Zatoloka [6] anal-
ogously to Ferri [3]; it was shown that the possible transversal
size of the central flow core determined by Ferri’s hypothet-
ical shock essentially decreases with increasing free-stream
Mach numbers at M > 4. The experiments by Antonov et
al. [7] demonstrated a high compression performance of the
simplest internal-compression inlets in the form of a conical
funnel at a hypersonic Mach number M = 11.5. There are
recent considerations of funnel-shaped inlets of fully inter-
nal compression as applied to hypersonic scramjet-powered
vehicles flying at Mach numbers M > 4, for example, Tirtey
et al. [8]. A numerical computation of a laminar flow in the
simplest inlet with a funnel-shaped compression section at
M = 4 presented by Bashkin and Egorov [9] is worth men-
tioning. There are reconsiderations of the problem on the
irregular reflection of a conical shock wave compressing the
flow to an axis and conditions of forming a Mach disk in this
case [10]. Nevertheless, knowledge of the features of the for-
mation of axisymmetric supersonic converging flows with a
Mach disk remains scarce. Note that such flows occur also in
the initial section of overexpanded jets exhausting into still
air or into an external co-current air stream.

A numerical simulation of the axisymmetric flows with a
Mach disk was performed in the present work. The peculiar-
ities of the formation of these flows were studied depending
on the free-stream Mach number and the conical funnel angle
or the initial angle of flow deflection to the axis for the over-
expansion jet. The representative flow patterns are discussed
below.

A general structure of the axisymmetric flow in a conver-
gent conical duct is schematically pictured in Fig. 1, where
x is the coordinate along the duct axis and y is the radial
coordinate. The free-stream flow is assumed to be directed
from left to right along the duct axis; further, in the fig-
ures showing flow patterns, this direction is denoted by an
arrow. The conical wall 1 of the duct with an inclination
angle θc forms a longitudinally curved shock 2 incident onto
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Fig. 1 Schematic of supersonic flow in a convergent conical duct

the axis. A local deflection angle δ of the perturbed flow
is assumed to be positive if the flow velocity is inclined to
the duct axis. Due to the irregular reflection of the incident
shock 2 from the axis, a Mach disk 3 and a reflected shock
4 arise, and so the triple-shock configuration 5 originates.
Occurrence of a contact discontinuity—the slipline 6 emanat-
ing from the triple-shock intersection point in a longitudinal
plane (x, y)—is also allowed. Note here, since the flow is
axisymmetric, all the shocks can be visualized as surfaces of
revolution and the slipline 6 is a generatrix of a slip surface
of revolution.

Let us discuss the types of triple-shock configurations pos-
sible in the axisymmetric flows under consideration using the
shock polars and triple-shock theory developed by von Neu-
mann and based on the Rankine–Hugoniot jump relations,
see e.g., [4]. Note that this theory is valid for two-dimensional
(2D) flows of an ideal gas. The theory yields the solution
for the triple-shock configuration forming at the irregular
reflection of an oblique shock wave incident onto a flat wall
and including a reflected shock, a shock known as the Mach
stem, and the slip line. The solution implies these shocks and
slip line to be of negligible thickness and curvature.

In the present work, the known triple-shock solution is
assumed to be valid for the considered axisymmetric flows
with respect to a local area of the triple-shock interaction
(marked by a circle in Fig. 1). The 2D analysis of the shock
polars in the given case is based upon known considera-
tions of discontinuities, particularly the shock waves, in gas
dynamic theory. If a three-dimensional (3D) shock surface
is smooth, the conservation equations at an arbitrary point of
this surface can be reduced to an equivalent form in terms of
the 2D Rankine–Hugoniot jump relations. These 2D equa-
tions describe the plane shock tangent to the 3D shock surface
and have to be considered in the longitudinal plane passing
through the point and defined by the flow velocity vectors in
front of the shock and behind it; it is the plane of symmetry
for the axisymmetric flow. This proposition can be exempli-
fied by a conical shock wave, the parameters of which equal
to those of the plane oblique shock with the same inclination
angle to the flow velocity ahead of the shock.
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2 On possible patterns of interaction of the incident
longitudinally curved shock and the Mach disk

Let us first analyze the conditions of possible interactions of
the incident longitudinally curved shock and the Mach disk
with the use of shock polars in an example of the flow with
a free-stream Mach number M = 1.6. Figure 2 presents the
pertinent shock polars in the pressure ratio–flow deflection
angle plane; here the pressure ps behind the shock is normal-
ized to the free-stream flow pressure p∞, p̄s = ps/p∞. Polar
1 in Fig. 2 is a locus of all shocks forming at M = 1.6; par-
ticularly, it is pertinent to the incident longitudinally curved
shock. It is evident that the point δ = 0 on the ordinate axis
at which p̄s = 1 corresponds to a degenerate shock; it is the
Mach line in a two-dimensional flow or the Mach cone in
an axisymmetric flow. The point δ = 0 at which p̄s = 2.82
corresponds to the normal shock arising in the free-stream
flow; it gives the pressure jump behind the Mach disk on
the axis. Point 7 of polar 1 at δ = δM=1 = 14.24◦ where
p̄s = 2.15 corresponds to the sonic flow velocity Ms = 1
behind the incident shock. This point separates polar 1 into
two branches: a “weak” branch for which the flow veloc-
ity behind the shock is supersonic and a “strong” branch for
which the flow velocity behind the shock is subsonic. Let
us assume that a secondary shock wave forms in the flow
behind the initial shock wave in a point corresponding to
the weak branch of polar 1 at δ = δi. Let Ms be the Mach
number of the flow behind this initial shock and δr the angle
of flow deflection behind the secondary shock to the direc-
tion of the flow with Ms. A set of polars of such secondary
shocks corresponding to different angles δi is presented in
Fig 2. The secondary shock with a flow deflection angle
δr > 0 will be of the same family as the initial one; the
secondary shock will be of the opposite family at δr < 0. For
the inviscid two-dimensional flow, the secondary shock with
δr < 0, δ = δi + δr = 0 can be treated as a reflected shock
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Fig. 2 Shock polars at M = 1.6

