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Abstract
Identification of stable potential reference points (PRPs) is themost critical stage of computations in conventional deformation
analysis of geodetic control networks. An appropriate matching of two adjusted networks at stable PRPs plays a key role in
this task. Unfortunately, the geodetic control networks are free networks suffering from datum defect and can realize infinitely
many possible matchings at PRPs. Therefore, accurate estimation of PRP displacements and later efficient identification of
stable PRPs is a quite difficult task. This studymakes some step forward in this field and presents a newapproach to deformation
analysis, including the identification of stable PRPs. The idea behind this approach is inspired by the theory of squaredMsplit(q)

estimation and lies in the non-conventional assumption that estimated displacements of PRPs can be the realizations—not of
one but—of many congruence models, which simultaneously realize many different matchings. Displacements of unstable
PRPs in such a multi-split congruence model do not have such a negative effect on expected matching at stable PRPs as in
the conventional robust S-transformation. Here, these displacements can be realizations of other congruence models and their
attention can be absorbed by other, unexpected, matchings. Thanks to this, the robustness of the suggested approach can be
relatively high. To establish what the number of congruence models is in a given case, which model is the one expected and
whether the chosen model is valid, the statistical hypothesis tests were proposed. The experiments performed on 1D and 2D
simulated control networks showed that the presented approach can provide more accurate values of estimated displacements
than conventional approaches, and in consequence, more efficient results of stable PRPs identification, especially when there
exist more unstable PRPs than stable ones. In light of the above, the correct identification of stable PRPs and, in consequence,
the correct final estimation of controlled object point displacements are possible in cases when it has not been possible so
far.

Keywords Geodetic deformation analysis · Point displacement · Robust M-estimation · Squared Msplit(q) estimation ·
S-transformation

1 Introduction

One of the important functions of surveying and geodesy is
the deformationmonitoring of engineering structures and the
surface of Earth’s crust. The object or area under investiga-
tion is usually represented by a geodetic control network
which is measured in two or more epochs of time, and
the results of these measurements are then analyzed. The
models used in this analysis may be categorized into two
groups: descriptive models (Pelzer 1971; Niemeier 1981;
Chen 1983; Caspary 2000), which are employed in con-
ventional deformation analysis (CDA), and dynamic models

B Krzysztof Nowel
krzysztof.nowel@uwm.edu.pl

1 Institute of Geodesy, University of Warmia and Mazury in
Olsztyn, 1 Oczapowskiego Str., 10-719 Olsztyn, Poland

(Papo and Perelmuter 1991, 1993; Shahar and Even-Tzur
2014). The descriptive models may also be divided into
congruencemodels (also called staticmodels)which geomet-
rically describe the deformations by means of displacement
vectors and kinematic models which temporally describe
the deformations by means of displacement velocities and
accelerations. Generally, the descriptive models exclusively
examinedeformationswithout regard to their influencing fac-
tors and the object’s physical properties. While the dynamic
models are the extension of the descriptivemodelswhich link
deformations to their influencing factors (causative forces,
internal and external loads) and the object’s physical proper-
ties (material constants, extension coefficients, etc.) (Welsch
andHeunecke 2001), the typical geodeticmodels are congru-
ence models which are employed in CDA. In many geodetic
applications, congruence models provide completely suffi-
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cient information about a deformable body, its change in
shape and dimension, as well as rigid body movements and
local deformations (Chrzanowski and Chen 1990; Caspary
2000).

The simultaneous analysis of observations from two
epochs is performed in congruence models. It is usually
done between any two consecutive epochs and, additionally,
between the first and the current one. Thematching of objects
(represented by control network points) between both epochs
is carried out on the group of mutually stable points (the
group which has a congruent/rigid geometrical structure at
both considered epochs). However, the main problem is the
identification of such a group in the usually specified group of
potential reference points (PRPs). The geodetic control net-
works are free networks suffering from datum defect (e.g.,
Chen 1983, ch.4), whereby correct identification of mutually
stable points is rather difficult and it can be even impossible
with a large number of unstable points. An erroneous iden-
tification leads to erroneous defining of datum for estimated
object deformations and, in consequence, to disinformation.
The identification of mutually stable points is the only seri-
ous problem in congruence models, and it is still the subject
of interest for surveyors and geodesists (Baselga and García-
Asenjo 2016; Amiri-Simkooei et al. 2016; Aydin 2017).

Today, mutually stable points can be identified iteratively
with a global congruency test (GCT) or with a robust M-
estimation with a high level of reliability. The first iterative
step is the same for both approaches, and it involves the least
squares estimation of PRPs displacements (the so-called raw
displacements). A minimum trace datum is here defined for
all PRPs. In the first approach, unstable PRPs are succes-
sively removed from the computational base until all the
unstable points are identified. The test statistic can be based
on estimated displacements of PRPs (Pelzer 1971, 1974;
Niemeier 1981; Denli and Deniz 2003) or residuals (Kok
1982; Heck 1983; Gründig and Neureither 1985; Hekimoglu
et al. 2010). A functional model forces zero displacements
of PRPs in the second method; hence, any point displace-
ments and measurement errors are “pushed out” in values of
residuals. Despite the completely different algorithms, both
methods give equivalent results. In a robust approach, which
is especially useful in the deformation analysis of large and
very large control networks, unstable PRPs are not removed
from the computational base, but their participation in datum
is iteratively suppressed. The PRPs displacements from the
final S-transformation are then tested, one by one, to iden-
tify unstable points. This approach can be implemented by
two methods: robust S-transformation of coordinates differ-
ences (Chen 1983; Caspary and Borutta 1987; Chen et al.
1990; Caspary et al. 1990; Caspary 2000, p.130–132) or
robust M-estimation of observation differences (Nowel and
Kamiński 2014; Nowel 2015, 2016a). The literature also
provides new interesting approaches, such as the modern

non-iterative GCT approach, where all considered subsets of
non-congruent point patterns are tested (Velsink 2015, 2018;
Lehmann and Lösler 2017), or the R-estimation approach
(Duchnowski 2010, 2013). Furthermore, a completely dif-
ferent, non-conventional approach was recently presented
by Zienkiewicz (2014), Zienkiewicz and Baryla (2015),
Wiśniewski and Zienkiewicz (2016). The authors do not
identify mutually stable points and start an estimation of
an object deformation straight away. Datum is defined on
all PRPs with the zero displacement condition (the so-called
rigid datum instead of minimum trace datum). Any displace-
ments of PRPs appear in residuals and are separated with
Msplit estimation. However, this approach is quite limited
in practical applications because it does not tolerate a large
number of displaced object points.

Generally, the GCT approach and the robust approach
yield very comparable results (e.g., Caspary 2000,
p. 149–154). These approaches are universal, most mature
and commonly regarded as the most effective tools used
to identify mutually stable points. It is noteworthy that
these approaches dominate not only in a deformation anal-
ysis, but also in other similar issues of geodesy, e.g., in
the identification of observations without outliers. Unfortu-
nately, certain situations are known to exist in which even
these methods fail. For example, if the number of outliers
is much larger than that of the expected realizations in a
set, then such methods—especially the robust approach—-
may fail (Hampel et al. 1986, p. 12; Koch 1996, 2010,
p. 263). This also applies to identification of mutually stable
points in congruence models, where displaced PRPs may be
treated as outliers, and stable PRPs as expected realizations.
Whereas this paper presents and pretests a completely differ-
ent approach to the identification of mutually stable points,
unlike in the conventional congruencemodel, unstable points
are not suppressed or deleted froma computational base. This
approach is based on the concept of the Msplit(q) estimation
and allows for the simultaneous existence of many congru-
ence models which differ by the datum parameters. The
unstable points do not have such a negative effect on datum
parameters of expected congruence model as in conventional
approaches because these points can be the realizations of
other congruence models and their attention can be absorbed
by other datum parameters. Thanks to this, the robustness
of the suggested approach can be relatively high. The pre-
sented idea of applying Msplit(q) estimation in deformation
analysis is completely different from the one presented in
the literature and referenced earlier in this section. Most of
all, that simple concept, based on theMsplit estimation, does
not deal with the identification of stable PRPs and focuses
only on observation residuals disclosing some information
about unstable points, which can be treated as outliers.

The next part of the paper is organized as follows:
Sect. 2 describes the conventional robust approach to the S-
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transformation of deformations. Particular attention is paid
to a mathematical congruence model, an optimization prob-
lem which corresponds with this model and a solution for
it. Section 3 demonstrates the general idea of Msplit(q) esti-
mation. Section 4 presents, with reference to Sects. 2 and
3, the suggested approach to the S-transformation of defor-
mations. A research motivation is presented in Sect. 4.1.
The next subsections focus on a suggested multi-split math-
ematical congruence model, an optimization problem which
corresponds with this model and a suggested strategy for
its solution. A validation method for the solution is pre-
sented as well. Section 5 is devoted to numerical experiments
to demonstrate the suggested concept against conventional
ones. Section 6 gives the conclusions from the study.

