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Abstract The article describes the estimation of a priori
error associated with heterogeneous, non-correlated noise
within one dataset. The errors are estimated by restricted
maximum likelihood (REML). The solution is composed
of a cross-validation technique named leave-one-out (LOO)
and REML estimation of a priori noise for different groups
obtained by LOO. A numerical test is the main part of this
case study and it presents two options. In the first one, the
whole data is split into two subsets using LOO, by finding
potentially outlying data. Then a priori errors are estimated
in groups for the better and worse subset, where the latter
includes the mentioned outlying data. The second option
was to select data from the neighborhood of each point and
estimate two a priori errors by REML, one for the selected
point and one for the surrounding group of data. Both ideas
have been validated with the use of LOO performed only
in points of the better subset from the first kind of test. The
use of homogeneous noise in the two example sets leads to
LOO standard deviations equal 1.83 and 1.54 mGal, respec-
tively. The group estimation generates only small improve-
ment at the level of 0.1 mGal, which can also be reached after
the removal of worse points. The pointwise REML solution,
however, provides LOO standard deviations that are at least
20 % smaller than statistics from the homogeneous noise
application.
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1 Introduction

Least squares collocation (LSC) assumes spatial correlation
of the investigated quantity. The correlation may be deter-
mined for the signal present in the data, as well as for the
noise. Even if the noise is correlated, it can represent dif-
ferent unwanted factors, the influence of which has to be
excluded from the solution. The noise, however, can be also
assumed as non-correlated, which is fairly useful if its corre-
lation is not evident or hard to assess. Uncorrelated noise is
an example of quite common noise appearing in some data
kinds and has been assumed also in this article. The inves-
tigations are focused on the variance of uncorrelated noise,
which is heterogeneous. The restricted maximum likelihood
(REML) estimation is found to be worth of implementation
to investigate this heterogeneity in details. This technique
has been successfully used in the estimation of various para-
meters contributing to the covariance matrices. This article
uses REML in the analysis of the individual noise variances
distributed along the diagonal in the noise covariance matrix.

The theory of LSC often starts from elementary case,
where the data coincides exactly with the model (Moritz
1980). Nevertheless, it is not possible to measure a quantity
with no measurement error and therefore the variables repre-
senting error variancesmust be taken into account in the solu-
tion. In addition to the signal covariance matrix representing
variances and covariances of spatially correlated field, the
noise covariance matrix of uncorrelated errors occurs as a
diagonal matrix. The diagonal has to hold correct point noise
variances to provide the best results of the prediction. How-
ever, there are many examples in the literature, where a reg-
ularization is applied to this diagonal and its dimension is
empirically corrected (Rummel et al. 1979; Rapp and Wang
1994; Marchenko et al. 2003). The mentioned examples of
LSC regularization can be seen as related or even based
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on Tikhonov regularization (Moritz 1980; Koch and Kusche
2002; Eshagh and Sjöberg 2011). Rummel et al. (1979) and
Kotsakis (2007) indicate D. L. Philips, as also related with
this technique. TheLSC regularization techniquesmentioned
above can have a physical justification relatedwith some spe-
cific physical properties of the modeled spatial field. Klees
et al. (2004) provide some suspected spatial factors affecting
the covariance matrices of the signal and noise. Sabaka et al.
(2010) analyse the regularization in time domain besides the
spatial problems. This is applied in the case of time correla-
tion for repeating observations of the same phenomena.This
work starts from an assumption that although numerically
the manipulation of diagonal noise covariance matrix can be
comparable to the regularizationsmentioned above, in fact, it
is unnecessarywhen the errors are correctly estimated. These
errors cannot be, however, based on the survey errors and the
resolution has to be taken into account together with some
other factors.

The issue of noise covariance level present in the data has
been discussed many times, e.g. in Arabelos et al. (2007),
Sadiq et al. (2010) and Filmer et al. (2013). The ratio between
signal and noise is investigated for altimetry data by Hwang
and Parsons (1995). They analyse noise size for different
satellites and use these estimates for the weighting purposes
in LSC. Arabelos and Tscherning (1998) also analyse an
influence of different noise values in altimetry data on the
prediction of the gravity.Among different questions analysed
together with the noise covariance problems, the spatial res-
olution is a frequently discussed factor (Rummel et al. 1979;
Eshagh and Sjöberg 2011). The example of significant influ-
ence of the resolution and a priori noise on the LSC results
can be found in Lee et al. (2013). The spacing along the
satellite track is used for the estimation of the standard error
by Paolo and Molina (2010). Filmer et al. (2013) also point
the relation between a priori error and data spacing. They
also see a dependency of errors on the terrain, which can
be partially associated with covariance models used, espe-
cially if height correlation is not taken into account by these
models. Therefore, Bouguer gravity anomalies are applied
in the numerical test here, as they are free of height depen-
dence to the useful level. A closely related problem to a priori
noise in data is filtering in different kinds of data process-
ing, which eliminates some data, which adversely affects the
result. The properties of the filter are usually selected on the
basis of the information about the noise level and data reso-
lution (Andersen and Knudsen 1998; Hwang et al. 2007) but
can be also assessed with the use of some physical proper-
ties of the signal source (Strykowski 2000). The filters are
frequently necessary to solve the problems of the correlated
noise present in e.g. satellite gradiometry data (Schuh 2003;
Reguzzoni andTselfes 2009). Thepresented research focuses
on the random part of the observations, considered as white
noise.