arising at the regular reflection of a wedge-generated oblique
shock from a flat wall. In accordance with the considered
problem, secondary shocks with δr < 0 and intersections of
their polars with the strong branch of the initial shock polar 1
are of interest, and the above-mentioned triple-shock theory
can be applied in these cases.

The secondary shock polar 2 corresponding to δi = 3◦
intersects the initial shock polar 1 at a point with δt =
δi + δr < 0; therewith, the flow along the slip line behind
the triple-shock configuration corresponding to this point has
to deflect from the axis. The secondary shock polar 3 corre-
sponding to δi = 5◦ intersects the initial shock polar 1 at
a point with δt = δi + δr > 0; in this case, the flow along
the slip line has to deflect to the axis. The triple-shock solu-
tions in these cases are known, respectively, as the inverse (or
inverted) and direct Mach reflections, respectively [4,11,12].
The inverse Mach triple-shock configuration does not occur
in ordinary steady two-dimensional flows. The direct Mach
triple-shock configuration is typical of these flows; in the case
of the irregular reflection problem, it is also defined as the
single triple-shock Mach reflection [4,12]. The inverse and
direct Mach triple-shock configurations are separated by the
configuration where the second shock polar 2 intersects the
strong branch of the initial shock polar 1 at δt = δi + δr = 0
(here, δi = δi0 = 3.975◦ for the presented example at
M = 1.6). The Mach stem in the latter case has to be straight
linear; such a Mach triple-shock configuration in an unsteady
two-dimensional flow is known as the stationary Mach con-
figuration. This configuration does not seem to contradict the
conditions of steady two-dimensional flows.

As for the steady axisymmetric supersonic flows, the
Mach disk in the case of the inverse Mach triple-shock
configuration has to be convex toward the free-stream flow
direction; the flow behind the disk has to be diverging and
decelerating, so that this solution disagrees with the known
patterns of the steady axisymmetric supersonic converging
flows. The direct Mach triple-shock configuration is quite
pertinent in these flows, because the Mach disk has to be
convex away from the free-stream flow direction; the flow
behind the disk has to be converging and accelerating. The
triple-shock configuration with a flat Mach disk in the steady
axisymmetric supersonic flows in a convergent conical duct
must form at the intersection of the reflected shock polar
and the initial shock polar 1 at the axis of the latter where
δt = δi + δr = 0, as it is for the straight-linear Mach stem
in the 2D flows. This condition for the considered axisym-
metric flows seems to take place at a small angle θc0 of the
conical wall; particularly, it should be θc0 < δi0 = 3.975◦
for the presented example at M = 1.6. Here, the angle
δi0 is analytically determined for the 2D flow as indicated
above; the angle θc0 for the axisymmetric flow is unknown
in advance. Note, a virtually flat Mach disk was obtained in
a numerical computation of the axisymmetric flow at M = 4
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and θc = 3.5◦ [10]. Altogether, numerical computations
aimed at examining the axisymmetric flows with a flat Mach
disk at a certain angle 0 < θc0 < δi0 would be compli-
cated because the Mach disc size has to decrease essentially
with decreasing θc. The latter was shown analytically [10].
Small Mach disks are not resolved in numerical computa-
tions of axisymmetric supersonic flows and in experiments,
so that, as noted in [10], “an illusory regular reflection” with a
quasi-conical reflected shock wave is observed near the axis.
Generally, the problem as to the determination of the exact
conditions at which the flat Mach disk forms in the steady
axisymmetric supersonic converging flows needs further
investigation.

The secondary shock polar 6 corresponding to δi = 12◦
is presented in Fig. 2 for which there is no intersection with
the initial shock polar 1, i.e., there is no Mach triple-shock
solution. An irregular triple-shock configuration does form
experimentally in this case. This situation is known as the
von Neumann paradox, and the associated reflection is called
the von Neumann reflection. The secondary shock polar 4
intersects the initial shock polar 1 at a point with δt = δi,
where the slope of the secondary shock to the velocity ahead
of it equalsβ = π/2, i.e., this shock is normal. The secondary
shock polar 5 corresponding to δi = 10◦ intersects the initial
shock polar 1 at a point with δt = δi + δr > δi on the right of
the point corresponding to δt = δi. It is also known that the
interaction of shocks in the latter case has to correspond to
an irregular triple-shock configuration of the same type that
occurs under the conditions of the von Neumann paradox
(see [12,13]). The case δt = δi is transitional between the
Mach and von Neumann reflections.