2 Robust S-transformation of deformations

The approach proposed will be described in Sect. 4 in some
reference to robust S-transformation; therefore, this section
will be devoted to this approach.

Robust S-transformation, especially the iterativeweighted
similarity transformation (IWST) (Chen 1983; Caspary and
Borutta 1987), was used for deformation analysis of the
Tevatron atomic particle accelerator complex at the Fermi-
lab laboratory in the USA (Bocean et al. 2006). This method
was also implemented in the automated ALERT monitoring
system developed by the Canadian Centre for Geodetic Engi-
neering (Wilkins et al. 2003) and in the universal GeoLab
geodetic computation software (Chrzanowski et al. 2011). A
robust S-transformation is especially useful in the deforma-
tion analysis of large and very large control networks, such as
the network of Tevatron accelerator, which comprised nearly
2000 control points.With such networks, calculations by this
method are much more convenient than with GCT, and the
quality of results is at a similar, satisfying level.

2.1 Congruencemodel

Separate adjusted networks—represented by the least
squares (LS) estimator of PRP coordinate vector at an initial
epoch, x̂1(u × 1), and a current epoch, x̂2(u × 1)—are the
input data for the robust S-transformation approach. These
data may have different datums at both epochs—due to,
e.g., unstable points being used in a computational base in
epoch 2 or different computational bases being used at both
epochs—hence, the raw displacement vector:

�x̂ � x̂2 − x̂1 (1)

may show biased values of possible single point displace-
ments. As a result, the network adjusted at epoch 2 may be
freely shifted, rotated and rescaled in relation to the network

adjusted at epoch 1. Assuming small values of �x̂ , a linear
model of a similarity transformation that retains the geometry
of the network is employed:

x̂2 � x̂1 +Ht + d ⇒ �x̂ � Ht + d (2)

where t(h × 1) is the vector of translation, rotation, scale
distortion (datum parameters),H(u × h) is the designmatrix
of similarity transformation (e.g., Chen 1983 p. 55; Chen
et al. 1990, p. 142; Caspary et al. 1990, p. 51; Caspary 2000,
p. 31–33,131), and d(u × 1) is the vector of discrepancies.
The vector of raw displacements (1) is considered as a vector
of observations of a deformation field which can be modeled
in some way.

In a geometrical sense, the idea behind the robust S-
transformation approach is based on the matching of both
adjusted networks at mutually stable points to disclose the
unbiased values of possible single point displacements. It
means that one estimates such a vector of datum param-
eters for displacement vector, t̂, which realizes a network
congruency at mutually stable points and, in consequence,
clearly discloses possible single point displacements in the
residual vector, d̂. In other words, the raw displacement vec-
tor, �x , is here transformed to such datum (by means of
estimated datum parameters, t̂) which most clearly shows a
deformation pattern, d̂. However, the question remains:What
estimation/matching method should be used?

The choice of the appropriate estimation method is here
justified in some probabilistic assumption. Namely, one
assumes that the majority of points in the PRP group are sta-
ble, with only individual points which may be unstable. With
regard to the functional model (2) and assuming that the esti-
mated coordinates are normally distributed, one assumes that
the raw displacement vector consists mainly of regular and
normally distributed displacements, which come from dif-
ferent datums at both epochs and from a measurement noise,
and only some irregular outlying displacements, which addi-
tionally come from single point displacements (analogously
as, e.g., a vector of observations with suspected gross errors).
In accordance with this assumption and in regard to the con-
temporary robust statistics (Huber 1981), one can formulate
a probabilistic model of the raw displacement vector:

�x̂ ∼ (1 − τ) · Pn
(
Ht, Ĉ�x̂

)
︸ ︷︷ ︸

stable points

+ τ · Pd
(
Ht, c · Ĉ�x̂

)
︸ ︷︷ ︸

displaced points

(3)

where τ is a small number (0<τ <0.5), Ĉ�x̂ is the esti-
mated covariance matrix of raw displacements, Pn(·) means
accepted normal distribution, Pd(·) means some other unac-
cepted probability distribution, and c >1. Stable PRPs have
the probability of (1–τ ), and displaced PRPs have the prob-
ability of τ . Such τ -contaminated normal distribution is
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also known as the variance inflation (VI) model and can
be interpreted as a probabilistic foundation of the robust S-
transformation approach.

2.2 Estimation

The optimization condition for the residual vector results
from the congruence model (2), (3) and has the following
form:

min
t

u∑
i�1

ρ
(
�x̂i ;hi t

)
(4)

where ρ(·) is some objective function from the robust
M-estimation class, also taking into account the L1-norm
objective function:

min
t

u∑
i�1

∣∣�x̂i − hi t
∣∣ ⇔ min

t

u∑
i�1

|di | (5)

which is implemented in the most popular method of the
robust S-transformation approach, i.e., the IWST method,
and hi is the ith row of the matrix H. According to Huber
(1981), to find the minimum of the multiple differentiable
and convex objective function (4) for the linear model (2),
one can determine the gradient of this function and equate
this gradient to zero. Then, the numerical solution for theM-
estimator of datum parameter vector and discrepancy vector
has the following form:

t̂k �
(
HTWkH

)−1
HTWk�x̂ , W

k � diag
(
wk
i

)
(6.1)

d̂k � �x̂ − Ht̂ �
(
I − H

(
HTWkH

)−1
HTWk

)
�x̂ (6.2)

where k �1, 2,… is an iterative step, I(u × u) is the iden-
tity matrix, and wi is any weight function of the selected
method from the robust M-estimation class. For example,
the L1-norm weight function will have the following form:

wk
i � 1/

∣∣∣d̂ki
∣∣∣ (IWST method), where d̂ki is the given compo-

nent of vector d̂k for single PRP (d̂kxi , d̂
k
yi or d̂

k
zi ). The weights

are formulated only for PRPs, and zero values should be
indicated for controlled object points. The computation is ini-
tialized, k �0, with theweightsW � I (LS solution), and the
iteration process is repeated until convergence is achieved.
The final residual vector (6.2) is the estimated vector of single
point displacements. Unfortunately, the covariance matrix of
this vector cannot be computed in a familiar way since the
relation between�x̂ and d̂ is nonlinear; thus, the law of vari-
ance propagation does not apply. However, an approximate
covariance matrix may be here the one which realizes the
minimum trace or the one obtained from the law of vari-
ance propagation according to (6.2). Note that the covariance

Fig. 1 Matching of PRP networks “adjusted” in two epochs; point 3 is
displaced

information is not involved in the original criterion of the
IWST method (5). However, nothing stands in the way to
involve the one of the approximate covariance matrices in
this criterion.

The estimation method is robust in the sense that large
displacements of single points do not affect the estimated
vector of datum parameters, t̂. The displacements emerge as
residuals with a full magnitude and do not contaminate the
residuals of the stable points. To demonstrate the behavior
of the robust S-transformation approach and to compare its
performance with the ordinary (LS) S-transformation, a sim-
ple example of two-dimensional subnetwork consisting of
four PRPs is presented below (Fig. 1). For simplicity, it was
assumed that the measurement errors did not exist.

Obviously, the matching which is based on the ordinary
S-transformation fails to detect the single point displace-
ments. With the robust S-transformation, no problems arise
as long as the majority of points conform to the congru-
ence model (2), i.e., are mutually stable. However, when the
majority of points will not conform to model (2) the robust
S-transformation also might fail.

2.3 Statistical testing and final S-transformation
Of course, the measurement errors exist in the real world and
the separation of stable and unstable PRPs is necessary by
means of statistical tests. The simple null hypothesis: “all
PRPs are stable” against the composite alternative hypothe-
sis: “there is at least one displaced PRP”:

H0 : E
(
d̂
)

� 0 vs HA : E
(
d̂
)

�� 0 (7)

is here tested by global F-test (Caspary 2000; Aydin 2012)
for the significance level:

P{accept HA|H0} � α (8)
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If the test does not pass, the simple null hypotheses (point
i is stable) and the composite alternative hypotheses (point i
is unstable):

H0,i : E
(
d̂i
)

� 0 vs HA,i : E
(
d̂i
)

�� 0, i � 1, . . . ,m

(9)

are sequentially tested for each PRP with approximate local
F-tests for the significance level:

P
{
accept HA,i

∣∣H0,i
} � αi � 1 − (1 − α)1/m ≈ α/m (10)

where m is the number of all PRPs (Caspary 2000, p. 132).
Since the local F-tests are stochastically dependent it is not
possible to develop a statistically rigorous procedure. It is
also worth noting that these tests are not S-system (reference
system) invariant.

