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Abstract The paper presents an approach to internal
reliability analysis of observation systems known as Errors-
in-Variables (EIV) models with parameters estimated by the
method of least squares. Such problems are routinely treated
by total least squares adjustment, or orthogonal regression.
To create a suitable environment for derivations in the analy-
sis, a general nonlinear form of such EIV models is assumed,
based on a traditional adjustment method of condition equa-
tions with unknowns, also known as the Gauss–Helmert
model. However, in order to apply the method of reliabil-
ity analysis based on the approach to response assessment
in systems with correlated observations, presented in the
earlier work of this author, it was necessary to confine the
considerations to a quasi-linear form of the Gauss–Helmert
model, representing quasi-linear EIV models. This made it
possible to obtain a linear disturbance/response relationship
needed in that approach. Several specific cases of quasi-linear
EIV models are discussed. The derived formulas are consis-
tent with those already functioning for standard least squares
adjustment problems. The analysis shows that, as could be
expected, the average level of response-based reliability for
such EIV models under investigation is lower than that for the
corresponding standard linear models. For EIV models with
homoscedastic and uncorrelated observations, the relation-
ship between the average reliability indices for the indepen-
dent and the dependent variables is formulated for multiple
regression and coordinate transformations. Numerical exam-
ples for these two applications are provided to illustrate this
analysis.
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1 Introduction

Total least squares (TLS) adjustment referring to Errors-in-
Variables (EIV) models has a wide mathematical literature,
e.g., Golub van Loan (1980), van Huffel and Vandewalle
(1991), and Rao and Toutenburg (1999). It has also been
extensively explored by researchers in the field of geodesy.
There are a number of contributions analyzing the relation-
ships between the EIV models and the standard iteratively
linearized models, well established in geodesy, and simulta-
neously proposing suitable algorithms for the rigorous evalu-
ation of parameters in nonlinear EIV models (e.g., Schaffrin
and Wieser 2008; Schaffrin and Felus 2008; Neitzel 2010).

The present contribution is focussed entirely on the prob-
lem of response-based reliability analysis for TLS adjust-
ment. It should be noted that analyses of this type are usually
carried out at the design stage when one wants to evaluate the
reliability properties of the originally nonlinear adjustment
model under consideration. In such a priori analyses, the non-
linearity problems may be overcome by using approximate
values of the parameters when observation results are lying
sufficiently close to the true values, or, practically, by using
nominal values of these quantities.

In an attempt to generalize the EIV model for the pur-
pose of the response-based reliability analysis, the most rea-
sonable approach, backed by an appropriate proof, appeared
to this author to take, as a basis, a nonlinear stochastic
model containing two types of quantities, namely, the error-
free unknown parameters to be determined and the observa-
tions as random variables of well-known values and accuracy

123



90 W. Prószyński

characteristics. This led to the use of the so-called combined
case of least-squares adjustment (Krakiwsky 1975), being
termed a method of condition equations with unknowns,
also known as the Gauss–Helmert model. This equivalent
approach to TLS adjustment as a specific least-squares prob-
lem turned out to be consistent with that discussed in Schaf-
frin et al. (2006), Schaffrin and Snow (2010), and Neitzel
(2010), and it is followed here since it seems to be most suit-
able for the purpose of the response-based reliability analysis
along the lines of the approach as in Prószyński (2010).

However, since such an approach requires the use of the
linear relationship between the observations and residuals,
restrictions to a general G–H model had to be made confining
the considerations to its quasi-linear form only. Such a form
means here a nonlinear G–H model that is linear with respect
to the observation vector formed of both the dependent and
the independent variables.

To establish a link between this paper and publications that
do not use the term reliability, but are concerned with sim-
ilar properties of over-determined linear models (e.g. Chat-
terjee and Hadi 1988), the domain of this paper could as
well be expressed as the “sensitivity” analysis of orthogonal
regression.

2 Generalized EIV model and its linearized form
for the purpose of reliability analysis

We shall first show that the TLS adjustment problem referring
to a nonlinear EIV model is, with respect to response-based
reliability analysis, equivalent to the LS problem referring to
a linearized form of this model.