There are a considerable number of publications on exper-
imental and theoretical studies of the von Neumann paradox
in the 2D flows; a detailed review is presented in [13]. Numer-
ical simulations were made to refine theoretical views of this
subject in the framework of the ideal gas dynamic model.
One of the approaches used to resolve the von Neumann
paradox was the accounting of viscous effects, which was
based on experimentally observed flow patterns. Sternberg
gave an adequate semi-quantitative solution [14]. The von
Neumann irregular reflection was computed in [15] with the
Navier–Stokes code.

The limiting case should be noted with regard to secondary
shocks, and it corresponds to the angle δi = δM=1 at the
sonic point 7 of the initial shock polar 1. There is no proper
secondary shock polar in this case; however theoretically,
the secondary shock could be initiated as a normal shock
in the flow with the sonic velocity Ms = 1 and p̄s = 2.15
behind the initial shock. The Mach disk in this case also has
to begin from the same sonic point where its slope and the
relative pressure behind it have to correspond to the incident
longitudinally curved shock at δ = δM=1. This Mach disk has

to continue in a direction to the axis with its transformation
into the normal shock at this axis; particularly, the pressure
behind it has to increase up to p̄s = 2.82. The resulting
Mach disk has to be highly convex away from the oncoming
flow. The described limiting case virtually corresponds to
Ferri’s assumptions for the above-mentioned axisymmetric
supersonic flow in the funnel-shaped inlet [2,3].

Thus, the flow example considered for the analysis of
the irregular interaction of the initial incident longitudinally
curved shock wave and the Mach disk in steady axisymmetric
supersonic converging flows demonstrates two possible types
of these interactions. One type fits the single triple-shock
Mach reflection; another meets the von Neumann paradox
conditions. A particular interaction occurring in such a flow
at a preset free-stream Mach number is determined by the
angle δi of flow deflection behind the incident shock just near
the triple-shock intersection, but this angle depends on the
development of the incident longitudinally curved shock gen-
erated at the initial flow deflection angle θc. The range of the
indicated interactions depending on the angle θc is bounded
by the following theoretically possible limiting irregular con-
figurations. On the one hand, it is the configuration with a
flat Mach disk which can form at a small angle θc; it should
be of a very small transverse size. On the other hand, it is the
above-mentioned Ferri’s limiting triple-shock configuration
when the reflected shock polar is degenerate.

As for the steady reflections of wedge-generated shock
waves in two-dimensional supersonic flows, the following
problem is significant, being highlighted by a number of
investigators. Only either regular or irregular reflection is
possible at M < 2.2; however, at higher Mach numbers
M > 2.2, a domain of dual solution exists where both reg-
ular and irregular reflection is possible. There is no such
problem for steady axisymmetric flows due to the mentioned
impossibility of regular reflection of a conical shock wave
incident onto the axis in such flows.

The following dissimilarity between the wave structure in
axisymmetric flows with a Mach disk and in two-dimensional
flows with a Mach stem should be noted. The incident wedge-
generated shock in the two-dimensional flow is straight
linear, and its parameters do not vary downstream so that
the type of its irregular reflection is uniquely determined and
does not depend on the Mach stem position. The parame-
ters of the initial incident longitudinally curved shock in the
axisymmetric flow vary downstream; that is why a contin-
uous family of particular irregular triple-shock solutions is
possible according to the Mach disk position which is previ-
ously unknown. The numerical solution of the problem by the
pseudo-unsteady method yields a particular irregular triple-
shock configuration and its parameters, including a Mach
disk position. The configurations obtained in the computed
examples of flows will be illustrated below.
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3 Numerical technique and flow conditions

The numerical simulation and investigation of the consid-
ered flows in the present work was performed with the use of
codes provided by ANSYS Fluent software. The Navier–
Stokes codes for turbulent flows and the Euler code for
inviscid flows were applied. The problem was solved by
the pseudo-unsteady method, in the form implemented in
ANSYS Fluent, with initialization of the free stream para-
meters. Adiabatic flows of an ideal gas (air) with the ratio of
specific heats γ = 7/5 and with the stagnation temperature
constant everywhere were considered.

A general approach to a problem is based on works [15,16]
where the problems of the three-shock interaction in the
cases of irregular reflections of strong and weak shock waves
in the 2D flows were solved numerically with the use of
Navier–Stokes equations in comparison to the direct simu-
lation Monte Carlo method. Convergence of the numerical
solution of the Navier–Stokes equations was analyzed as the
Reynolds number increased from ReL ∼ 103 to ReL ∼ 109

where the reference length L pertains to the wedge generat-
ing the incident shock. There were no significant differences
in the triple-shock configurations and in the behavior of
the numerical solutions in the pressure ratio-flow deflection
angle plane at high Reynolds numbers.

Density-based, time-explicit codes and k-ω SST turbu-
lence model provided by ANSYS Fluent software were used
in the present work. Grids with uniform spacing were used;
the overall number of grid cells was up to 5 × 106. A
set of computations was performed with increasing a refer-
ence step in the radial direction from D0/1000 to D0/2000;
here, D0 is the duct entrance diameter or the initial overex-
panded jet diameter. The shock interaction type for a given
input data did not change with the increase in reference
step; there was no significant quantitative difference in the
computation results. The step D0/2000 was used in further
computations.