After stable PRPs are identified a final S-transformation
for all the network points and their covariance matrices
should be conducted to the minimum trace datum defined on
the previously identified stable PRPs. The estimator of dis-
placement vector still has the form of (6.2), but the weight
matrix now fulfills the role of datum selector matrix and has
the form W � diag(I, 0), where ones concern the datum
points and zeros other points. The deformations of the object
points (including also the unstable PRPs), as computed from
final S-transformation, form the basis for all further deforma-
tion analyses which may concern rigid body displacement,
deformation tensor and/or polynomial deformation model.
More information on the robust S-transformation approach
can be found in the papers: Chen (1983), Chen et al. (1990),
Caspary and Borutta (1987), Caspary (2000, p. 130–132).

3 The general idea of Msplit(q) estimation

Recently, Wiśniewski (2009, 2010) proposed certain gen-
eralizations of M-estimation, called Msplit and Msplit(q)

estimation. The idea behind this development is based on the
assumption that a random sample can be an unsteadymixture
of realizations—not of one, but of many (q)—competitive
random variables whose probability distributions differ, e.g.,
by the location parameter (expected/mean value). However,
it is not known a priori which random variable is proper for a
particular value of random sample. Figure 2 shows the results
of the robust M-estimation, the Msplit(q) estimation and the
LS estimation on a certain split sample.

Let us assume that the above random sample contains
“good” values: the points in the middle, and two extreme
groups of outliers: the other points. The robustM-estimation
treats two extreme groups as outliers and the middle group
as “good.” However, the estimator of location parameter is
not fitted well into the “good” values because it is slightly

Fig. 2 Results of theMsplit(q) estimation for q �3, robustM-estimation
and LS estimation (based on Wiśniewski 2010)

absorbed by the left outliers. A similar solution comes from
the LS estimation, whereas the Msplit(q) estimation allows
to treat the random sample as the realizations of three ran-
dom variables. In a simultaneous and joint optimization
process, each estimator finds its values. Other values do not
attract the estimator, because the other estimators absorb their
attention. Note that the Msplit(q) estimation for two random
variables (q �2) is treated as a special case of the pre-
sented theory and is called theMsplit estimation (Wiśniewski
2009).

If a functional model is linear(ized) and concerns, for
example, some observations, y(n × 1), which are realiza-
tions of q random variables differing only by the unknown
parameter, x( j)(u × 1), then the multi-split mathemati-
cal model in the Msplit(q) estimation has the following
form:

y � Ax( j) + e( j), y ∼ P
(
Ax( j),Cy

)
; j � 1, 2, . . . , q ≤ n

(11)

where A(n × u) is design matrix, e( j)(n × 1) are error vec-
tors, P(·) are some accepted distributions which differ by the
location parameters, Ax( j), and Cy is the covariance matrix
of observations. Since the random sample (here, y) is mixed
in an unsteady way, it is a priori assumed that each value of
the sample, yi, can be a realization of each random variable.
Next, individual values of the sample find their random vari-
able in the simultaneous and joint estimation process. The
Msplit(q) estimators of parameters of a multi-split model (11)
are such vectors x̂(1), . . . , x̂(q), which realize an optimal—in
some sense—fitting of the q competitive models in the whole
observation set.

The optimization condition ofMsplit(q) estimation is based
on the assumption that a single observation, yi, can be
assigned with a certain quantity which determines its multi-
split potential, i.e., the “willingness” to belong to any of the q
competitivemodels (11). The interest is focused on searching
for such estimators, x̂(1), . . . , x̂(q), for which the multi-split
potential contained in thewhole random sample has the high-
est value. According to Wiśniewski (2010), the condition of
maximization of this global multi-split potential can also be
written in the convenient probabilistic form:
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max
x(1),...,x(q)

n∑
i�1

q∏
j�1

ln p
(
yi ; aix( j)

)
(12)

which is equivalent to:

min
x(1),...,x(q)

⎡
⎣Φ

(
y;Ax(1), . . . ,Ax(q)

) �
n∑

i�1

q∏
j�1

ρ
(
yi ; aix( j)

)
⎤
⎦

(13)

where p(·)means someaccepted probability density function
(PDF), p(·) is at least twice differentiable convex objective
function, and ai is the ith row of the matrix A. One can
note that for q �1, condition (13) is the optimization condi-
tion of M-estimation and condition (12)—of the maximum
likelihood (ML) estimation. Therefore, Msplit(q) estimation
can be treated as the generalization of M-estimation and
of the ML estimation. From both theoretical and practical
points of view, it is often the most convenient to assume that
the random sample values have normal distributions, y ∼
Pn
(
Ax( j),Cy

)
. Condition (13) is then, in fact, a multi-split

LS optimization condition of the squaredMsplit(q) estimation:

min
x(1),...,x(q)

⎡
⎣Φ

(
y;Ax(1), . . . ,Ax(q)

) �
n∑

i�1

q∏
j�1

e2i( j)

⎤
⎦ (14)

More information, e.g., the solutions of the above opti-
mization problems using Newton’s iterative procedure, can
be found in Wiśniewski (2009, 2010).

4 SquaredMsplit(q) S-transformation
of deformations

4.1 Motivation

Methods of the robustM-estimation class yieldmisinforming
results when the so-called breakdown point for a given M-
estimator is exceeded (Hampel et al. 1986, p. 12; Koch 1996,
2010, p. 263). A robust S-transformation of deformations
may fail when the number of unstable PRPs is larger than that
of stable points and always fails when these displacements
have the same sign. The strength of unstable PRPs is then
larger than that of the stable ones. In consequence, the vec-
tor of datum parameters for displacement vector, t, does not
realize the expected matching of both adjusted networks (the
matching at stable points); it realizes some other matching.
In effect, the raw displacement vector, �x , is transformed
into the datum which shows a biased deformation pattern.
Figure 3 presents the extension of the scenario from Fig. 1;
three unstable PRPs have been added (points 5, 6, 7) and,

Fig. 3 Matching of PRP networks “adjusted” in two epochs; four points
are displaced

in effect, the robust S-transformation has given the biased
deformation pattern.

However, a question arises: How would the Msplit(q) esti-
mation behave in such critical situations?

Keep in mind that the raw displacement vector forms a
random sample in deformation congruence model (2). It has
been pointed out that the attention of a given Msplit(q) esti-
mator is absorbed only by the values of a random sample
which are realizations of a given random variable (values of
random sample which well—in some sense—fit to this esti-
mator) and other values do not have a negative effect on this
estimator. Therefore, it can be expected that when the right
calculation strategy is followed, oneof theMsplit(q) estimators
should identify good datumparameters for displacement vec-
tor (matching both adjusted networks at stable points), even
in critical situations. The thought experiments results suggest
that this hypothesis may be plausible, and they inspire this
research.

4.2 Congruencemodel

In the robust S-transformation approach one assumes that
the majority of points in the PRP group are stable and only
individual points may be unstable. This is a sufficient con-
dition to obtain an expected datum for displacement vector
(expected matching). In a probabilistic sense, one assumes
that the raw displacement vector of PRPs consists mainly
of values which realize the random variable with accepted
normal distribution (stable points) and there are only some
outlying values which realize the random variable with some
other unaccepted probability distributions (unstable points),
(2) and (3).
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Now, let us consider a different model. Let us assume that
the raw displacement vector of PRPs contains realizations of
q random variables with accepted normal distributions which
differ by the location parameters (expected/mean value). In
the geometric sense, one assumes that a group of PRPs may
have q competitive congruences between both epochs rep-
resented by the q competitive datum parameters t( j)—one
realizing the expected matching at stable points and the oth-
ers realizing the matchings at displaced points. Unlike in the
conventional congruence model, all the PRPs are—in some
sense—good; there are no outlying points in the model. This
way of considering the raw displacement vector of PRPs
leads to a multi-split congruence model, split into q potential
congruence models:

�x̂ � Ht( j) + d( j), �x̂ ∼ Pn
(
Ht( j), Ĉ�x̂

)
;

j � 1, 2, . . . , q ≤ u (15)

In deformation reality, the multi-split model (15) might
describe the scenario where several subgroups of PRPs may
regularly displace each other and the points are mutually sta-
ble inside each subgroup. Then, each j local model realizes
the congruency of one subgroup of such points. It is the most
intuitive scenario for model (15). However, this model may
also describe the extended scenario where additionally single
point displacements exist. Then, the congruences of single
points may also be realized by means of additional models.
For example, if the group of PRPs consists of two differ-
ent displaced subgroups with mutually stable points inside
each subgroup and three unstable single points, model (15)
should be theoretically split into five local congruence mod-
els (q=5).