This work attempts to apply a non-homogeneous a priori
noise of the data inLSC, in linewith the belief that large errors
in the data should not be necessarily removed and treated as
gross-errors. The alternative often used in data processing,
especially in large datasets, is the removal of outlying obser-
vations based on the specified threshold. A handy set of tech-
niques and possible thresholds, as well as some classification
of the outliers can be found in Kern et al. (2005). The result
of the removal of suspected outliers is also shown in this
article, however, it is worth investigating if the errors come
really from an evident mistake or they are rather observa-
tional in nature. A significant number of the data with larger
observational errors can justify a need to include them in
LSC to keep worse interpolation results rather than empty
places. The question is then how to estimate these noise val-
ues and what is the influence of noise values on LSC results?
LSC can be processed with one dataset; however, the vari-
ety of the terrestrial and still growing number of the satel-
lite data sources, often requires combining of the data sets
with different noise characteristics. The variance component
estimation (VCE) is popular in assessing the existing noise
variances for different data that contribute to the combined
solution (Kotsakis and Sideris 1999). The influence of par-
ticular datasets is then diversed, depending on different noise
variances. The examples are an applicationofminimumnorm
quadratic unbiased estimation (MINQUE) of variance com-
ponent for different groups contributing to the geoid height
values (Fotopoulos 2005) and maximum likelihood (ML)
estimation of two groups of distance observations in the hor-
izontal geodetic network (Grodecki 1999). Another practical
example investigates the signal variance and the noise vari-
ance as the variance components (Yang et al. 2009). These
variances are resolved byMLmethod to find their ratio. This
work is focused on the estimation of a priori noise variance
alone by REML. The subsets of different a priori noise vari-
ances existing within one type of the data can be extracted
e.g. by the separation of some data forming groups of the sup-
posed, different noise variance levels. This split can be done
empirically by cross-validation (CV) based on the spatial
correlation (Tscherning 1991). The split into the groups of
different noise is of course approximate; however, significant
differences in noise variance levelmay beworth investigating
alsowith the use of such a simple approach. In amore detailed
approach, the individual a priori noise variances can be esti-
mated point by point with the separation of a single point
only.

There is no proof that one dataset has uniform noise vari-
ance over some data region as there are at least two fac-
tors that can add to this heterogeneity. The most obvious
are different measurement errors, which may sometimes be
especially large, e.g. due to the extremely hard observa-
tional conditions. These errors are sometimes assessed as
outliers in some data analyses, but in fact, they are poor
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observations. It is also suspected that the relation between
the measurement accuracy, local high-frequency signal vari-
ance and the spatial data resolution can exert some influ-
ence on the noise covariance matrix. The worst option in
processing data by LSC is to keep outlying observations
together with the better data and apply a homogeneous
noise variance. All the regions close to the outliers are then
affected in interpolation process, which is shown in numer-
ical examples. Two schemes of REML application are pro-
posed below to assess noise variances in groups or individ-
ually. The threshold can be set to keep outliers in a separate
group of point measurements. The influence of the outliers
may be eliminated by the removal of the points or equiva-
lently by assigning them a sufficiently large value of a priori
error. The estimation of prediction errors can be then used
to assess the advantage of one or the other way in terms
of errors distribution and the obtained resolution of inter-
polated spatial field. The crucial motivation in the develop-
ment of efficient noise assessment techniques can be a per-
manently increasing number of different data types. Satel-
lite, terrestrial, marine and airborne data compose spatio-
temporal databases describing the same phenomena. There-
fore, a combination of the data to obtain optimal estimates
can require simultaneous, empirical noise assessment. The
combination of CV and REML techniques presented in the
article provides some answers in statistics related to a pri-
ori noise and prediction errors, which can be interesting
especially when data are sparse, noisy or come from many
sources.