The diameter of the entrance cross section equal to 1 m
was taken as a reference size in computations of the flows in
convergent conical ducts. Examples of the computed flows
are presented below for the following free-stream Mach num-
bers and angles of the conical funnel: M = 1.6, θc = 5◦ and
M = 2.0, θc = 10◦. The static free-stream pressure and
temperature were equal to p∞ = 104 Pa and T∞ = 300 K;
the unit Reynolds numbers had the values from 35 × 106

up to 50 × 106 1/m. The flows in overexpanded jets were
computed for the case of these flows exhausting into still air,
the initial jet diameter was equal to 1 m, and the air pressure
was pa = 104 Pa. The jets were considered to have the para-
meters Mj = 1.6, pj/pa = 0.7 and Mj = 2, pj/pa = 0.6.

The static temperature of the jets was equal to Tj = 300 K,

and the unit Reynolds number values were 24 × 106 and
26 × 1061/m.

4 Computed flow patterns in convergent conical
ducts

The figures of the computed flow patterns are presented here-
after over the coordinates (x, y)where the x-coordinate along
the duct axis and the y-coordinate in the radial direction are
equivalent to the normalized x̄ = x/D0 and ȳ = y/D0 taking
into account D0 = 1 m. That is why they can be treated either
as dimensionless or as having dimensionality of meters; the
latter may be of any meaning in terms of viscous flows.

The first computed example of a flow pattern in a conical
funnel duct is shown in Fig. 3 for M = 2 and θc = 10◦, a
field of the Mach number isolines is pictured, and the Mach
number values are also marked at individual points of the
flow field. The Mach disk of diameter D̄M = DM/D0 ≈
0.315 ± 0.05 is located at a distance x̄M = xM/D0 ≈ 0.395
from the entrance cross section. The shock polars corre-
sponding to this case are presented in Fig. 4. First, polar 1
is plotted, which presents shocks forming in the free-stream
flow with M = 2. The parameters of the initial incident lon-
gitudinally curved shock and the Mach disk correspond to
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Fig. 3 Flow pattern (field of Mach number isolines) in a funnel-shaped
duct at M = 2 and θc = 10◦
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Fig. 4 Shock polars for the flow in a funnel-shaped duct at M = 2 and
θc = 10◦
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this polar. Polar 2 corresponds to a reflected shock just near
the triple intersection of the shocks.

Regarding the polars of the reflected shocks, namely
polar 2 in Fig. 4 and the analogous polars in other figures
below, the following should be noted: the initial incident
longitudinally curved shock in the considered axisymmet-
ric flows has no analytical solution at present. Since this
shock is computed numerically, it has a certain thickness
across which the flow parameters vary. As the shock is lon-
gitudinally curved, flow parameters behind it vary also in a
direction tangent to the shock. That is why there is no point
behind this shock exactly corresponding to the point of the
incident shocks polar 1 where the reflected shock should the-
oretically form if the shocks have negligible thickness. Polar
2 in Fig. 4 was determined for flow parameters δi = 16.2◦,
Ms = 1.4, and p̄s = 2.34 just behind the initial incident
longitudinally curved shock along a streamline defined by
the coordinate yt = 0.162 (Fig. 3). The above-mentioned
streamline was selected as close as possible to a “smeared”
zone of the triple-shock interaction. Transversal sizes of this
zone as well as the reflected shock also are not determined
rigorously by the numerical computation data. That is why
the flow parameters along the mentioned streamline behind
the incident shock and ahead of the reflected shock, partic-
ularly the values of δi and Ms, initial point for calculating
the reflected shock polar, could be determined only approxi-
mately. As a result, the initial point of the presented reflected
shock polar 2 with δi = 16.2◦ and p̄s = 2.34 is somewhat
shifted as compared to a position on the incident shock, which
could be determined theoretically in the case with shocks of
negligible thickness. The shift is rather small and is not dis-
cernible due to the scale of the figures.

The point δ = 0◦, p̄s = 4.5 of shock polar 1 corresponds
to a pressure jump through the Mach disk directly along the
axis; points of polar’s arc from δ = θc to δ = δi = 16.2◦
correspond to the incident longitudinally curved shock para-
meters. The angle δ = δt = 7.7◦ defines the point of
intersection of the reflected shock polar 2 with the strong
branch of the incident shock polars 1. This point is on the left
of the axis of polar 2 and on the right of the axis of polar 1, i.e.,
0 < δt < δr. Thereby, the reflected shock deflects the flow in
the direction opposite to the flow deflection behind the inci-
dent shock. According to these considerations, the analytical
solution for interaction of shocks at this point corresponds to
the single triple-shock Mach configuration.

The diamond-shaped symbols 3 in Fig. 4 show variation
of the relative pressure just behind the Mach disk and the
reflected shock in the numerically computed flow pattern
when the radial coordinate varies from y = 0, where δ ≈ 0◦
and p̄s ≈ 4.5, up to y = 0.24, in which δ ≈ 2.45◦ and
p̄s ≈ 3.83. One can see that the transition from the flow
parameters behind the Mach disk to those behind the reflected
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Fig. 5 Flow pattern (field of Mach number isolines) in a funnel-shaped
duct at M = 1.6 and θc = 5◦
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Fig. 6 Shock polars for the flow in a funnel-shaped duct at M = 1.6
and θc = 5◦

shock at δ ≈ δt = 7.7◦ occurs with a deviation from the
strong branch of the incident shock.