Let us thus consider a (quasi-linear) EIV model for
homoscedastic and uncorrelated observations, having the
form

(Aobs − EA)x = yobs − εy (1)

where Aobs is the n × u matrix of observed coefficients, rank
Aobs = u, EA is the n × u matrix of unknown random errors
in observed coefficients, yobs is the n × 1 vector of obser-
vations, εy is the n × 1 vector of unknown random errors in
observations, and x is the u×1 vector of unknown parameters.

To follow the notation as in (Prószyński 2010), we shall
use the form (1) putting VA = −EA, vy = −εy, i.e.

(Aobs + VA)x = yobs + vy (2)

In the homoscedastic cases, the TLS problem is defined as
finding xTLS for the nonlinear system (2), such that

‖[ VA vy ]‖2
F = min (3)

where ‖·‖F denotes the Frobenius norm, avoiding the
linearization of the model.

Since ‖[ VA vy ]‖2
F = ‖vecVA‖2

2 +‖vy‖2
2 =

∥
∥
∥
∥

vecVA

vy

∥
∥
∥
∥

2

2
,

where vecVA is the (un × 1) vector formed by stacking the
columns of the matrix VA underneath each other, we obtain
the TLS condition in equivalent form to (3) for the EIV model
(2), as
∥
∥
∥
∥

vecVA

vy

∥
∥
∥
∥

2

2
= min (4)

which is the LS condition for this model.
The equivalence between the conditions (3) and (4) as

applied to the EIV model (2) makes it possible to formulate
the TLS problem for correlated observations, using a suitably
modified condition (3).

For the response-based reliability analysis of any adjust-
ment model, we need a linear relationship between the vector
of observations and the vector of LS residuals. To obtain such
a relationship for the EIV model (2), we find its linearized
form, being first-order Taylor approximation obtained at a
point (xo, Aobs), and transform it, so that it contains aggre-
gated vectors of observations and unknown random errors.
Coming through an intermediate step in derivations after
neglecting the second-order term VAdx, we get

Aodx + VAxo − vy + Aobsxo − yobs = 0

where Ao is a non-random matrix, obtained from Aobs by
subtracting random zeros as in (Schaffrin and Snow 2010).

After regrouping the terms, we obtain finally the Gauss–
Helmert model in linearized form

Aodx + [ K −In ]
[

vec VA

vy

]

+ [ K −In ]
[

vec Aobs

yobs

]

= 0

(5)

where K is the (n×nu)matrix; K = In⊗xT
o ; rank [ K −In ]=

n. Finding dx that minimizes the LS condition (4) subject to
the linearized Gauss–Helmert model (5), we shall consider
as an approximation of the TLS problem for the purposes
of response-based reliability analysis. Unlike in seeking the
solution to the original TLS problem, in reliability analysis
that is usually carried out at a design stage, there is no prob-
lem of getting approximate values of parameters (xo), as we
may directly use the nominal values of x. The same applies to
approximate values of independent random variables (Aobs).

In order to generalize the EIV model for the purposes
of response-based reliability analysis, we shall consider the
following nonlinear Gauss–Helmert model

f(u, robs − ε) = 0 ε ∼ (0, C) (6)

obtained by combining a nonlinear functional model f(u, r)=
0 with a stochastic observation model (as in the method
of condition equations with unknowns, Krakiwsky 1975).
Where f is the n × 1 vector of condition equations, u is the
u×1 vector of unknown parameters (n > u), robs is the r ×1
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vector of random variables (r ≥ n) with r = E(robs), ε is
the r ×1 vector of unknown random observation errors; later
we shall be using v = −ε, C is the r × r (p.d.) covariance
matrix for the vector ε as well the vector robs, and E is the
expectation operator.

We assume that the random variables in the vector robs

can be network observations, directly observed parameters or
observed coefficients. Considering the need for a response-
based reliability analysis, we shall require that the functions
in f(u, r) are confined to those that are linear with respect to
the vector r (thus termed quasi-linear), what can be formally
expressed as

∂2f(u, r)
∂r2 = 0 (7)

Here are the examples of characteristic EIV models that,
together with the model (1), satisfy the above requirement,
i.e.

(a) yobs + vy = (Gobs + EG)x + z, with x and z being the
vectors of unknown parameters, the aggregated vectors

are u =
[

x
z

]

, r =
[

vec Gobs

yobs

]

The TLS condition and the equivalent LS condition will
have the form as for the EIV model (2), i.e.