2 Assigning noise by restricted maximum likelihood
(REML)

The known LSC equation for the interpolation of gravity
values in the space domain reads (Moritz 1980):

∼
�gr = CT

P · (Cs + Cn)−1 · �gr , (1)

where �gr is the residual data vector. The matrix Cs is
the covariance matrix of the residuals, CP is the covariance
matrix between predicted residuals and data residuals andCn
represents the noise covariance matrix. The objective of the
numerical tests is to split the observations into groups of dif-
ferent noise variance. An arbitrary number of the groups can
be used, however various drawbacks have to be considered,
e.g. the importance of results improvement or computational
efficiency. In the proposed numerical tests, which will be
described in details in the next section, we have always two
groups: the better subset and theworse subset. Thus, sincewe
consider uncorrelated noise, Cn becomes the block-diagonal
matrix:

Cn =

⎡
⎢⎢⎢⎣

δn1 0 · · · 0
0 δn2 · · · 0
...

...
. . . 0

0 0 0 δni

⎤
⎥⎥⎥⎦ , δni = δn2i · Im (2)

In Eq. (1), δni are diagonal matrices with squared standard
deviations of uncorrelated, homogeneous noise of m data
points in the subsets. In this article, different noise variance
values are grouped in the vector of parameters, i.e. θ = {ϑi } =
{δni} when we split the data into i groups. The further inves-
tigations use single noise standard deviation δn or 2×1 vector
θ = {δn1, δn2}. The better and worse subsets use the para-
meters δn1 and δn2, respectively. Therefore, the covariance
matrix C(θ) will be consequently equal Cs + Cn. The noise
is assumed to be non-correlated. The signal is spatially cor-
related and Cs, as well as CP , are generated using Gauss-
Markov third order (GM3) planar model (Moritz 1978).

GM3(C0,CL, s)=C0

(
1 + s

CL
+ s2

3 · CL2

)
·exp

( −s

CL

)
,

(3)

where the spherical distance denoted as s is used instead
of planar one and CL is also in spherical distance units.
The selection of the covariance model is partially based on
the frequent use of GM3 model in the literature for geoid
(Kavzoglu and Saka 2005) or gravity interpolation (Moreaux
2008). The use of this and other planarmodels is very popular
in local gravity modeling by LSC and in the analyses of the
covariance parameters (Camacho et al. 1997;Kotsakis 2007).
Thesemodels can approximate the empirical covariance very
well in local areas, where the removal of long-wavelength
signal part can efficiently eliminate remote covariance terms.
The planar models can well represent predominant, close
covariance terms, which are most significant in LSC. The
remaining, small values of long-wavelength correlation are
systematic and are not suspected as contributing to the white
noise. Since the analysis is focused on δn parameter, which
forms a diagonal matrix that does not use GM3 model, the
GM3 was assumed as useful in the test, after the efficient
removal of long-term signal trend described later.

LSC by Eq. (1) is quite common in regular gridding of
gravity anomalies. It can be used to predict regular grid in
the data area, but also to predict sparse points. The latter
option can be used in the CV process, which has various
known forms. One of them is leave-one-out (LOO) valida-
tion, which removes one point from the dataset, used for the
prediction in the position of the removed one (Eq. 4). The
differences between n data values and the predictions made
in the same positions are often used as a measure of the pre-
diction precision. The difference in point p used in LOO
validation reads:
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LOOp

(
(θ)|

( ∼
�grn×1,�grn×1

))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�grp − ∼
�grp

∣∣∣∣
∼

�grp = CT
P(n−1)×1 · (Cs(n−1)×(n−1)

+ Cn(n−1)×(n−1))
−1 · �gr(n−1)×1

∧
�grp /∈ �gr(n−1)×1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(4)

LSC assumes that the mean is known and equals zero, i.e.
we process residual data, which are spatially correlated.
The residuals can be always produced by removing a long-
wavelength signal part. This is usually done using global
harmonic expansion of the physical quantity. The global har-
monic expansion should represent sufficiently large degree
to remove long-wavelength part. The maximum degree and
order of the removed global harmonic expansion of gravity
has to be equivalent to a rather smaller area size than that of
the selected data. The choice of an adequate degree and order
is necessary to have a Gaussian distribution of the residuals
and possibly few residues of long-wavelength signal.

REML estimation of the covariance parameters assumes
that pure ML can provide biased estimates due to non-zero
mean in the data. Therefore, REML applies the orthogonal
projection of the data based on the spatial distribution and
although this test uses the residuals from the global model
subtraction, a minimalistic first order trend is additionally
applied in REML to follow the rule. The first order trend
reads:

X =
⎡
⎣
1 ϕ1 λ1
· · · · · · · · ·
1 ϕn λn

⎤
⎦ , (5)

The implementation of the trend can be done by the matrix
R, which has the relation with the so-called projectionmatrix
P and reads (Koch 2007; van Loon 2008):

R(θ) = C(θ)
−1 · P

= C(θ)
−1 ·

{
I − X

[
XTC(θ)