Another computed example of the flow pattern in the coni-
cal funnel is presented in Fig. 5 for M = 1.6 and θc = 5◦. The
Mach disk of diameter D̄M ≈ 0.195 ± 0.005 is located at a
distance x̄M ≈ 0.38 from the entrance cross section. Polar 1
of shocks forming in the free-stream flow with M = 1.6
and polar 2 of the reflected shock forming just near the
triple intersection of the shocks for this case are presented
in Fig. 6. Polar 2 in Fig. 6 was determined for the flow
parameters δi = 10.2◦, Ms = 1.22, and p̄s = 1.66 just
behind the initial incident longitudinally curved shock along
a streamline defined by a coordinate yt = 0.104. Polar 2 of
the reflected shock intersects the strong branch of the inci-
dent shock polar 1 on the right of its own axis at a point
with δt = 13.4◦ > δi = 10.2◦. The irregular interaction
of shocks in this case has to correspond, as it was ana-
lyzed above, to the triple-shock configuration of the same
type that occurs under the conditions of the von Neumann
paradox.
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Let us consider another secondary shock with a polar for
which positions of its axis at δr = 8.4◦ and the point δt = 8.4◦
of its intersection with shock polar 1 are coincident. Polar 3
of this shock is also plotted in Fig. 6. This shock has an
inclination angle β = π/2 with respect to the flow direction
immediately in front of it, i.e., this shock is normal in the
flow behind the initial shock wave.

The diamond-shaped symbols 4 in Fig. 6 show varia-
tion of the relative pressure just behind the Mach disk and
the reflected shock in the numerically computed flow pat-
tern when the radial coordinate varies from y = 0, where
δ ≈ 0◦ and p̄s ≈ 2.82, up to y = 0.27, where δ ≈ 0.4◦ and
p̄s ≈ 2.14. In this case, as in the previous one, the transi-
tion from the flow parameters behind the Mach disk to those
behind the reflected shock occurs with a deviation from the
strong branch of the incident shock beginning from a point
at δ ≈ 8.4◦, just near the position of to the axis of polar 3 for
the reflected shock with the inclination angle β = π/2. Sub-
sequently, this transition culminates on the reflected shock
polar 2. That is why one can assume that the reflected shock
with polar 2 is incipient immediately at the triple-shock inter-
action as a normal shock; after that, its slope decreases as it
emerges from the zone of immediate interaction. Note that
the reflected shock with polar 2 remains strong; the flow
velocity behind this shock is subsonic.

For the above computed flow patterns, it is worth noting
the formation of a shear layer with entropy varying across it;
the layer develops downstream immediately from the local
zone of the irregular triple-shock interaction. The formation
of this specific layer at the triple-shock interaction conforms
to the concept of Sternberg [14] explaining the triple-shock
interaction under the conditions of the von Neumann para-
dox. The shocks in the viscous flow have a finite thickness,
so that the zone of triple-shock interaction has a transverse
size of the same order. That is why the transition of flow
parameters in the transverse direction just downstream of
this interaction from the state behind the Mach disk to the
state behind the reflected shock wave occurs continuously
rather than in a jump described by the Rankine–Hugoniot
relations. The mentioned shear layer, in the case of the sin-
gle triple-shock Mach configuration, develops instead of the
slip surface of the theoretically zero thickness. In the case of
the irregular triple-shock configuration of the von Neumann
paradox type, this layer develops as a zone of transition from
the state behind the Mach disk described by the Rankine–
Hugoniot jump relations to the state behind the reflected
shock also described by the same relations.

The types of the irregular triple-shock configurations
obtained in computations of steady axisymmetric flows with
a Mach disk in the present work are the same as those
investigated by Ivanov et al. [15] and Khotyanovsky et al.
[16], who studied the reflection of wedge-generated shock
waves with the formation of the Mach stem in steady two-

dimensional supersonic flows. The reflection problems were
solved numerically with the Navier–Stokes solver and com-
pared with the results computed by the direct simulation
Monte Carlo method. In [16], irregular reflection of strong
shock waves was considered at M = 4, γ = 5/3, and
θw = 25◦ in the case where the single triple-shock Mach
configuration occurred. It was found that the transition of
flow parameters from the state behind the Mach disk to the
state behind the reflected shock wave, with increase in the
transverse coordinate, does not occur in a jump described by
the Rankine–Hugoniot relations; instead, it occurs continu-
ously with deviation from the strong branch of the incident
shock. The results gained in [16] testify to the convergence of
the numerical solution predicted by the Navier–Stokes code
to the theoretical triple-shock Mach configuration. In [15],
irregular reflection of the oblique shock wave was consid-
ered under the conditions of the von Neumann paradox at
M = 1.7, γ = 5/3, θw = 12◦ and 13.5◦. Here, the triple-
shock interaction at θw = 12◦ has to occur at the crossing
of the polars of the incident and reflected shock waves on
the right of the reflection shock axis; at θw = 13.5◦, the
polars of the incident and reflected shock waves do not inter-
sect. As noted in [15], the presumptions of Sternberg [14]
about a transitional zone of triple-shock interaction between
the flow domains where the Rankine–Hugoniot relations are
valid were confirmed by computations.

Thus, the irregular triple-shock configurations in the
present computations of steady axisymmetric flows with a
Mach disk correspond in general to those forming in reflec-
tion of the wedge-generated shock wave with Mach stem in
steady two-dimensional supersonic flows.

5 Flow patterns in overexpanded jets

It is evident that the flows in axisymmetric supersonic over-
expanded jets exhausting into still air or into an external
air stream are analogous to the above-considered supersonic
axisymmetric flows in converging conical ducts.