‖[ VG vy ]‖2
F = min ≡

∥
∥
∥
∥

vecVG

vy

∥
∥
∥
∥

2

2
= min

(b) yobs + vy = G(t) · (xobs + vx)+ z, with t and z being the
vectors of unknown parameters, the aggregated vectors

are u =
[

t
z

]

, r =
[

xobs

yobs

]

The TLS condition and the equivalent LS condition will
have the form

‖[ vx vy ]‖2
F = min ≡

∥
∥
∥
∥

vx

vy

∥
∥
∥
∥

2

2
= min

which is consistent with the approach for the model (2),
since vx can be interpreted as a one-column matrix of
residuals, i.e. vecvx = vx .

Let the linearized form of the model (6), obtained in a sim-
ilar way as (5), i.e. with the expansion point (uo, robs), be
denoted as

Adu + Bv + w = 0 v ∼ (0, C) (8)

where A = ∂f
∂u

∣
∣
(uo,ro); B = ∂f

∂r

∣
∣
(uo,robs); w = f(uo, robs);

A(n×u), rank A = u, B(n×r), rank B = n, r ≥ n; w(n×1);
B corresponds to the matrix [ K −In ] as in the model (5);

ro is a non-random vector obtained from robs like Ao in the
model (5); for the quasi-linear G–H model, we have

w = Brobs + g, where g = f(uo, 0).

This can be derived in the following way:
For the models (6) that satisfy (7) we have

B = ∂f(u, r)
∂r

∣
∣
∣(uo,robs) = ∂f(uo, robs)

∂robs

∣
∣
∣(uo,robs)

= ∂f(uo, robs)

∂robs

∣
∣
∣(uo,0)

and hence,

w = f(uo, 0 + robs) = f(uo, 0) + ∂f(uo, robs)

∂robs

∣
∣
∣(uo,0)·robs

= f(uo, 0) + Brobs

The model (8) enables one to easily handle the case of
heteroscedastic and correlated observations, by applying the
LS condition vTC−1v = min, but at the cost of linearizing
the Gauss–Helmert model (6).

3 Derivation of disturbance/response relationship for
quasi-linear EIV models

In contrast to Schaffrin (1997), the approach to “reliability
analysis” for systems with correlated observations accord-
ing to Prószyński (2010) requires the use of the observation
model with random variables which are correlated, dimen-
sionless variables of equal accuracy. We thus have to modify
the model (8), rescaling the random errors so that instead of
the vector v we operate with the vector vs = �−1v, where
� = (diag C)1/2. This naturally results in that the covari-
ance matrix of the rescaled random errors coincides with the
original correlation matrix.

So, using the matrix �, we present the model (8) in the
equivalent form

Adu + B� · �−1v + B� · �−1robs + g = 0 (9)

�−1v ∼ (0,�−1C�−1)

and introducing the notation

robs,s = �−1robs, vs(as above), Bs = B�;
ws = Bsrobs,s + g; Cs = �−1C�−1 (10)

we obtain a modified form of the model (8)

Adu + Bsvs + ws = 0 vs ∼ (0, Cs) (11)

To get the relationship between v̂s (i.e. the LS estimate for vs)

and robs,s, necessary for response-based reliability analysis,
we use the formulas given in (Krakiwsky 1975) adopting
them to the notation in (11), i.e.

v̂s = −Mws (12)
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where:

M = CsBT
s (BsCsBT

s )−1

×{I − A[AT(BsCsBT
s )−1A]−1AT(BsCsBT

s )−1}
Substituting into (12) the vector ws as in (10) (i.e. for quasi-
linear models) and denoting H = MBs, we obtain (12) in the
form

v̂s = −Hrobs,s − Mg (13)

where

H = CsBT
s (BsCsBT

s )−1

×{I − A[AT(BsCsBT
s )−1A]−1AT(BsCsBT

s )−1}Bs

We easily can check that the matrix H as in (13) is an operator
of oblique projection since it is idempotent and asymmetric.