−1X
]−1

XTC(θ)
−1

}
. (6)

R is then used in the probability density function to separate
the vector of coordinates and obtain independency of the
marginal likelihood function of spatial data distribution, i.e.:

p(�gr , θ) = |C(θ)|− 1
2

∣∣∣XTC(θ)
−1X

∣∣∣−
1
2

× exp

[
−1

2
�grTR(θ)�gr

]
. (7)

In the case of unknownvector of the parameters θ, the process
should be iterative. The use of approximate parameters may
be sometimes helpful and sufficient to replace iterations. This

experiment shows values of the negative log-likelihood func-
tion (NLLF) for different combinations of at most two para-
meters in the vector θ. The NLLF in our case reads:

NLLF(�gr , θ) = 1

2
ln |C(θ)| + 1

2
ln

∣∣∣XTC(θ)
−1X

∣∣∣

+1

2

[
�grTR(θ)�gr

]
. (8)

The minima of NLLF, which are a base for the parameters
choice, can be observed graphically in Fig. 3. These results
are also calculated using the scoring process (Grodecki 1999;
van Loon 2008). This method is often called Fisher scoring
and is iterative. The vector of the parameters is iterated using
the following algorithm:

θk+1 = θk − S−1(θk) · dk(θk), k ∈ {1, 2 . . . 10} . (9)

S is the Fisher information matrix, which is positive defi-
nite and is produced using first derivatives of the covariance
matrix C(θ):

S=

⎡
⎢⎢⎢⎣

S1,1 S1,2 · · · S1, j
S2,1 S2,2 · · · S2, j
...

...
. . . S3, j

Si,1 Si,2 Si,3 Si, j

⎤
⎥⎥⎥⎦, Si, j = tr(RCiRC j ), i, j = δni .

(10)

The vector of the scores d(θk) = t(θk) – u(θk) and

u = {ui } , ui = �grT · RCiR · �gr . (11)

t = {ti } , ti = tr(RCi ). (12)

Derivatives of the covariance matrix are computed with
respect to the covariance parameters, i.e.:

Ci = ∂C(θ)

∂ϑi
. (13)

If we can accept C0 and CL derived from the fitting of the
covariance model and fix them here, only the noise standard
deviation parameter is analysed in the numerical tests. Con-
sequently, differentiation in Eq. (13) is fairly easy. The signal
part of C(θ) becomes constant and the variable part is block
diagonal Cn added to Cs. Such a noise covariance matrix
can hold only uncorrelated part of the data.

3 Initial data assessment

Gravity data come from the U.S. gravity database available
at the website of University of Texas at El Paso (Hilden-
brand et al. 2002; Keller et al. 2006). Two sets of gravity data
are selected for the testing. The first is located in Wyoming
and the second in New Mexico. The first dataset consists
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of 492 point Bouguer gravity anomalies with spherical dis-
tances between the points around 0.05◦, whereas the second
one stores 608 points of the same datawith similar resolution.
The topography structures of both selected areas are similar.
The Wyoming sample is an area of moderate roughness at
altitude between around 1050 and 1400 m with respect to
WGS84. Only southwestern corner of the selected region
includes a mount slope that is 2800 m high. The topography
of New Mexico sample is mainly between 870 and 1400 m
with one mount slope up to 2000 m, also in the south-west.
The U.S. gravity database consists of large number of sur-
veys from different time epochs and therefore the accuracy
varies, depending on the survey techniques used. The data
used in this analysis is extracted geographically from the
composed database and no accuracy estimate is provided in
the files. The codes indicating the survey campaigns are only
available. The information about the measurement errors is
therefore mixed and difficult to assess with no access to the
National Geodetic Survey (NGS) reports. The choice of the
testing areas was approximately based on the gravity data
analysis of the U.S. gravity base that can be found in Saleh
et al. (2013). They provide a detailed investigation of grav-
ity errors by the nearest neighbor and crossover analysis,
which may be substantially useful for data processing by
LSC. This work follows the empirical approach and assumes
that a priori noise variance depends not only on the sur-
vey error, but also on the data resolution. The criterion was
to find some larger errors in the datasets to assign differ-
ent a priori errors amongst one dataset. The data are often
regarded as having homogeneous noise variance by many,
especially if one technique is applied in the survey over a
small area. However, the analyses like in Saleh et al. (2013)
prove heterogeneity of the noise. The specific question in
data analysis is the problem of outliers. The outlying obser-
vation can be a gross-error that has its value distorted by
the factor different from typical observational conditions.
This factor, in gravity dataset, may be e.g. the coordinate
that is false due to severe conditions in GNSS positioning
(Bakuła 2012). The data with noise significantly larger than
average are often regarded as gross-errors and removed. In
practice, large datasets may contain a considerable number
of observations with significant observational errors, which
cause problems in the simultaneous processing. These prob-
lems occur in LSC, which needs weighting of the data or
removal of outlying values. The question to pose is whether
different noise parameters for different groups can provide
more accuracy than using homogeneous noise or removing of
the outliers? Are the observations with a larger noise indeed
removable and what will be the accuracy in the data gaps?
Finally, what is the advantage or disadvantage of using indi-
vidual noise values for the points? These questions are inves-
tigated in the paper with the specific use of REML tech-
nique.