The flow patterns with a Mach disk are generally typi-
cal of supersonic axisymmetric non-isobaric jets as reviewed
in [17]. A Mach disk trails either an initial barrel-shaped
shock wave in underexpanded jets or an initial longitudinally
curved shock wave in overexpanded jets. The irregular triple-
shock solutions known for two-dimensional flows seem to be
possible for the interaction of the initial shock and a Mach
disk in axisymmetric jets. These are the above-mentioned
direct, inverse, and stationary irregular Mach configurations
with formation of a Mach stem, as defined by Courant
and Friedrichs [4]. The inverse Mach reflection occurs in
underexpanded jets if the angle of flow deflection in the triple-
shock solution is δt < 0 (the flow geometry definitions are
given above in the present paper); in this case, the slip line
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Fig. 7 Flow pattern (field of Mach number isolines) in an exhausting
jet at Mj = 1.6 and pj/pa = 0.7

slopes away from the flow axis, and the Mach disk is con-
vex toward the flow ahead of it. The direct Mach reflection
occurs in overexpanded jets at δt > 0; in this case, the slip
line slopes toward the flow axis, and the Mach disk is convex
away from the flow ahead of it. The stationary Mach reflec-
tion separates these Mach reflection types; it corresponds to
the case of intersection of the reflected shock polar with the
strong branch of the incident shock polar at δt = 0; the Mach
disk is flat in this case. The plane structure of a Mach disk is
assumed in many works aimed at investigating axisymmetric
jets to determine the Mach disk position. It seems there are
no publications with a detailed analysis as to when and which
an irregular triple-shock configuration occurs in such flows.

Examples of axisymmetric supersonic turbulent overex-
panded jets exhausting into still air with a pressure pa were
computed in the present work. The jet with an initial Mach
number Mj = 1.6 at a level of overexpansion pj/pa = 0.7
and the jet with Mj = 2 at pj/pa = 0.6 were considered. The
overexpansion levels were preset so that the initial intensity
ps/pj of the longitudinally curved shock corresponded to
the initial angles of flow deflection θc ≈ 5◦ and θc ≈ 10◦,
respectively, which were considered above for the flows in
the funnel-shaped ducts.

The flow patterns and shock polars are depicted in Figs. 7
and 8 for the jet with Mj = 1.6 and in Figs. 9 and 10 for the jet
with Mj = 2; the data are similar to those for the flows in the
funnel-shaped duct. In Fig. 8 (the jet with Mj = 1.6), polar 1
of the initial incident longitudinally curved shock and polar
2 of the reflected shock just near the triple intersection of the
shocks are presented as before. Polar 3 of another reflected
shock is shown in addition; the positions of its axis and the
point of intersection with polar 1 are coincident, and the incli-
nation angle of the reflected shock at δ = δt is β = π/2 with
respect to the velocity ahead of it, i.e., this shock is normal.
The obtained results demonstrate firstly that the triple-shock
solution for Mj = 1.6 and pj/pa = 0.7 corresponds to an
irregular triple-shock configuration of the same type that
occurs under the conditions of the von Neumann paradox.
Secondly, the solution for Mj = 2 and pj/pa = 0.6 corre-
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Fig. 8 Shock polars for the flow in an exhausting jet at Mj = 1.6 and
pj/pa = 0.7
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Fig. 9 Flow pattern (field of Mach number isolines) in an exhausting
jet at Mj = 2 and pj/pa = 0.6
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Fig. 10 Shock polars for the flow in an exhausting jet at Mj = 2 and
pj/pa = 0.6

sponds to the single triple-shock Mach configuration. The
diamond-shaped symbols 4 in Figs. 8 and 10 show how the
relative pressure just behind the Mach disk and the reflected
shock in the numerically computed flow patterns varies when
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the radial coordinate varies from the axis y = 0 to a certain
point behind the reflected shock. This variation occurs in
both cases with a deviation from the strong branch of inci-
dent shock polar 1 to the reflected shock polar 2, which is
the same as discussed above for the examples of the flow in
the funnel-shaped duct at M = 1.6, θc = 5◦ and M = 2,

θc = 10◦, respectively. Similarly, the shear layer with vary-
ing entropy develops downstream of the local zones of the
irregular triple-shock interaction.

6 Determining the Mach disk position

The subject of determining the position and size of the Mach
stem at the irregular reflection of wedge-generated shock
waves in steady two-dimensional supersonic flows or the
position and size of the Mach disk in steady axisymmetric
supersonic jets is of long-standing interest. For the reflec-
tion of the wedge-generated shock wave in two-dimensional
flows, a hypothesis based on one-dimensional treatment of
the virtual stream forming downstream of the Mach stem was
commonly used [12,18]. This stream is primarily subsonic;
the flow in it accelerates to form a virtual throat where the
flow velocity becomes sonic; the stream becomes supersonic
further downstream. The flow domain under consideration
usually includes an expansion wave emanating from the rear
edge of the wedge and impinging onto the virtual stream
near its sonic throat. Similar assumptions were used to deter-
mine the Mach disk in axisymmetric non-isobaric jets [19]
and the Mach stem in two-dimensional overexpanded invis-
cid jets [20]. The mentioned approach to determine the Mach
stem parameters through the sonic throat of the virtual stream
led to a hypothesis that the Mach stem position and, hence,
its height depend on the flow conditions downstream of it,
which was investigated analytically in Ref. [21]. Experiments
proved convincingly, however, that the Mach stem height at
the irregular reflection of wedge-generated shock waves in
the two-dimensional flows is not affected by the downstream
flow conditions [22]. In addition, it was shown analytically
[10] that the origin of the Mach disk and its size can be
accounted for properly by the amplification of the incident
longitudinally curved shock as it approaches the axis.