The rank of H, which is crucial for internal reliability
analysis, is

rank H = n − u (14)

The proof, based on trace properties (Rao 1973), is immediate

rank H = TrH = Tr{In − A[AT(BCBT)−1A]−1AT(BCBT)−1}
= n − TrIu = n − u

With �robs representing the vector of standardized observa-
tion gross errors, and �v̂s the vector of induced incremental
changes in the corresponding observation corrections, we
may formulate on the basis of (13) the so called “distur-
bance/response” relationship for the model (11), i.e.

�v̂s = −H · �robs,s (15)

For the original model (8) we would get

�v̂ = −R · �robs

where

R = CBT(BCBT)−1

×{I − A[AT(BCBT)−1A]−1AT(BCBT)−1}B
It is straightforward to show that the operators H and R are
similar matrices, i.e. H = �−1R�.

Listed below are specific cases covered by the distur-
bance/response relationship (15) :

Bs(n × r), r > n; Cs = I EIV, uncorrelated observations

H = BT
s (BsBT

s )−1{I − A[AT(BsBT
s )−1A]−1AT(BsBT

s )−1}Bs

Bs(n × n), B = −I; Cs �= I GM, correlated observations

H = I − As(AT
s C−1

s As)
−1AT

s C−1
s , where As = �−1A

Bs(n × n), B = −I; Cs = I GM, uncorrelated observations

H = I − As(AT
s As)

−1AT
s , where As = �−1A

We shall add a commentary on the advantages of operat-
ing in reliability analysis with the standardized model (11)
instead of the original, non-standardized one (8). The basic
advantage is that the standardized observations, being dimen-
sionless variables of equal variances, are more readily com-
parable with one another within the whole model. This
enables one to formulate consistent and interpretable reli-
ability criteria, which would not be possible in the original
non-standardized model where observations are, in general,
mutually uncomparable quantities. Moreover, the correlation
matrix Cs appears in the operator in explicit form. Hence, we
get a clear discrimination between the case of uncorrelated
observations (H being an operator of orthogonal projection)
and the case of correlated observations (H being an operator
of oblique projection).

4 Indices for response-based reliability of quasi-linear
EIV models

Since, for the EIV models with correlated observations, the
matrix H is an oblique projector (see formula (13)), we shall
be using a two-parameter reliability measure for the i th obser-
vation as proposed for GM models with standardized corre-
lated observations (Prószyński 2010)

h(i) = (hii , wi i ) (16)

where hii is the i th diagonal element of H, and wi i is the
asymmetry index for the i th row and the i th column of H. The
index hii , denoted also as Li(i), is called a “local response of
the model”, i.e. the response in the i th residual to a potential
gross error in that observation.

It also proved advantageous to use as a reliability measure
the pair of indices (hii , ki ), where ki is the ratio of the squared
quasi-global response Q(i) to the squared local response Li(i)

of the residuals to a potential gross error in the i th observa-
tion, i.e.

ki =
Q2

(i)

L2
i(i)

= hii − h2
i i − wi i

h2
i i

= hii − wi i

h2
i i

− 1 (for hii �= 0)

(17)

where the quasi-global response Q(i) means the global
response after stripping it from the local response.

In the numerical examples that will follow, the results of
such a response-based reliability analysis for EIV and GM
models will be shown in a tabular and/or a graphic form. To
distinguish the case of uncorrelated observations, we shall
replace hii by the index h̄i i , as in (Prószyński 2010).

The method of reliability analysis applied in the present
paper does not follow the traditional approach of Baarda,
since it does not lead to specifying the minimal detectable
biases for individual observations. It is based entirely on the
model responses to gross errors, and therefore is termed here
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a “response-based” reliability analysis. This approach offers
“reliability criteria” interpretable in terms of model responses
to observation disturbances.

We recall here the criteria proposed for GM models, i.e.

(a) h̄i i > 0.5; (b) 0.5 < hii ≤ 1.5; hii − 2.2h2
i i (18)

< wi i < hii − h2
i i

for uncorrelated (a) and correlated (b) observations, respec-
tively.

Since the above criteria are derived from the following
requirements:

• the response in the individual observation (i.e. a local
response) should compensate for at least half of the dis-
turbance residing in that observation;

• the local response with its absolute value should surpass
the quasi-global response,

with networks that satisfy them, we may expect better
detectability of outliers, and hence, smaller values of MDBs
obtained along the lines of Baarda.