In case of large datasets, the manual search of the outlying
observations can be inefficient. Different techniques are used
to automatize the process, including the very popular LSC
(Tscherning 1991; Vergos et al. 2005). The rule is to compare
the prediction with originally measured value in the same
positions. A special task is to find the threshold value, which
is responsible for the removal of points. The same technique
is used in this paper in LOO validation, performed to split the
data into groups of different noise levels. This means that the
residual observation used for comparison does not apply in
point LSC prediction (Kohavi 1995). The data used in LOO
was previously detrended using global harmonic expansion
of geopotential. The long-wavelength Bouguer gravity part
was generated from the EGM2008 to degree and order 360.
The distribution of the residuals is shown in Fig. 2c, d. The
residuals of the better subset were then used in the estimation
of ECF by averaging the products of point values separated
by similar distance. The analyticalGauss-Markovmodel (Eq.
3) is subsequently fitted into ECF (Fig. 2a, b) by the manual
manipulation of C0 and CL parameters and graphical assess-
ment.C0 andCL are then fixed to the values from covariance
function fitting and δn is set roughly to 0.5 mGal, which is
afterwards found to be not so far from the average noise here.
The radius of selection of the points used in every interpo-
lation was set to 4CL and typical LOO validation has been
done for all data points. The subsequent step is different than
removal, however the removal option is also made for com-
parison in a separate calculation. Rather than being removed,
the outlying values are first stored in another file, which is
called worse subset and obtains different a priori error than
the remaining data in the better subset. The threshold was
set to 6 mGal for both datasets and this choice is in some
sense an example with no mathematical rule associated with
it. On the other hand, smaller outliers are quite frequent in
the validation, especially in Wyoming, and therefore seen as
typical rather than outlying. The threshold for both datasets
is intentionally equal, in the belief that this can assure a more
comparable analysis. As a result, the Wyoming data have
been split into 474 better points and 18worse points, whereas
New Mexico data have been split into 601 better points and
7 worse points. Figure 1 shows datasets and worse data as
rounded integer LOO differences by Eq. (4).

Some assumptions are made prior to the REML estima-
tion of noise variances. If the noise variance is several times
smaller than the signal variance, the inexactness between the
true signal variance and C0 estimated from the data vari-
ance affects a priori errors to a relatively small degree. Many
authors estimate a combination or ratio between noise vari-
ance and signal variance (Pardo-Igúzquiza 1998; Camacho
et al. 1997; Yang et al. 2009). This kind of ratio is not applied
here, but fitting of the functions is assumed as quite a good
approximation of C0 and CL. This is also based on the previ-
ous studies, where CL estimated by the fitting is very similar
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(a) gravity in Wyoming [mGal]
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(c) outlying values in Wyoming [mGal]
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(d) outlying values in New Mexico [mGal]
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Fig. 1 Bouguer gravity anomalies and schemeof split with better subsets represented by dots andworse subsets by integer, roundedLOOdifferences
(Eq. 4)

to that from CV results (Jarmołowski 2013). Even if this
is not true at all, the examples prove that small changes of
these parameters can affect the estimation of δn by REML
only negligibly (Jarmołowski andBakuła 2014). Fixing ofC0

and CL enables a more clear view on δn and makes REML
process more effective in the estimation of δn. This parame-
ter is most difficult to estimate by the covariance function
fitting and therefore needs an application of REML.

C0 and CL estimated by the model fitting into the values
of ECF are respectively, 115mGal2 and 0.060◦ forWyoming
and 45mGal2 and 0.050◦ for NewMexico (Fig. 2a, b). These
values are then fixed in REML and LOO processes, but we
have to remember that the gravity field can be only locally
assumedas stationary and the covariance parameters are valid
only locally. LOOvalidation uses a limited distance range for

the points used in point computation. It is four times larger
than CL and this choice is based on the covariance func-
tion shapes. This distance assures the selection of the points
within the area of positive covariance, with the assumption
that small negative values are systematic in nature and there-
fore do not affect non-correlated δn. This rule is also used
for the point REML estimation. δn1 is there applied for one
calculated point and δn2 for the subset limited by 4CL.