It is also worth noting that the multi-split model (15) can
be interpreted as the collection of mean shift (MS) models
which are considered in the statistical testing theory which
is also widely applied in geodetic deformation analysis. Of
course, these models play a quite different role in the sug-
gested approach.

4.3 Estimation

Let us assume that the multi-split model (15) consists of
q local congruence models. It is a priori not known which
model is proper for the particular point(s)—raw displace-
ment(s); therefore, each value of the raw displacement
vector can be a priori a realization of each model. How-
ever, according toWiśniewski (2010), theoretically, each raw
displacement can be assigned a certain measure, known as
elementary split potential, providing an opportunity to assign
it to any of the congruencemodels (15).Agiven rawdisplace-
ment realizes better some congruence and worse the other.
Hence, our interest is focused on seeking such local congru-

ences—represented by datum parameters, t(1), . . . , t(q)—for
which the elementary split potential in the whole vector of
raw displacements has the highest value. According to the
cited paper, the condition of maximization of this global split
potential for model (15) can be written in an equivalent prob-
abilistic form:

max
t(1),...,t(q)

u∑
i�1

q∏
j�1

ln pn
(
�x̂i ;hi t( j)

)
(16)

which is equivalent to:

min
t(1),...,t(q)

⎡
⎣Φ

(
�x̂ ;Ht(1), . . . ,Ht(q)

) �
u∑

i�1

q∏
j�1

(
�x̂i − hi t( j)

)2
⎤
⎦

(17)

where pn(·) means the PDF of accepted normal distribution
(15). For example, if q=3 our interest is focused on seeking
such local congruences—represented by datum parameters,
t(1), . . . , t(q)—for which:

min
t(1),t(2),t(3)

u∑
i�1

(
�x̂i − hi t(1)

)2(
�x̂i − hi t(2)

)2(
�x̂i − hi t(3)

)2

� min
t(1),t(2),t(3)

u∑
i�1

d2i(1) · d2i(2) · d2i(3) (18)

For simplification and avoiding a significant loss of results
quality, the covariance information of model (15) may be
neglected in the optimization condition (17), like in the IWST
method (5). The optimization problems (15) and (17) can be
solved by such values of t̂( j), j �1,…, q, for which gradients:

g( j)
(
t(1), . . . , t(q)

) � ∂

∂t( j)
Φ
(
�x̂ ;Ht(1), . . . ,Ht(q)

)

� ∂d( j)
∂t( j)

∂

∂d( j)
Φ
(
�x̂ ;Ht(1), . . . ,Ht(q)

)
(19)

are zero vectors. The components of objective function (17)
in relation to t( j) are quadratic functions and the Hessian
of such component takes the form of an identity matrix;
hence, Newton’s method may be reduced to the method
of zeroing gradient for this particular case (approximate
Newtonian process). Since for each j �1,…, q is obtained
∂d( j)/∂t( j) � −HT , the necessary conditions for the exis-
tence of a minimum of the objective function (17) have the
following form:
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g( j)
(
t(1), . . . , t(q)

) � −2HTW( j)

(
�x̂ − Ht̂( j)

)

� 2HTW( j)Ht̂( j) − 2HTW( j)�x̂ � 0 (20)

where:

W( j) � diag

⎡
⎣

q∏
l�1, l �� j

d̂21(l), . . . ,
q∏

l�1, l �� j

d̂2u(l)

⎤
⎦ (21)

Of course, weights (21) are formulated only for PRPs and
zero values should be indicated for object points. The solution
can be carried out in an iterative cycle with the following
formula (k �1,…), (j �1,…, q):

t̂k( j) �
(
HTWk

( j)H
)−1

HTWk
( j)�x̂ (22.1)

d̂k( j) � �x̂ − Ht̂k( j) �
(
I − H

(
HTWk

( j)H
)−1

HTWk
( j)

)
�x̂

(22.2)

The iterative process is relatively simple. The weight
matrix of the j model is a function of recently calcu-
lated deformations of all the other models, i.e., W( j) �
f
(
d̂(l)
)
, ∀l �� j . Of course, there are no calculated defor-

mations in the starting iterative step (k �0), for weight
matrices of the first model (j �1) and later—partly—for
consecutive models. However, missing values of deforma-
tions in the starting iterative step can be, for example, their
LS estimators:

d̂LS
( j) �

(
I − H

(
HTH

)−1
HT

)
�x̂ , ∀ j �� 1 (23)

analogously as in the squared Msplit(q) estimation
(Wiśniewski 2010). The iteration process (22) is repeated
until convergence is achieved; usually, several steps are
enough.

The algorithm for the displacement vectors (22.2), in a
more detailed version, has the following form (k �1,…).

For q �2:

d̂k(1) �
(
I − H

(
HTWk

(1)H
)−1

HTWk
(1)

)
�x̂ ,

Wk
(1) � diag

[(
d̂k−1
1(2)

)2
, . . . ,

(
d̂k−1
u(2)

)2]

d̂k(2) �
(
I − H

(
HTWk

(2)H
)−1

HTWk
(2)

)
�x̂ ,

Wk
(2) � diag

[(
d̂k1(1)

)2
, . . . ,

(
d̂ku(1)

)2]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

For q �3:

d̂k(1) �
(
I − H

(
HTWk

(1)H
)−1

HTWk
(1)

)
�x̂ ,

Wk
(1) � diag

[(
d̂k−1
1(2)

)2(
d̂k−1
1(3)

)2
, . . . ,

(
d̂k−1
u(2)

)2(
d̂k−1
u(3)

)2]

d̂k(2) �
(
I − H

(
HTWk

(2)H
)−1

HTWk
(2)

)
�x̂ ,

Wk
(2) � diag

[(
d̂k1(1)

)2(
d̂k−1
1(3)

)2
, . . . ,

(
d̂ku(1)

)2(
d̂k−1
u(3)

)2]

d̂k(3) �
(
I − H

(
HTWk

(3)H
)−1

HTWk
(3)

)
�x̂ ,

Wk
(3) � diag

[(
d̂k1(1)

)2(
d̂k1(2)

)2
, . . . ,

(
d̂ku(1)

)2(
d̂ku(2)

)2]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

and analogously for q >3. It should be emphasized that for
q �1 the squared Msplit(q) S-transformation is the ordinary
S-transformation.

4.4 Number of models

In general, it is assumed in the theory of Msplit(q) estima-
tion that the number of competitive mathematical models, q,
is known a priori (Wiśniewski 2010). However, the number
of competitive models, differing by datum parameters, t( j),
is not known a priori in our multi-split congruence model
(15). Although stable PRPs realize one congruence model,
displaced PRPs can realizemanymodels. Theoretically, each
displacementmay even realize a different congruencemodel.
Now, the crucial question is: How many congruence models
should a split model (15) contain in a given case?

Establishing—not known a priori—the appropriate num-
ber of potential mathematical models is still one of not prop-
erly solved problems of Msplit(q) estimation. Only one solu-
tion to this problem has been presented so far (Wiśniewski
and Zienkiewicz 2016). In most general terms, the authors
propose that the appropriate number of models should be
determined with a certain control value, added to values of
the original random sample. However, this solution does not
yield satisfying results for a congruence model (15); there-
fore, a different solution is proposed in this study, based on
hypothesis testing.

Let us note that if the null hypothesis: “all PRPs are stable”
passes against the alternative hypothesis: “there is at least one
displaced PRP” (7), it means that all PRPs may be regarded
as stable. It may be assumed that all estimated PRP displace-
ments realize one congruence model, q �1, and no other
absorbing models are needed. Otherwise, it may be assumed
that the estimated PRPs displacements realize at least two
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congruence models, q ≥2. Such a scenario can correspond
to the multi-split null hypothesis (j �1,…, q):

∀i, ∃ j :
{
H0,i( j) : E

(
d̂i( j)

)
� 0 vs HA,i( j) : E

(
d̂i( j)

)
�� 0

}

(26)

If the multi-split null hypothesis (26) passes for q �2, it
may be assumed that all estimated PRP displacements real-
ize two congruence models and additional absorbing models
are not needed. Otherwise, it may be assumed that estimated
PRP displacements realize at least three congruence mod-
els, q ≥3, and now three models should be tested. If the
multi-split null hypothesis (26) passes for q �3, it may be
assumed that all estimated PRP displacements realize three
congruence models and additional absorbing models are not
needed. Otherwise, the splitting into four congruencemodels
should be tested, etc. Finally, if themulti-split null hypothesis
(26) passes, it may be assumed that all the estimated PRP dis-
placements have found their absorbing congruence models.
Splitting the congruence model (15) can now be completed.