5 Formulas for reliability analysis of specific cases
of quasi-linear EIV models

We shall discuss specific cases of quasi-linear EIV models
assuming the systems with correlated observations with
given positive-definite covariance matrix. The cases them-
selves are very important in geodetic technologies, since they
represent the observation systems frequently met in practice
that fall into the class of EIV models.

5.1 Multiple linear regression

Let us consider a functional model

a1xi1 + · · · + asxis + b = yi i = 1, . . . , n (19)

or, in a matrix form,
⎡

⎣

xT
1

. . .

xT
n

⎤

⎦ · a + b · 1(n) = y (20)

where a(s × 1), xi(s × 1), i = 1, . . . , n, 1T
(n) = [ 1 1 . . . 1 ],

u =s + 1, n > u.
With x1, . . . , xn, y being vectors of random variables,

and a1, a2, . . . , as, b the unknown parameters, the linearized
form of (20) will be
⎡

⎣

xT
1,obs
. . .

xT
n,obs

⎤

⎦ · ao +
⎡

⎣

xT
1,o
. . .

xT
n,o

⎤

⎦ · da +
⎡

⎣

vT
x,1
. . .

vT
x,n

⎤

⎦

· ao + b · 1(n) = yobs + vy (21)

After regrouping terms to get the form (8), we obtain

⎡

⎣

xT
1,o 1

. . . . . .

xT
n,o 1

⎤

⎦ ·
[

da
b

]

+ [ I(n)

⊗
aT

o −I(n) ] ·

⎡

⎢
⎢
⎣

vx,1

. . .

vx,n

vy

⎤

⎥
⎥
⎦

+ [

I(n)

⊗
aT

o −I(n)

]

⎡

⎢
⎢
⎣

x1,obs

. . .

xn,obs

yobs

⎤

⎥
⎥
⎦

= 0

v − (0, C) (22)

where I(n) is a unit matrix, v represents an aggregated vector
of residuals.

Hence, the matrices A and B are defined by

A =
⎡

⎣

xT
1,o 1

. . . . . .

xT
n,o 1

⎤

⎦ B = [ I(n) ⊗ aT
o −I(n) ] (23)

which, together with the given covariance matrix C, are nec-
essary for the reliability analysis of this case of an EIV model.

We omit discussion of the structure of C, since it will
depend on the properties of the observations used in a par-
ticular task.

We can check that putting b = bo+db into (21), we would
obtain approximation (8) for the model (20) with the same
matrices A and B as in (23), but with

w = Brobs + g, where g = bo · 1(n)

5.2 Similarity transformation (2D)

Let us consider a functional model

Xi = μ cos α · xi − μ sin α · yi + a
Yi = μ sin α · xi + μ cos α · yi + b i = 1, . . . , k

(24)

where k is the number of points involved,
or, in a matrix form,

⎡

⎢
⎢
⎣

X1

X2

. . .

Xk

⎤

⎥
⎥
⎦

= μ ·

⎡

⎢
⎢
⎣

Tα 0 . . . 0
0 Tα . . . 0
. . . . . . . . . . . .

0 0 . . . Tα

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

. . .

xk

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

a
a
. . .

a

⎤

⎥
⎥
⎦

(25)

where

Xi =
[

Xi

Yi

]

xi =
[

xi

yi

]

a =
[

a
b

]

Tα =
[

cos α − sin α

sin α cos α

]

With Xi, xi (i = 1, . . . , k) being vectors of observations,
thus random variables, and μ, α, a, b being the unknown
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parameters (see Problem 3 of Neitzel 2010), the linearized
form of (25), rearranged to obtain the form (8), will be as
follows

A ·

⎡

⎢
⎢
⎣

dμ

dα

da
db

⎤

⎥
⎥
⎦

+ B ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vx,1

. . .

vx,k

vX,1

. . .

vX,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ B ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1,obs

. . .

xk,obs

X1,obs

. . .