4 Numerical experiment

The presented numerical test uses the fitting of the analytical
planar covariance model (Eq. 3) into the empirical covari-
ance values (Fig. 2a, b). I decided to fix C0 at the begin-
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Fig. 2 Empirical covariance
functions of residuals, fitted
GM3 function (a, b) and
histograms of residuals (c, d)
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(b) New Mexico covariance
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(c) Wyoming residuals
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(d) New Mexico residuals

ning, since the covariance matrix based on Eqs. (1) and (3)
implies a correlation between signal and noise variances (Jar-
mołowski and Bakuła 2014). The fitting of the analytical
covariance model into empirical covariance function (ECF),
estimates CL parameters that are close to those found by
CV when C0 approximates the signal variance (Jarmołowski
2013). Thus, the two mentioned parameters can be assessed
as proper at some level of accuracy. This is assumed to be
sufficient to estimate the noise variance with the error several
times smaller than C0 error, especially if δn is much smaller
than C0.

NLLF values described in Eq. (8) are dependent on C(θ)
and therefore also on the parameters in the vector θ. C0 and
CL are fixed, as their accuracy from the fitting (Fig. 2a, b) is
assessed as sufficient to estimate reliable values of δn. The
validity of this assumption is confirmed later by the results
of REML and LOO estimation. In the first numerical test
the vector θ comprises of two average standard deviations
of a priori noise representing two subsets of each dataset:
better and worse. These standard deviations are δn1 and δn2
respectively. In the second numerical test the split of the data
is not considered. Individual δn values are estimated in the

following way. For each point, the closest data is employed
in REML estimation, using 4CL radius of the selection. The
same parameters δn1 and δn2 indicate noise standard devi-
ation of one point from the whole dataset and respective
quantity for the group of remaining points, which are located
closer than 4CL to the one selected. The shape of θ vector
is the same as in the first test, however, δn1 is reserved for
the investigated point only, i.e. m = 1 for the subset (Eq. 2).
The remaining points obtain the parameter δn2 and the same
process, as in group estimation, is repeated n times for a lim-
ited number of the observations that is different each time.
The subset of m processed points obtains then group δn2
value of the noise standard deviation, whereas one central
point is distinguished and has an individual value δn1. δn1
is large if the point value is outlying. The parameter δn2 is
variable and it may have different values, some of whichmay
also be large if poor observations are present in the subset.
Finally, δn2 is neglected in the further investigation and δn1
values represent point noise variances.

The process of scoring (Eq. 9) in the presented form has
been extensively discussed in the literature and some prob-
lems with solvability have been found (Kubik 1970; Pardo-
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Fig. 3 NLLF values for
variable noise standard
deviations of better (δn1) and
worse (δn2) subsets
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Igúzquiza 1997; Grodecki 1999). Therefore, a decision was
taken to control the estimation of the parameters by scoring
from thebeginning.Thementionedproblems are numerically
illustrated in the previous work (Jarmołowski and Bakuła
2014), however, this example presents successful scoring,
consistentwithNLLFvalues.Nevertheless, the improvement
of scoring convergence should be investigated in the future
works. There are many examples of more advanced or robust
techniques e.g. in Smyth (2002) and Kusche (2003). To con-
trol the scoring results here, NLLF has been calculated for
variable δn1 and δn2after fixing C0 and CL. The empirically
selected range of the search is visible in Fig. 3, where 0.1
mGal is the step for δn1 and 0.5 mGal for δn2. The global
minimum of NLLF indicates a smaller δn1 for better subsets
and several times larger δn2 for the worse subsets (Fig. 3).

The noise standard deviations δn1 and δn2, which can be
graphically assessed from Fig. 3, are also estimated by the
scoring. The parameters obtained for Wyoming are follow-
ing: δn1 = 0.71 mGal and δn2 = 5.85 mGal, and for New
Mexico: δn1 = 0.66 mGal and δn2 = 6.24 mGal. These
results are quite consistent with Fig. 3, which confirms the
correctness of the scoring. The iterations are shown in Figs.
4b and 5b. It should be noted here that scoring for some addi-
tional data samples was ineffective via this simple approach.

The main objective of the current test is to prove the use-
fulness of REML estimation of a priori noise for different
groups of observations (Figs. 4, 5), as well as for the point
approximations of a priori noise in the second test (Fig. 6).
In the first test, the scoring has been additionally used with
no split of the data, i.e. for the whole datasets. In this case, a
priori noise standard deviation is denoted just as δn and one
value is determined for each area (Figs. 4a, 5a). This value is
subsequently used in the repeated LOO validation test (Figs.
4c, 5c), as well as two values found for better and worse
subsets (Figs. 4d, 5d). All of the repeated LOO tests have
been performed only in the positions of the better subsets