Global and local F-tests (Caspary 2000, p. 132; Aydin
2012) can be suggested to test hypotheses (7) and (26):

T �
d̂TQ+

d̂
d̂

r σ̂ 2
0

≤ Fα(r , f ) (27)

and

Ti( j) �
d̂Ti( j)Q

−1
d̂i( j)

d̂i( j)

ri σ̂ 2
0

≤ Fαi (ri , f ) (28)

respectively, where (·)+ denotes the pseudo-inverse, e.g.,
Q+

d̂
� (Qd̂ +HHT )−1Qd̂ (Qd̂ +HHT )−1, Qd̂ is the cofactor

matrix of estimated displacement vector of all PRPs [a satis-
factory cofactor matrix may be here the one which realizes
the minimum trace or the one obtained from the law of vari-
ance propagation according to (22.2)], Qd̂i( j)

is the cofactor
matrix of estimated displacement vector of point i for model
j, r � rank(Qd̂ ), ri � rank(Qd̂i

), σ̂ 2
0 � (σ̂ 2

01 + σ̂ 2
02)/2 is

the variance factor estimator, pooled for two epochs, f �
f 1 + f 2 is the number of degrees of freedom at two epochs,
α, αi are the significance levels (8), (10), and Fα, Fαi are the
critical values from Fisher’s cumulative distribution func-
tion. It is noteworthy that the above test statistics, T, Ti(j),
do not have an exact Fisher’s distribution for the squared
Msplit(q) estimators (22.2) like for the robust M-estimators
(Caspary 2000, p. 132; Nowel 2016b). Exact distributions of
such statistics are not known, which is why the method of
testing hypotheses (7), (9), as well as hypotheses (7), (26),
does not have rigorous mathematical foundations, and the
above tests may only be treated as approximate solutions.
As in robust S-transformation approach, these tests are not
S-system invariant.

4.5 Choice of the best model and its validation

If it turns out that there are unstable points in the group of
PRPs and, in consequence, the number of congruencemodels
is greater than one, q >1, then one more question emerges:
Which congruence model is expected, i.e., which realizes the
matching at mutually stable PRPs?

The answer to this question can be trivial if it is assumed
that a subgroup of stable PRPs is the most populated sub-
group of mutually stable points in the whole group of PRPs.
With this assumption, the congruence model with the largest
number of statistically insignificant estimated displacements
(28) should be the one which realizes the matching at mutu-
ally stable PRPs. It must be noted that the above sufficient
condition for the proper solution of the squared Msplit(q)

S-transformation is less restrictive than in the robust S-
transformation. This is because the conventional approach
requires that the number of stable points should be greater
than unstable ones. However, the approach presented here
only requires that stable points shouldmake up themost pop-
ulated subgroup of mutually stable points. If this condition
is met, then the presented approach should be effective, even
if the number of unstable points is larger than stable ones.

As it has been mentioned in the previous section, the local
F-tests (28) used here to the choice of the model with the
largest number of statistically insignificant estimated dis-
placements do not have rigorous mathematical foundations
and are not invariant for a change of S-system in which the
point displacements are defined. Hence, the above concept
can only give a preliminary identification of stable PRPs and
the final validation has to be done by means of the testing
method that is rigorous and independent of the S-system.
Such final test can be derived from the generalized likeli-
hood ratio test (GLRT) theory, in which some discrepancies
between the observations and their functional model can be
considered (Teunissen 2006). In relation to this theory, the
linear(ized) null hypothesis: “all PRPs which have prelimi-
narily been identified as stable are mutually stable”:

H0 : E

([
y1
y2

])
�
[
A1 0
A2 A2,0

][
x
d0

]
(29)

where E(·) is expectation operator, against the most relaxed
linear(ized) alternative hypothesis: “there is at least one
displaced point in the subgroup of PRPs which were pre-
liminarily identified as stable”:

HA : E

([
y1
y2

])
�
⎡
⎢⎣

A1

A2

0 0
A2,0 A2,A︸ ︷︷ ︸

≡A2

⎤
⎥⎦
⎡
⎣

x
d0
dA

⎤
⎦ (30)

may be formulated, where yi is the vector of observations (or
observed minus computed values of observations) at epoch i,
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Ai is design matrix at epoch i concerning all network points,
A2,0 is design matrix at epoch 2 concerning PRPs identified
as unstable and object points, A2,A is design matrix at epoch
2 concerning PRPs identified as stable, x is the vector of
coordinates (or increments) of all network points (the same at
both epochs),d0 is the displacement vector of PRPs identified
as unstable and object points, dA is the displacement vector
of PRPs identified as stable, y � [yT1 yT2 ]

T is the observation
vector from both epochs and y ∼ Pn(E(y),Cy � σ 2

0Qy).
According to Teunissen (2006, p. 53), the appropriate GLRT
can be computed from the probability density function of y
under H0 and HA. The normal distribution of y under H0

reads:

pn(y|x) � (2π)−
n
2

∣∣∣σ 2
0Qy

∣∣∣
− 1

2
exp

(
−1

2

eT0 Q
−1
y e0

σ 2
0

)
(31)

and under HA it reads analogously, where n is the number of
observations, and

e0 � y −
[
A1 0
A2 A2,0

][
x
d0

]
,

eA � y −
[
A1 0 0
A2 A2,0 A2,A

]

︸ ︷︷ ︸
B

⎡
⎣

x
d0
dA

⎤
⎦ (32)

According to Teunissen (2006, p. 73), the GLRT statistic
reads:

max
x,d0

pn(y|x,d0)
max

x,d0,dA
pn(y|x,d0,dA)

�
pn
(
y|x̂, d̂0

)

pn
(
y|x̂, d̂0, d̂A

)

�
· · · exp

(
−0.5

(
êT0 Q

−1
y ê0/σ̂ 2

0

))

· · · exp
(
−0.5

(
êTAQ

−1
y êA/σ̂ 2

0

))

� exp

⎛
⎝−1

2

⎛
⎝
(
êT0 Q

−1
y ê0 − êTAQ

−1
y êA

)
∼ χ2(rA)

σ̂ 2
0 ∼ F( f A,∞)

⎞
⎠
⎞
⎠ (33)

where x̂, d̂0, d̂A are the maximum likelihood estimates (for
any S-system) which are identical to the LS estimates in case
of a normal distribution, ê0, êA are the vectors of residuals
under H0, HA, respectively, rA � rank

(
A2,A

)
is the number

of independent estimates of dA, f A � n − rank(B) is the
degrees of freedom, and σ̂ 2

0 � êTAQ
−1
y êA/ f A. Finally, the

GLRT for testing H0 against HA can be written as:

T � êT0 Q
−1
y ê0 − êTAQ

−1
y êA

σ̂ 2
0 rA

≤ Fα(rA, f A) (34)

A detailed explanation on the aforementioned derivations
can be found in Teunissen (2006, ch.3-4).

The acceptance of the null hypothesis (29) indicates that
the preliminary solution of squaredMsplit(q) S-transformation
is valid, i.e., preliminarily identified stable PRPs can be
treated as mutually stable. Otherwise, the preliminary solu-
tion cannot be valid and it should be rejected. It can be due
to the collapse of the squaredMsplit(q) S-transformation, e.g.,
there can exist more congruence models than necessary. In
this case, also the second-best congruence model and other
models can give invalid solutions. Hence, for example, the
solution of robust S-transformation may be recommended
in such cases. However, the problem of collapse of squared
Msplit(q) S-transformation may be treated as an open issue
and it deserves further research.

4.6 Final S-transformation

After a stable reference base is identified, it is suggested here
that—like in the conventional robust S-transformation— the
final S-transformation of all the network points and their
covariance matrix should be conducted to theminimum trace
datum, defined on the reference base, as described in Sect. 2.
Thiswill result in a bettermatching of both networks at stable
PRPs than the original matching from the best congruence
model of the squared Msplit(q) S-transformation.

Finally, to better understand the presented approach, the
following are the key stages of calculations with a block
diagram against the conventional approach (Fig. 4).

5 Numerical experiments

The following hypothesis was put forward in an earlier study:
“If the subgroup of stable PRPs is the most populated sub-
group of mutually stable points, then the squared Msplit(q)

S-transformation will identify stable PRPs.” This hypothesis
was examined numerically in the paper based on simulated
and real control networks. All sets of simulated observa-
tions were free of outliers. The displacements of PRPs were
estimated with the squared Msplit(q) S-transformation (22.2)
and, additionally, with the robust S-transformation (6.2).
The minimal L1-norm of the vector of estimated displace-
ments (5) was taken as an objective function in the robust
S-transformation. The cofactor matrices of estimated dis-
placements were always the one which realizes theminimum
trace. For simplicity and without loss of generality, the sig-
nificance levels for global and local hypothesis testing were
assumed as α �0.05 and αi �0.001, respectively, in each
experiment.
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H0 (7)      q = 1

yesq = q + 1

Robust S-transformation Squared Msplit(q) S-transformation

no

Robust S-transformation: 
d̂ (6.2)

Choice of the best model and its 
validation (only if q > 1).