Xk,obs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

ao

ao

. . .

ao

⎤

⎥
⎥
⎦

= 0, v − (0, C) (26)

where ao =
[

ao

bo

]

, and with

Mi =
[

cosα · xi,o − sin α · yi,o −μ sin α · xi,o − μ cos α · yi,o

sinα · xi,o + cos α · yi,o μ cos α · xi,o − μ sin α · yi,o

]

A =

⎡

⎢
⎢
⎣

M1 I(2)

M2 I(2)

. . . . . .

Mk I(2)

⎤

⎥
⎥
⎦

B = [ I(k) ⊗ μTα −I(2k) ] (27)

Using the substitution p = μ cos α, q = μ sin α, as in
(Neitzel 2010), the functional model (24) will take the form

Xi = p · xi − q · yi + a

Yi = q · xi + p · yi + b i = 1, . . . , k (28)

Denoting A, B, and g for this model by A∗, B∗, and g∗ respec-
tively and omitting the derivations, we show the final results,
i.e.

A∗ =

⎡

⎢
⎢
⎣

N1 I(2)

N2 I(2)

. . . . . .

Nk I(2)

⎤

⎥
⎥
⎦

where Ni =
[

xi,o −yi,o
yi,o xi,o

]

;

B∗ = B; g∗ = g (29)

Since we can prove the equality A∗du∗ = A · du, we obtain
the same values of the reliability indices when using A∗
instead of A. The matrix A∗, which has a simpler form, could
be a better choice.

5.3 Affine transformation (3D)

Let us consider a functional model

y1,i = a11x1,i + a12x2,i + a13x3,i + a1

y2,i = a21x1,i + a22x2,i + a23x3,i + a2 i = 1, . . . , k

y3,i = a31x1,i + a32x2,i + a33x3,i + a3 (30)

or, in a matrix form,

⎡

⎢
⎢
⎣

y1

y2

. . .

yk

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

G 0 . . . 0
0 G . . . 0
. . . . . . . . . . . .

0 0 . . . G

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x1

x2

. . .

xk

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

a
a
. . .

a

⎤

⎥
⎥
⎦

(31)

where yi(3 × 1), xi(3 × 1), i = 1, . . ., k (being the number
of points), G(3 × 3), a(3 × 1).

With x1, . . . , xk, y1, . . . , yk being observations, thus ran-
dom variables, and vecG, a being the unknown parameters,
the linearized form of (31), rearranged to obtain the form (8),
will be as follows

A ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

da11

da12

. . .

da33

da1

da2

da3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ B ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vx,1

. . .

vx,k

vy,1

. . .

vy,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ B ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1,obs

. . .

xk,obs

y1,obs

. . .

yk,obs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

ao

ao

. . .

ao

⎤

⎥
⎥
⎦

= 0, v − (0, C) (32)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x11,oI(3) x21,oI(3) x31,oI(3) I(3)

x12,oI(3) x22,oI(3) x32,oI(3) I(3)

. . . . . . . . . . . .

x1k,oI(3) x2k,oI(3) x3k,oI(3) I(3)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

B =
[

I(k) ⊗ Go −I(3k)

]

Go =

⎡

⎢
⎢
⎣

a11,o a12,o a13,o

a21,o a22,o a23,o

a31,o a32,o a33,o

⎤

⎥
⎥
⎦

ao =

⎡

⎢
⎢
⎣

a1,o

a2,o

a3,o

⎤

⎥
⎥
⎦

6 Specific properties of quasi-linear EIV models
concerning the average reliability indices

The following properties are discussed:

i. the relationship between average reliability indices in
quasi-linear EIV models versus those in GM models

ii. the relationship between average reliability indices for
dependent and independent variables in quasi-linear EIV
models with homoscedastic and uncorrelated observa-
tions

ad i. Let us compare the average reliability indices h̄i i for
the EIV and GM models. Introducing an auxiliary
coefficient γ = n/r , where due to r > n, it is always
γ < 1, we shall write
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h̄avr(EIV) = Tr H
dim H

= rank H
dim H

= n − u

r
= γ (1 − u

n
)

= γ · h̄avr(GM) (33)

and hence

h̄avr(EIV) < h̄avr(GM)

The values of the coefficient γ as in (33) for specific
cases of quasi-linear EIV models will be as follows:

multiple regression γ = n

r
= n

ns + n
= 1

1 + s
similarity transformation (2D, 3D; d = 2, 3)