to eliminate the data with significant noise from the com-
parisons. This assures that the measured values are close to
the true, correlated gravity field and enables more accurate
validation. More precisely, the predictions are made in the
positions of the better subset using the whole set. The dis-
tance limit for the data used in the point prediction is 4CL,
because positive covariance values reach approximately this
distance (Fig. 2a, b). LOO values for the homogeneous noise
are shown as scatter plot in Figs. 4c and 5c. Figures 4d and 5d
present LOO values in the case of different a priori standard
deviations estimated for split data. All scatter plots have the
areas of the circles increasing exponentially, tomagnify LOO
validation results. The areas have been drawn using absolute
values of LOO differences in the power, i.e. 3|LOO|. These
values have been empirically found as most effective graph-
ically. This idea reveals 0.1 mGal of differences in standard
deviation between different solutions, which can be observed
in pairs of figures, i.e. Figs. 4c, d and 5c, d.

The mean and the standard deviation of LOO differences
forWyoming data are improved for split data (Fig. 4d) in rela-
tion to respective statistics when the homogeneous a priori
noise is used (Fig. 4c). The places with a significant con-
centration of worse points, after assigning δn2 = 5.85 mGal,
obtain better LOO values in the better points. No improve-
ment is observed in the places that are away from the worse
points. Sometimes LOO results are even worse than for the
homogeneous noise in these places. This proves that larger
δn = 1.25 mGal was a better choice for these places (Fig. 4c)
than smaller one, i.e δn1 = 0.71 mGal (Fig. 4d). Such worse
LOO differences can result from the larger actual noise in
the mentioned places and may suggest more detailed split of
the data, e.g. into three subsets.

Although NewMexico data have fewer worse points after
applying the threshold equal to 6 mGal, the standard devia-
tion of repeated LOO differences has also decreased a little.
The places of the worse data have lower LOO values in the
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Fig. 4 Scoring iterations and repeated LOO validation of the estimated a priori standard deviations for Wyoming data. The crosses indicate worse
points. The areas of circles increase exponentially. A few numbers are used to represent the scale

better points in Fig. 5d than in Fig. 5c. LOO values in the bet-
ter points that are far from worse subset show no bigger dif-
ferences between the two solutions. This is due to the small
differences between homogeneous noise δn = 0.85 mGal
and that for better subset after split, i.e δn1 = 0.66 mGal. To
provide a more detailed answer on the usefulness of REML
estimation in groups of the data, a typical remove procedure
has been also applied and compared to the mentioned results.
The Fisher scoring has been applied to the better subsets
alone and δn has been estimated as practically the same val-
ues as in group estimation. These values have been checked
in LOO validation performed after the removal of the worse
data and the statistics were: mean 0.01 mGal and standard
deviation 1.73 mGal inWyoming; mean 0.00 mGal and stan-
dard deviation 1.45 mGal in NewMexico. These statistics in
comparison with Figs. 4d and 5d prove no practical differ-
ence between group estimates used and outliers removal at

the same threshold of split and removal. The group estimation
by REML can assign a priori errors to outlying data that are
able to marginalize their influence to the same extent as out-
liers removal. Therefore, REML can be considered as useful
tool for such purposes, especially if fast scoring technique is
applied.

The split solution and outliers removal show only small
improvement in relation to the homogeneous noise assump-
tion and therefore the decision was taken to perform the sec-
ond test. REML estimation has been made n times for all the
points in Wyoming and New Mexico. This test is performed
with the use of NLLFminimum search only, since the robust-
ness of the scoring is not improved in this work. The ranges
of both parameters start from 0.1 mGal and then follow from
0.5 mGal, with step 0.5 to 8 mGal for δn2 and from 1 mGal,
with step 1 to 12 mGal for δn1. Minimum NLLF indicat-
ing optimal values of both parameters is individually found
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Fig. 5 Scoring iterations and repeated LOO validation of the estimated a priori standard deviations for New Mexico data. The crosses indicate
worse points. The areas of circles increase exponentially. A few numbers are used to represent the scale

for every point. Every n repeat finds δn1 for the analysed
point p and δn2 for the group of the remaining points in the
selected neighborhood of p. The values of the estimated δn2
are then omitted and not presented in Fig. 6. Point values of
δn1 are shown in Fig. 6a, b. The numbers show the estimated
a priori noise exceeding or equal 2 mGal only to keep some
clarity of the figure. It is immediately noticeable that many
values exceed average a priori noise estimated for the better
subset in the first test. The use of individual a priori noise val-
ues in LOO validation decreases standard deviations of the
differences computed consequently in the positions of the
better points only (Fig. 6c, d). This improvement is evident
in comparison to the improvement from the group estimation
and provides LOO standard deviations equal 1.44 mGal in

Wyoming and 1.22 mGal in New Mexico. These values are
about 20 % smaller in relation to respective standard devia-
tions from the use of homogeneous noise.