Let us consider an example that illustrates the conditions
determining the position and size of the Mach disk in a steady
axisymmetric flow in more detail. This is an inviscid flow at
M = 1.6 in a duct with an initial convergent conical fun-
nel of an angle θc = 5◦ and a following cylindrical part of
a constant cross-sectional area—a “throat” of the duct. This
flow was computed in a domain extending up to the exit cross
section at xf = 1.0; a set of values of the coordinate xc of the
initial cross section of the throat was considered. According
to the value xc, the relative cross-sectional area of the duct
throat varied, and an influence zone of the focused expansion
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Fig. 11 Pattern of an inviscid flow (field of Mach number isolines) in a
duct with funnel-shaped and cylindrical sections at M = 1.6, θc = 5◦,
and xc = 0.5

wave emanating from the break point xc on the virtual stream
downstream of the Mach disk shifted depending on xc. An
example of the inviscid flow pattern computed at xc = 0.5
is presented in Fig. 11, where the Mach number isolines are
visualized and the Mach number values are marked at indi-
vidual points in the flow field.

A Mach disk of diameter D̄M = 0.173 ± 0.012 is located
at a distance x̄M ≈ 0.396 ± 0.002. Downstream of the Mach
disk, a virtual subsonic stream forms; it is initially converg-
ing, further downstream, at x ≈ 0.65, a virtual throat forms
after which the stream becomes supersonic. Note that the flow
behind the reflected shock is subsonic near the Mach disk (at
y = 0.09. . .0.2), and this local subsonic sub-area extends
downstream along the virtual stream up to x ≈ 0.54. Above,
at y > 0.2, the flow behind the reflected shock is supersonic.
The expansion wave emanating from the break point xc = 0.5
passes through the supersonic flow field sub-area and acts
on the virtual stream beginning from x ≈ 0.6. The data
computed with varying xc reveal that this situation remains
unchanged in the range xc = 0.3. . .0.55, but the position and
size of the Mach disk do not vary. Note that the parameters of
the Mach disk obtained in this case just somewhat differ from
D̄M ≈ 0.195 ± 0.005 and x̄M ≈ 0.38 ± 0.002 presented
above for the viscous flow and computed in the shortened
domain with xf = 0.55 (Fig. 5) when there was no influence
of the expansion wave emanating from the wall end point
xf on the virtual stream. The difference is explained by the
displacement effect of the boundary layer developed on the
duct wall in the viscous flow case.

The flow field pattern for xc = 0.15 is given in Fig. 12,
a field of the arcsin (1/M) isolines is drawn, and the Mach
number values are marked at individual points of the flow
field. The expansion wave emanating from the break point
xc = 0.15 is incident onto the reflected shock at y =
0.09. . .0.2 near the Mach disk. A local subsonic flow sub-
area, where the isolines of arcsin (1/M) are absent, takes
place behind and somewhat above the Mach disk. In the con-
sidered flow case, a Mach disk with a diminished diameter
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D̄M = 0.123 ± 0.005 at a distance x̄M ≈ 0.412 ± 0.001
forms. This is explained by the influence of the expansion
wave on the subsonic part of the virtual stream forming
immediately behind the Mach disk.

The Mach disk in the flow in the computation at xc = 0.6
did not reach the steady position in the duct. The transfor-
mation of the flow field patterns in the iteration process is
illustrated in Fig. 13. At iteration numbers I < 15,000, an
irregular triple-shock configuration with a Mach disk formed,
being of the same type as that considered above and pre-
sented in Fig 11. The coordinate ys of the reflected shock
in the cross section x = xc = 0.6 is ys < yc (see Fig. 13
for I = 10,000). At I ≈ 15,000, the reflected shock drifts
upstream and reaches the break point so that ys ≈ yc; fur-
ther, it begins to impinge onto the wall of the initial conical
funnel where it irregularly reflects with the formation of the
secondary triple-shock configuration, as presented in Fig. 13
for I = 25,000. The flow over the entire cross section
xc = 0.6 is subsonic in this case. The formed secondary
triple-shock configuration moves upstream, up to the instant
when it merges with the primary one, as shown in Fig. 13 for
I = 40,000.

It should be noted that, already from I ≈ 17,000 and
up to I ≈ 37,000, the parameters of the primary triple-
shock configuration with the Mach disk of diameter D̄M =
0.174 ± 0.006 located at the distance x̄M ≈ 0.396 ± 0.002
correspond to those for the steady-state flows computed at
xc = 0.3. . .0.55. At I > 37,000, the Mach disk begins to
move upstream with increase in its diameter up to the instant
when it goes out upstream from the duct and the flow pattern
with a bow shock in front of the duct entrance forms. Thus,
the supersonic compression inflow initially forming in the
duct with the initial convergent funnel breaks down—flow
choking occurs.

The simplest limiting condition of the supersonic flow
existence in a convergent duct without its choking, under
the one-dimensional consideration, is the decreasing of the
flow velocity to the critical one (M = 1) in a duct cross
section of the minimal cross-sectional area (in the throat).
The flow in the considered duct is substantially nonuniform.
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Fig. 13 Patterns of an inviscid flow (field of Mach number isolines) at
flow steadying in a duct with funnel-shaped and cylindrical sections at
M = 1.6, δc = 5◦, and xc = 0.6

It is supersonic along the duct wall and has local subsonic
zones along the axis. That is why the one-dimensional critical
condition of flow choking is not applicable.