γ = n

r
= dk

2dk
= 1

2
affine transformation (2D, 3D; d = 2, 3)

γ = n

r
= dk

2dk
= 1

2

As shown above, the value of γ reaches 0.5 for sim-
ilarity and affine transformation and is smaller than
that for multiple regression with s > 1. For instance,
with s = 4 we have γ = 0.2, which implies a very
low level of reliability.
As could be expected, in terms of the response-based
reliability the EIV models are weaker than the corre-
sponding GM models. It follows from (33) that no
matter how high the redundancy level of the EIV
model is, we will have h̄avr(EIV) < 0.5. Thus, the
reliability criteria proposed for GM models (see Sect.
4) are too rigorous for EIV models, and should be
weakened.
The decrease in average internal reliability between
the GM and EIV models that have the same num-
ber of parameters and observation equations can be
explained by a specific property of EIV models. The
explanation of the property can be that the indepen-
dent variables being treated as observed quantities do
not cause the increase in the rank of the operator H,
as it is the case when adding equations for the new
observed dependent variables both in GM and EIV
models. Hence, in EIV models the sum of reliability
indices being equal to the rank of H depends upon
the number (n) of condition equations, but not on the
number (r) of observed variables (r > n). Therefore,
in EIV models the sum of reliability indices must be
shared by a greater number of observed variables than
in GM models.

ad ii. For such models the reliability matrix H as in (13) will
take the form

H = BT
s UBs = σ 2BTUB (34)

where σ 2 is the common variance and U is the (n×n)

central matrix.
Substituting B = [ K −In ] (see (8)) into (34) and after
simple manipulations we obtain

H = σ 2
[

KTUK −KTU
−UK U

]

(35)

Denoting by Tr Hind and Tr Hdep the traces for blocks
of H corresponding to independent and dependent
variables and by h̄avr(ind) and h̄avr(dep) the average
reliability indices for independent and dependent vari-
ables, we shall introduce a coefficient η defined as

η = h̄avr(ind)

h̄avr(dep)
= Tr Hind/(r − n)

Tr Hdep/n

= n

r − n
· Tr UKKT

Tr U
(36)

For multiple regression we have r = ns + n

KKT = (In ⊗ aT)(In ⊗ aT)T = (In ⊗ aT)(In ⊗ a)

= In ⊗ aTa = ‖a‖2 · In

and hence

η = n

ns
· ‖a‖2Tr U

Tr U
= ‖a‖2

s
(37)

For similarity transformation (2D, 3D) we have: n =
dk, r = 2dk, where d = 2 or 3.

KKT = (Ik ⊗ μTα)(Ik ⊗ μTα)T = (Ik ⊗ μTα)

× (Ik ⊗ μTT
α) = Ik ⊗ μ2Id = μ2 · Idk

and hence

η = dk

dk
· μ2Tr U

Tr U
= μ2 (38)

For isometric transformation (μ = 1) we get η = 1.
For affine transformation it was not possible to reduce
the formula (36) to a simple form as was done for the
cases above.

7 Numerical examples of reliability analysis for EIV
versus GM modelling

We will consider the models of similarity transformation and
multiple regression. For each model we shall compare the
reliability indices for EIV, resp. GM modelling.
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,
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y

Fig. 1 Observation points in the old and the new coordinate system

Table 1 Observed coordinates and approximate transformation para-
meters

Point no. Old system New system

x y X Y

1 167.23 62.58 167.62 165.13

2 149.66 119.71 123.55 213.92

3 50.24 108.88 29.47 156.90

4 39,03 38.31 51.10 81.33

5 106.68 19.26 127.39 93.80

6 104.81 72.29 100.88 145.79

Parameters μo = 1.10; αo = 25◦; ao = 30; bo = 25

Example 1 Similarity transformation

Xi = μ cos α · xi − μ sin α · yi + a

Yi = μ sin α · xi + μ cos α · yi + b i = 1, . . . , 6

The matrices A and B will have the form as in (27) and the
dimensions (12 × 4) and (12 × 24), respectively.

The location of the observation points is shown in Fig. 1
and Table 1.