The scoring process has the main advantage in terms of
computational time in REML noise estimation. However, it
was not implemented in the pointwise processing in the frame
of this work, because it is more complicated and needs some
more numerical trials. The estimation with the use of varying
parameters is not convenient and more time-consuming than
scoring. However, the same estimation using LOO validation
will take even more time, because it needs varying parame-
ters in LSC computation of every point and checking the total
statistics of LOO differences. The REML group estimation
for Wyoming using typical “i5” processor has taken 103 s,
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Fig. 6 Pointwise REML estimates of a priori error greater than 2 mGal in a Wyoming, and b New Mexico and LOO validation of LSC with point
error values in c Wyoming and d New Mexico. The areas of circles and numbers are applied in the same way as in Figs. 4, 5

whereas New Mexico estimation has been done in 175 s.
The same estimations by the scoring have been processed
in 4 and 7 s, respectively. Therefore, the investigation of the
scoring in point REML estimation is especially worth imple-
menting. The pointwise estimation with the use of NLLF,
which was most successful in results have been performed
in 315 s for Wyoming and 242 s for NewMexico. Therefore,
it can be expected that future application of the scoring in
the pointwise estimation will give proportionally better time
improvement, as it is found for group estimation. The time
consumption and also REML effectiveness is dependent on
the size of covariancematrices. It should be pointed thatmore

extensive test areas with a larger number of the data need to
handle the data in a way that limits the size of the covariance
matrix. To summarize, the time efficiency of the processes
are strongly related to the size of the covariance matrices and
the number of repetitions of single estimates.

All four approaches to δn in LSC i.e.: use of homogeneous
noise (Figs. 4c, 5c), group estimation of noise by REML
(Figs. 4d, 5d), the removal of outliers with the application
of the same threshold as for groups and point estimation by
REML (Fig. 6c, d) are validated in repeated LOO process
on better points, together with a posteriori error estimates by
the well-known formula (Moritz 1980, p. 105, Eq. 14–42).
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Table 1 LSC error estimates from four approaches to δn in Wyoming
(mGal)

Min. Max. Mean

Homogeneous δn 0.97 5.08 1.61

Better and worse 0.71 4.85 1.37

Worse removed 0.74 4.88 1.40

Individual δn 0.48 5.13 1.36

Table 2 LSCerror estimates from four approaches to δn inNewMexico
(mGal)

Min. Max. Mean

Homogeneous δn 0.78 3.46 1.32

Better and worse 0.67 3.39 1.24

Worse removed 0.74 3.43 1.29

Individual δn 0.40 3.22 1.21

Since LOOvalidations are pointwise and no grid creation has
been done, the general statistics have also been calculated in
sparse points, which have quite good density and coverage of
the selected region. The error estimates for all four options
of δn are given in Tables 1 and 2.

The statistics show the largest errors when homogeneous
δn is applied with no outliers investigation. The split into
two groups shows a slight advantage in relation to outliers
removal, but this is not confirmed in LOO standard devia-
tions described before in this section. Therefore, the small
differences between 1.40 and 1.37 mGal in Wyoming and
between 1.29 and 1.24 mGal in New Mexico can indicate
only very local improvement in the resolution of the points
with very limited influence on regional statistics. The advan-
tage of point REML estimation of δn is mostly visible in the
minima of the above statistics. Point δn values allow to reach
the best accuracy estimates that are not available by means
of any other approach.

5 Conclusions

The initial LOO validations made for the selected data sam-
ples found many observations with the errors several times
larger than the average error value. Their removal can slightly
limit estimated accuracy of LSC solution, which is confirmed
in slightly worse error statistics. However, no significant dif-
ference in terms of repeated LOO standard deviation can be
observed between processes after the removal of outliers and
group error assignment. This means that group noise esti-
mation by REML is practically equivalent to the removal of
outliers in this case. Therefore, REML appears to be a help-
ful tool in the empirical search of the threshold for outliers
and an estimator of sufficiently large noise for outliers, which

marginalizes their influence on the result. It should be pointed
that REML estimates of errors are generally consistent with
the results in Saleh et al. (2013).

An alternative and better option is to use individual noise
variances in Cn matrix. Therefore, REML algorithm is addi-
tionally applied pointwise and individual δn are estimated
for every point by the search of NLLF minimum. Repeated
LOO showed that the estimation of δn by REML in points
can reduce the standard deviation of the differences a few
times more than REML with data split or outliers removal.
The pointwise REML estimation provides noticeable 20 %
improvement in terms of LOO standard deviation; thus, the
optimization of scoring is worth considering to obtain fast
algorithm for this purpose. The detailed analysis of a priori
noise by an empirical application of REML introduces some
new methodology in the noise investigation, which can be
presumably applied to the cases of the correlated noise in
further research.
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