Is the chosen model valid (34)?
Statistical tests: (7), (9)

H0 (26)

accepted?

Deformation measurements 
at an initial and current epoch 

LS-estimation: 2
ˆ0ˆ ˆ,  ,  
ii i xσx Q

S-transformation: d̂

Final S-transformation: d̂

Splitting congruence model 
(15) and estimation of ( )jd

yesno

Fig. 4 Block diagram of the conventional and presented approach

Fig. 5 Leveling control network

5.1 Experiment 1

The first experiment concerns a simulated leveling network,
consisting of seven PRPs, 1–7, and two object points, 11–12
(Fig. 5).

It was assumed here that all the height differences (n�32)
were measured in two epochs and that measurement errors
were realizations of a random variable with a normal dis-
tribution with a mean of zero and standard deviation σΔh

�1 mm. The pseudo-random numbers were generated from

https://www.random.org/gaussian-distributions (64 numbers
from a Gaussian distribution in two columns with mean 0.0,
standard deviation 1.0 and using 2 significant digits, based on
persistent identifier: example1). The following measurement
error vectors: elobs1

(32× 1) � [−0.35, 0.28,…, −0.77]T mm

and elobs2
(32 × 1) � [−0.67, 0.33,…, 1.70]T mm, in epochs

1 and 2, respectively, were obtained in this way. The order
of height differences, corresponding to the above order of
measurement error values, is the following in both epochs:
1–2, 2–3, 3–4, 4–5, 5–6, 6–7, 1–7, 1–5, 1–6, 2–7, 2–6, 2–5,
3–7, 3–6, 3–5, 4–7, 4–6, 1–11, 2–11, 3–11, 4–11, 5–11, 6–11,
7–11, 1–12, 2–12, 3–13, 4–12, 5–12, 6–12, 7–12, 11–12. It
means that the error values −0.35, −0.67 correspond to the
height differences between points 1, 2; where point 1 defines
the beginning of the leveling line and point 2 its end; next, the
error values 0.28, 0.33 correspond to the height differences
between points 2, 3, and so on. To simplify computations, it
was assumed that before a deformation occurred, all points
had the same heights. However, after a deformation in epoch
2, the height of selected PRPs was disturbed by the value of
displacements. Two scenarios of displacements were consid-
ered; they had different signs in the first scenario and the same
in the other. Four variants of displacements were considered
in each scenario. The values of simulated, d, and estimated
displacements, d̂, together with the results of their signif-
icance tests, are shown in Table 1. The iterative processes
(6.2), (22.2) were stopped after several iterative steps in both
approaches.Thevalidation test for the best congruencemodel
in the squaredMsplit(q) S-transformation (34) passed for each
variant, i.e., the value of test statistic, T, was smaller than the
critical value, Fα=0.05(rA, 48), for each the best congruence
model.

For the displacements with different signs, very similar
values of estimated displacements and always correct results
of the identification of stable PRPs were obtained in both
approaches. Both approaches yielded good results even in the
critical variants 3 and 4, when therewere 4/7 and 5/7 unstable
PRPs, respectively. It was different for displacements with
the same sign. When there existed more displaced PRPs than
stable ones (variants 3 and 4), the robust S-transformation
failed. Estimated and simulated values of displacementswere
considerably different and, in consequence, the identification
of stable points gave completely wrong results. However,
the squared Msplit(q) S-transformation was reliable in each
variant.

To illustrate some empirical properties of the squared
Msplit(q) S-transformation, the graphical interpretation for
the critical variant 3 from scenario 2 (4/7 PRPs are dis-
placed with the same sign) is presented in Fig. 6. The
raw displacement vector was obtained from ordinary (LS)
S-transformation and has the value: �x̂ (9 × 1) � [−5.7,
−5.7, −5.4, −1.5, 0.6, 2.3, 15.2, −5.7, −4.8]T mm. For
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Table 1 Results of the stable PRPs identification

Point Simulated displacements, d[mm] Estimated displacements, d̂[mm]

Robust S-transformation Squared Msplit(q) S-transformation
(results of the best model)

Variant

1 2 3 4 1 2 3 4 1 2 3 4

Scenario 1: Displacements have different signs

1 0 0 0 0 −0.2 −0.2 −0.1 −0.1 −0.2 −0.1 −0.1 0.0

2 0 0 0 0 −0.2 −0.2 0.0 −0.1 −0.2 −0.1 −0.1 0.0

3 0 0 0 2 0.1 0.1 0.2 2.2 0.1 0.2 0.2 2.3

4 0 0 −4 −4 0.0 0.0 −3.9 −4.0 0.0 0.1 −3.9 −3.8

5 0 6 6 6 0.3 6.3 6.4 6.4 0.3 6.4 6.4 6.5

6 −8 −8 −8 −8 −8.2 −8.2 −8.1 −8.2 −8.2 −8.2 −8.1 −8.0

7 20 20 20 20 20.7 20.7 20.8 20.7 20.6 20.7 20.7 20.8

11 0 0 0 0 −0.2 −0.2 −0.1 −0.2 −0.3 −0.2 −0.2 −0.1

12 0 0 0 0 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.9

Number of congruence models, q

3 4 5 6

Scenario 2: All displacements have positive sign

1 0 0 0 0 −0.4 −1.0 −4.2 −4.2 −0.2 −0.1 −0.1 0.0

2 0 0 0 0 −0.3 −1.0 −4.2 −4.2 −0.2 −0.1 −0.1 0.0

3 0 0 0 2 −0.1 −0.7 −3.9 −1.9 0.1 0.2 0.2 2.3

4 0 0 4 4 −0.2 −0.8 0.0 0.0 0.0 0.0 4.1 4.2

5 0 6 6 6 0.1 5.5 2.3 2.3 0.3 6.4 6.4 6.5

6 8 8 8 8 7.6 7.0 3.8 3.8 7.8 7.8 7.9 7.9

7 20 20 20 20 20.5 19.9 16.7 16.7 20.7 20.7 20.8 20.8

11 0 0 0 0 −0.4 −1.0 −4.2 −4.2 −0.2 −0.2 −0.1 −0.1

12 0 0 0 0 0.5 −0.1 −3.3 −3.3 0.7 0.8 0.8 0.9

Number of congruence models, q

3 3 4 5

Italic value—the PRP can be regarded as stable; the local F-test is accepted; d̂2i /σ̂ 2
0 σ 2

d̂i
≤ Fαi�0.001(1, 48)

cognitive purposes, the results of all splitting (for q=2,
q=3 and q=4) of congruence model (15) in the squared
Msplit(q) S-transformation and the results of the robust S-
transformation, and ordinary S-transformation are presented.
The datum parameter for displacements (here, only shift)
of the best congruence model (here, j=2) from final split-
ting (here, q=4) in the squared Msplit(q) S-transformation is
shown by means of the green line, and the datum parameters
in the robust S-transformation and ordinary S-transformation
are shown by means of the red and orange lines, respec-
tively. The black points represent the PRP displacement
values which can be related to the different datums (also
Table 1). The confidence intervals which were derived from
accepted local F-tests (28) were added for the results of
squared Msplit(q) S-transformation by means of the vertical

bars, ci � ±
√

σ̂ 2
0 · σ 2

d̂i
· Fαi�0.001(1, 48).

One can note that—unlike the conventional approach (red
line)—the best congruence model in the squared Msplit(q)

S-transformation (green line) located the datum correctly, at
actually stable PRPs (1, 2, 3) and these points were also iden-
tified as stable by means of local F-tests (Fig. 6 or Table 1).
Thanks to this, the values of estimated displacements (4.1,
6.4, 7.9, 20.8 [mm], Fig. 6 or Table 1) of actually unstable
PRPs (4, 5, 6, 7), i.e., the distances between these points and
the green line (datum) in the above figure, were very simi-
lar to the simulated ones (4.0, 6.0, 8.0, 20.0 [mm], Table 1).
Theoretically, the results would be even better for the final
S-transformation to the minimum trace datum defined on the
previously identified stable PRPs.

Furthermore, it is worth noting that only four congru-
ence models turned out sufficient in the squared Msplit(q)

S-transformation, instead of five expected. (One subgroup
of mutually stable points and four different displaced points
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Fig. 6 Graphical interpretation of stable PRPs identification for variant 3 from scenario 2; points 1–3 are stable and points 4–7 are unstable

give together five congruence models.) However, the values
of simulated displacements are quite similar in the experi-
ment under discussion; hence, the estimated displacements
of points 5, 6 can be assigned to one congruencemodel (j=3),
and this is why the null hypothesis (26) has been accepted
for already four congruence models in this variant.