Let us consider such a condition for a nonuniform flow
assumed by the author and presented in Ref. [23]. It is based
on the following reasoning. The mass flow rate for the adi-
abatic flow in a duct with the total temperature constant
everywhere can be determined in the form:

ṁ =
∫

A

ρV cos δ dA = km√
RuT0

∫

A

p0q(M) cos δdA.
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Here, ρ, V , M , p0, and T0 are the local values of density,
velocity, Mach number, total pressure, and total temperature
of the flow, δ is the angle of inclination of the velocity vector
to the duct axis, A is the cross-sectional area, Ru is the spe-

cific gas constant, km =
√

γ (2/(γ + 1))(γ+ 1)/2/(γ− 1) is

a coefficient depending on the ratio of specific heats γ , and

q(M) = M
[

2
γ+1

(
1 + γ−1

2 M2
)]− γ+1

2(γ−1)
is the known gas

dynamic function of the reduced flow rate.

Determining the mass-averaged total pressure and the flow
rate in the form

p̃0 =
∫
A p0ρV cos δ dA

ṁ
=

∫
A p2

0q(M) cos δ dA∫
A p0q(M) cos δ dA

,

ṁ = km√
RuT0

p̃0q̃(M)A,

one can obtain the following integral function of the reduced
flow rate for the nonuniform flow

q̃(M) = 1

A

(∫
A p0q(M) cos δ dA

)2

∫
A p2

0q(M) cos δ dA
.

It would be expected that the nonuniform flow choking
occurs as q̃(M) → 1 in the duct throat, which is equiv-
alent to the critical condition of the one-dimensional flow
choking q(M) = 1 at M = 1. Note that two values of
the flow Mach number M̃sub < 1 and M̃sup > 1 corre-
sponding to a value q̃(M) < 1 can be determined in a cross
section of the duct ahead of the critical one; the correct value
has to be chosen on the basis of the flow development his-
tory.

The above-mentioned results of the computation of the
flow reaching the steady state at xc = 0.6 demonstrate that,
at the beginning of the iteration process, the value of q̃(M)

in the exit cross section at xf = 1 increases (in particular,
q̃(M) = 0.9691 at I = 10,000 and q̃(M) = 0.9955 at I =
15,000), then the value of q̃(M) remains virtually unvaried.
The difference from q̃(M) = 1 does not exceed fractions
of a percent up to the instant when the flow pattern with
a bow shock in front of the duct entrance becomes steady.
Note that the relative cross-sectional throat area at xc = 0.6
is Āth = Ath/A0 = 0.801, which can be compared with the
data for the steady-state flow without choking at xc = 0.55
when Āth = 0.817 and q̃(M) = 0.987. The presented data
demonstrate that the flow choking takes place when xc =
0.6.

Considering the example of the inviscid axisymmetric
flow in the duct with the initial convergent conical funnel and
the following cylindrical part of a constant cross-sectional
area, i.e., the throat, demonstrates the following. There exists

a certain range of the break point coordinate xc determin-
ing the longitudinal position of the initial cross section of
the throat at which the Mach disk position and size do
not depend on the focused expansion wave emanating from
the break point on the virtual stream downstream of the
Mach disk. It can be associated with a particular geom-
etry of the duct. However, from the presented examples
of the flow, one can derive a conclusion on the above-
considered problem of overexpanded jets exhausting into
still air, namely, the non-focused expansion wave forming
in such flows should not affect the position and size of a
Mach disk.

Specific conditions determining the Mach disk position in
axisymmetric supersonic converging flows, considered with
their numerical simulation, are not revealed. The numerical
solution of the problem by the pseudo-unsteady method gives
a particular irregular triple-shock configuration, which cor-
responds to the integral equations of the conservation laws
(flow rate, energy, and momentum) for the steady flow. The
flow geometry, including the Mach disk position, is deter-
mined by the preset boundary and initial flow data.

7 Conclusions

Steady axisymmetric supersonic converging flows with irreg-
ular interaction of the initial incident longitudinally curved
shock wave and a Mach disk with formation of the reflected
shock were investigated. Numerical computations of viscous
and inviscid flows were performed by the pseudo-unsteady
method for different conditions for the free-stream Mach
numbers and initial angles of deflection to the axis of the flow
behind the longitudinally curved shock wave. The interac-
tion of shocks leads to irregular triple-shock configurations
similar to the ones in steady two-dimensional flows where
irregular reflection of the wedge-generated shock from the
wall occurs with the formation of a Mach stem. Either the
single triple-shock Mach configuration occurred or the triple-
shock configuration corresponding to the von Neumann
paradox conditions formed, depending on the governing
parameters. The shear layer with entropy varying across
the layer developed downstream of a local zone of irregu-
lar triple-shock interaction.

Conditions determining the position and size of a Mach
disk were considered with a computed example of an invis-
cid axisymmetric flow in the duct with an initial convergent
conical section and a following cylindrical section of a con-
stant cross-sectional area, i.e., the throat. It was demonstrated
that in a certain range of the coordinate xc, determining the
longitudinal position of the initial cross section of the throat,
the Mach disk parameters are independent of the expansion
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wave emanating from the break point xc and incident onto
the virtual stream forming downstream of the Mach disk.
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