5.2 Experiment 2

Experiment 1 is transparent and can easily be repeated by the
reader. However, since the values of simulated displacements
in individual variants were established arbitrarily, the con-
clusions drawn from this experiment may not be convincing.
Therefore, another experiment was conducted for the same
network. This time, values of measurement errors and, addi-
tionally, displacements were generated independently 1000
times, with the MATLAB software. The errors were gen-
erated in accordance with the same probabilistic model as
before, whereas displacements were selected randomly from
the uniform interval of di ε 〈2, 25〉 mm. It was assumed two

variants of displacements: Three (variant 1) and four (variant
2) randomly selected PRPs were stable, and the other PRPs
were unstable. As before, two scenarios of displacements
were considered; they had different signs in the first scenario
and the same in the other. Table 2 presents the average values
ofmean absolute true errors of estimated PRP displacements,
ēd̂ � ∑1000

s�1 ed̂,s/1000, where ed̂,s � ‖d̂ − d‖1/7 is the
mean absolute true error of estimated PRP displacements
for s simulation. The invalid solution of squared Msplit(q) S-
transformation was replaced/equal to the solution of robust
S-transformation, as recommended in Sect. 4.5.

Additionally, Fig. 7 shows empirical distributions ofmean
absolute true errors of estimated PRP displacements, for the
more critical scenario 2.

Generally, the experiment results are similar to those
of experiment 1. For displacements with different signs,
both approaches gave similar, satisfying values of errors;
only for the critical case, the robust S-transformation gave
significantly higher errors, ēd̂ � 1.35 mm. However, the
robust S-transformation—more or less—failed in the case
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Table 2 Average values of mean absolute true errors of estimated PRP
displacements

Number of
stable PRPs

Value of error, ēd̂
[mm]

Number of valid solutions
of squared Msplit(q)

Robust Squared
Msplit(q)

Scenario 1: Displacements have different signs

4/7 0.52 0.41 964

3/7 1.35 0.52 956

Scenario 2: Displacements have positive sign

4/7 0.98 0.43 989

3/7 6.89 0.74 987

Fig. 7 Scenario 2: The empirical distributions of the average values of
mean absolute true errors of PRPs estimated displacements

of displacements with the same sign. Average value of
mean absolute true errors of all simulations was relatively
large: ēd̂ � 6.89 mm. Since the number of unstable
PRPs was always greater than stable ones, the conventional
approach always failed. However, the squared Msplit(q) S-
transformation failed only in 39/1000 cases (Fig. 7; the last
part); hence, the average value of mean absolute true errors
of all simulations was only slightly larger than earlier, in
scenario 1, ēd̂ � 0.74 mm. Those 39 cases, when the solu-
tion breaks down, can be explained by the cases not meeting
the sufficient condition for the correct solution. Let us recall
that the squaredMsplit(q) S-transformation requires that stable
points shouldmake up themost populated subgroup ofmutu-
ally stable points. It is conceivable that in 1000 simulations,

Table 3 Results of the stable PRPs identification

Method How many times was identified as stable:

4 points 3 points 2 points 1 point

Scenario 1: Displacements have different signs

4/7 points are stable

Robust 921 64 9 5

Squared Msplit(q) 982 16 2 0

GCT 967 16 0 0

3/7 points are stable

Robust – 834 46 12

Squared Msplit(q) – 962 28 3

GCT – 934 18 0

Scenario 2: Displacements have positive sign

4/7 points are stable

Robust 712 215 47 14

Squared Msplit(q) 964 32 4 0

GCT 958 28 1 0

3/7 points are stable

Robust – 4 7 33

Squared Msplit(q) – 940 29 5

GCT – 835 15 0

Fig. 8 Dam control network with a priori 95% confidence ellipses and
simulated displacements (based on Caspary 2000, p. 146)

there were about a several dozen times when displacements
of at least three PRPs were similar enough to be statistically
regarded as a subgroup of mutually stable points and, in con-
sequence, the datum parameter (here, only shift) chose this
unstable location.

Additionally, as part of this experiment, Table 3 shows
how many times a given method identified four, three, two
and one stable PRP. For cognitive purposes, the same com-
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Table 4 Results of the stable PRPs identification

Number of
the point

Simulated Estimated

Robust S-transformation Squared Msplit(q) S-transformation

Model j=1 Model j=2 (the best model)

d [mm] d̂[mm] Ti d̂[mm] Ti d̂[mm] Ti

PRPs

1 0.10 1.22 0.72 45.67 0.09 0.64

0.16 0.57 0.03

2 −0.08 0.25 0.47 13.77 −0.13 0.78

−0.01 0.48 −0.10

3 −0.50 −0.39 13.48 −0.09 0.50 −0.57 22.08

−0.60 −0.60 −0.03 −0.65

4 0.16 0.75 0.29 8.54 −0.11 0.35

0.03 0.56 −0.04

6 0.18 2.54 0.56 7.35 0.04 3.61

−0.31 0.01 −0.49

7 0.00 1.66 0.58 11.72 −0.03 0.25

0.26 0.59 0.09

9 −0.04 0.03 0.13 7.32 −0.28 1.86

0.00 0.62 −0.02

Validation test (34) is accepted:
T �1.13≤Fα=0.05(9, 58)�
2.05

Object points

10 0.04 – 0.74 – 0.07 –

0.28 0.71 0.16

11 0.60 0.31 – 0.95 – 0.31 –

−0.75 −0.73 −0.13 −0.76

12 1.10 1.57 – 2.08 – 1.50 –

0.50 0.41 1.14 0.44

13 1.00 1.34 – 1.67 – 1.18 –

0.30 0.33 1.07 0.37

14 0.10 – 0.26 – −0.15 –

0.08 0.74 0.08

Italic value—the PRP is identified as stable; the local F-test is accepted; Ti ≤ Fαi�0.01(2, 58) � 4.99

putations were carried out with the application of the global
congruency test (GCT) for the same global significance level,
α �0.05.

It can be claimed that the results are as expected. The
results of identification of stable points in scenario 1 are sat-
isfying and quite similar for the robust and squared Msplit(q)

S-transformation; the conventional approach is only slightly
less effective. However, the robust S-transformation proved
completely ineffective in the critical case from scenario 2.
This approach identified all the three stable points in 4/1000
cases, and it did not identify any stable points in as many as
956/1000 cases. In these cases, the minimum trace datum in
final S-transformation would be surely defined on an unsta-
ble reference base; in consequence, deformations of object

points would be completelymisinforming. However, the effi-
ciency of squaredMsplit(q) S-transformation is still satisfying
and only slightly lower than in scenario 1. Despite a criti-
cal displacement scenario, this approach identified all three
stable points in 940/1000 cases.

5.3 Experiment 3

This experiment concerns the control network for the dam
in Montsalvens, Switzerland, which has been considered for
decades in the literature (Fig. 8).

In the 1980s, this network (in fact, its subnetwork of
PRPs) was used to analyze the efficiency of various identifi-
cationmethods of stable PRPs at the International Federation
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Table 5 Average values of mean absolute true errors of estimated PRP
displacements

Number of
stable PRPs

Value of error, ēd̂
[mm]

Number of valid solutions
of squared Msplit(q)

Robust Squared
Msplit(q)

Scenario 1: Displacements have different signs

5/7 0.14 0.13 951

4/7 0.50 0.30 845

3/7 1.36 0.93 514

Scenario 2: Displacements have positive sign

5/7 0.13 0.13 948

4/7 1.48 0.45 815

3/7 2.62 1.81 446

of Surveyors (FIG) (Chrzanowski 1981). Caspary (2000,
p. 149–154) also used this network to compare the results
of stable PRPs identification obtained by the robust S-
transformation and the global congruency test. This is why it
was decided to use this network in this study to compare the
results of stable PRPs identification obtained by the robust
and squared Msplit(q) S-transformation, in the same way as
Caspary (2000). Since the analysis concerned only PRPs, the
other points were, therefore, equal to zero in optimization
weight matrices,W, (6.1), (21), in the conventional and pre-
sented approach, respectively. All input data can be found in
Caspary (2000, p. 147–148). Here it is only worth noting that
the considered network consists of twomeasurement epochs,
and the two observation sets consist of 49 directions and 6
horizontal distances. The measurement errors were gener-
ated from the normal distribution with a mean of zero and
standard deviation σ k �3cc and σk � 0.3mm, for direction
and distance, respectively. The considered data do not con-
cern any critical displacement scenario; they concern the case
with only one unstable PRP (point 3). The results of stable
PRPs identification are shown in Table 4.

It can be noted that very similar values of estimated dis-
placements and correct results of identification of stable
PRPs were obtained in both approaches. It means that both
approaches identified points 1, 2, 4, 6, 7, 9 as reference base.
Since for both approaches the final S-transformation to the
minimum trace datum defined on the reference base is still
recommended, therefore, the final results of the analysis of
deformation of all the network points would be exactly the
same for both approaches.

5.4 Experiment 4

The previous experiment was based on the data which are
very popular, and that experiment can easily be repeated by
the reader. However, since the dataset does not concern any

critical displacement scenario and it was established arbitrar-
ily by the FIG working group, the conclusions drawn from
the previous experiment may not be convincing. Therefore,
the additional experiment was conducted for the control net-
work of Montsalvens dam, analogously to the concept of
experiment 2. Thus, the values of measurement errors and,
additionally, displacements were generated independently
1000 times, with the MATLAB software. The measurement
errors were generated in accordance with the same prob-
abilistic model as previously, whereas displacements were
selected randomly from the uniform interval of dxi , dyi ∈
〈1, 10〉 mm. It was assumed three variants of displacements:
Three (variant 1), four (variant 2) and five (variant 3) ran-
domly selected PRPs were stable, and the other PRPs were
unstable. As before, two scenarios of displacements were
considered; they had different signs in the first scenario and
the same in the other. Table 5 presents the average values of
mean absolute true errors of estimated PRP displacements,
ēd̂ � ∑1000

s�1 ed̂,s/1000, where ed̂,s � ‖d̂ − d‖1/14 is the
mean absolute true error of estimated PRP displacements for
s simulation. The invalid solutions of squared Msplit(q) S-
transformation were replaced/equal to the solution of robust
S-transformation.

Additionally, Fig. 9 shows empirical distributions ofmean
absolute true errors of estimated PRP displacements, for the
more critical scenario 2.

Generally, the results are similar to those of the previ-
ous experiments. One can see that for the non-critical cases
(5/7 stable PRPs) both approaches gave similar, satisfy-
ing values of errors ēd̂ ≈ 0.13 mm. Then, the more the
PRPs were unstable, the higher the errors obtained were
in both approaches. The squared Msplit(q) S-transformation
gave significantly lower errors; however, the advantage of
this approach here was not as large as for 1D network (exper-
iments 1 and 2). This could be explained by the fact that the
validation test for the best congruence model (34) passed
less frequently here (Table 6) than for 1D network (Table 3).
In consequence, the invalid solutions of squared Msplit(q) S-
transformation were replaced/equal to the solutions of robust
S-transformation (Fig. 9; the green part)more frequently than
before.

Additionally, as before, Table 6 shows how many times a
givenmethod identified five, four, three and two stable PRPs.

Generally, it can be concluded from the above table that the
results are consistent with previous ones. Hence, a detailed
study of stable PRPs identification (Table 6) is left to the
reader.

Finally, for better understanding, the graphical interpreta-
tion of one critical case is presented in Fig. 10, analogously
as for 1D network (Fig. 6). The 2D network of Montsalvens
damwas considered where only 3/7 PRPswere stable (points
1, 2, 3) and displacements had a positive sign. The following
simulated displacement vector: d=[0, 0, 0, 0, 0, 0, 1, 2, 3,
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Fig. 9 Scenario 2: The empirical distributions of the average values of
mean absolute true errors of PRPs estimated displacements

2, 1, 2, 4, 1,…]T mm was used (green arrows). The mea-
surement errors were generated in accordance with the same
probabilisticmodel as previously. The raw displacement vec-
tor was obtained from the ordinary S-transformation (orange
lines). The results of all splitting (q=2 and q=3) of con-
gruence model (15) in the squaredMsplit(q) S-transformation
(black lines) and the results of the robust S-transformation
(red lines) are presented as well. The confidence ellipses
which were derived from local F-tests (28) are also depicted.

One can see that only three congruence models (q=3)
turned out sufficient in the squaredMsplit(q) S-transformation.
It means the null hypothesis (26) has already passed for three
models. The estimated displacements of all seven PRPs are
located inside their confidence regions here; model j=1 con-
tains two statistically insignificant estimated displacements

Table 6 Results of the stable PRPs identification

Method How many times was identified as stable:

5 points 4 points 3 points 2 points

Scenario 1: Displacements have different signs

5/7 points are stable

Robust 791 125 61 21

Squared
Msplit(q)

874 80 35 11

4/7 points are stable

Robust – 441 108 179

Squared
Msplit(q)

– 665 131 143

3/7 points are stable

Robust – – 185 136

Squared
Msplit(q)

– – 412 210

Scenario 2: Displacements have positive sign

5/7 points are stable

Robust 934 49 16 1

Squared
Msplit(q)

912 59 23 6

4/7 points are stable

Robust – 0 0 24

Squared
Msplit(q)

– 622 106 82

3/7 points are stable

Robust – – 0 0

Squared
Msplit(q)

– – 278 123

(points 4, 7), model j=2 contains three such displacements
(points 1, 2, 3), and model j=3 contains two such displace-
ments (points 6, 9). The model j=2 is the best model because
it contains the largest number of statistically insignificant
estimated PRP displacements. This model turned out also
valid (34).

As can be seen from the right graphs—unlike the con-
ventional approach (red line)—the best congruence model in
the squared Msplit(q) S-transformation realizes the expected
matching at actually stable PRPs. In consequence, these
pointswere identified as stable bymeans of localF-tests (28);
the estimated displacements of these points are inside their
confidence regions (green ellipses). The actually unstable
points do not have such a negative effect on matching/datum
parameters of expected congruence model as in robust S-
transformation because these points are realizations of other
congruence models (j=1 and j=3) and their attention is
absorbed by those matching/datum parameters. Thanks to
this, the vectors of estimated displacements of actually
unstable points are very similar to the simulated ones. The-
oretically, the results would be even better for the final
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Fig. 10 Graphical interpretation of stable PRPs identification; 3/7 points are stable

S-transformation to the minimum trace datum defined on the
previously identified stable points.

6 Summary and conclusions

The identification of stable PRPs is a key issue in conven-
tional deformation analysis. Since geodetic control networks

have a datum defect (free networks), the accurate estima-
tion of PRP displacements and later efficient identification
of stable PRPs is a quite difficult task. For example, when
there are more unstable PRPs than stable ones this task
is not often possible by means of the conventional robust
S-transformation. It is still a challenge for surveyors and
geodesists.
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This paper presents and pretests a new approach to the S-
transformation of control network deformations. The idea
behind this approach comes from the theory of squared
Msplit(q) estimation and lies in the non-conventional assump-
tion that between the control networks adjusted in two
considered epochs can simultaneously exist—not one as in
the conventional robust S-transformation but—many congru-
ences (matchings) which differ by the datum/transformation
parameters. It is assumed that onemodel realizes the expected
congruence, i.e., the congruence at a subgroupof stablePRPs,
and other models can realize different congruences at unsta-
ble PRPs. Thanks to this, the robustness of the presented
approach can be very high, because the unstable PRPs can
be absorbed by other models. To establish what the number
of congruence models is in a given case and whether the cho-
sen/best model is valid, the statistical hypothesis tests were
suggested.

The paper proves the hypothesis that if stable points
make up the most populated subgroup of mutually sta-
ble points in the group of PRPs and measurement errors
do not mask or generate displacements, then the presented
approach can transform the estimated raw displacements
to an expected datum (in a geometrical sense, can real-
ize the expected matching at stable PRPs) and the results
of identification of stable PRPs can be correct. It is note-
worthy that the above sufficient condition is much less
restrictive than the sufficient condition in the conventional
robust S-transformation.Numerical experiments showed that
the suggested S-transformation—unlike the conventional
approach—can be effective even in critical cases, when there
are more unstable PRPs than stable ones, and the sign of all
displacements is the same. Owing to this, correct identifi-
cation of stable PRPs and, in consequence, the correct final
estimation of controlled object point displacements are pos-
sible in cases when it has not been possible so far. Hence, the
squared Msplit(q) S-transformation presented here seems to
be an interesting and useful alternative to the more conven-
tional robust S-transformation and, as such, deserves further
research. For example, since the presented method allows
to identify many subgroups of mutually stable points (there
are no outlying points in the multi-split congruence model),
it can have a wider application in geodetic deformation
analysis.

Finally, it is advisable to know that the presented approach
to deformation analysis, by means of Msplit estimation, is
completely different from the one presented in the liter-
ature and referenced in Introduction section. Most of all,
that simple concept, based on the Msplit estimation, does
not deal with the identification of stable PRPs and focuses
only on observation residuals which disclose some infor-
mation about unstable points, which can be treated as
outliers.

Acknowledgements The author thanks the anonymous reviewers and
the responsible Editor Prof. Wolf-Dieter Schuh for their constructive
comments and suggestions. The author also feels greatly indebted to
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