The other data for the response-based reliability analysis
are as follows:

• uncorrelated observations : Cx,obs = Cy,obs = CX,obs =
CY,obs = σ 2 · I; σ = 0.005

• correlated observations : Cx,obs = σ 2 · Cs,x ; Cy,obs =
σ 2 · Cs,y; CX,obs = σ 2 · Cs,X ; CY,obs = σ 2 · Cs,Y ; Cs,x ,

Cs,y; Cs,X , Cs,Y are independently generated correlation
matrices, each such that

∣
∣{Cs}ij

∣
∣ ≤ 0.5 ( j �= i). There is

no correlation between the vectors xobs, yobs, Xobs, Yobs.

Figure 2 shows the effect of observational surrounding
upon the model’s reliability. The highest level of controlla-
bility between the observations (and hence the highest reli-
ability index) is shown for the central point No. 6, whereas
the second in turn is point No. 5, being closer to the gravity
centre of the group than any of the remaining points Nos. 1
to 4. The value of the coefficient γ is 0.5 (see Fig. 2).

For uncorrelated observations, all the reliability indices
for the GM model satisfy the criteria (ĥi i > 0.5), whereas

(1) Point No.(2) (4) (5) (6)(3)

0.2

0

0.4

0.6

0.8

1.0

hii

GM(X) GM(Y)=

EIV(Y)EIV(X) =
EIV(y)EIV(x) =

Fig. 2 Analysis results for uncorrelated observations—similarity
transformation

EIV(X)
EIV(Y)

GM(X)
GM(Y)

EIV(x)
EIV(y)

0.0
1.0

h ii

h ii

w ii

0.2

k
=

1.0
k

=
0.0

-0.2

-0.4

0.5

0

k i

2

4

6

8

10.5

0.1

0.20.15

w
=

0.0
-0.3
-0.6
-1.0

Fig. 3 Analysis results for correlated observations—similarity trans-
formation

those for the EIV model do not. This confirms the need for
specifying a separate acceptance area, being an extension of
the acceptance area for the GM model. Correlation slightly
changes the situation, as several reliability indices for the GM
model fall outside the acceptance region (i.e. shaded area in
Fig. 3). Careful study of the reliability indices listed in Table
2 may be helpful in improving the adjustment model.

The coefficient η as defined in (36), is η = μ2 = 1.12 =
1.21

We can check that η = h̄avr(ind)

h̄avr(dep)
= 0.365

0.302 = 1.21

Since η > 1 the average reliability index for indepen-
dent variables (i.e. coordinates in the old system) is greater
than that for dependent variables (i.e. coordinates in the new
system). We can see it in Fig. 2, where the line EIV(x) ≡
EIV(y) runs above the line EIV(X) ≡ EIV(Y ). The separa-
tion between both lines is not great, since the scale coefficient
μ does not differ much from 1.

Example 2 Multiple regression
We shall consider the model (19) where s = 4 and n = 8. The
following variants will be analyzed:
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Table 2 Reliability indices for GM and EIV modelling—similarity transformation

Obs. No GM EIV GM (cor) EIV (cor)

h̄i i ki h̄i i ki hii wi i ki hii wi i ki

1(x, y) – – 0.35 1.89 – – – 0.31 −0.213 4.40

0.27 −0.161 4.83

2(x, y) – – 0.33 1.99 – – – 0.26 −0.283 7.04

0.27 −0.139 4.52

3(x, y) – – 0.34 1.91 – – – 0.29 −0.137 4.18

0.28 −0.220 5.26

4(x, y) – – 0.32 2.10 – – – 0.34 −0.044 2.31

0.22 −0.205 7.57

5(x, y) – – 0.39 1.58 – – – 0.41 −0.185 2.49

0.29 −0.267 5.53

6(x, y) – – 0.46 1.19 – – – 0.46 −0.109 1.72

0.44 −0.249 2.51

1(X, Y ) 0.63 0.58 0.29 2.50 0.64 −0.085 0.76 0.22 −0.200 7.96

0.57 −0.087 1.01 0.32 −0.055 2.63

2(X, Y ) 0.61 0.64 0.28 2.62 0.61 −0.049 0.76 0.38 −0.012 1.71

0.57 −0.180 1.30 0.29 −0.109 3.82

3(X, Y ) 0.63 0.59 0.28 2.52 0.63 −0.029 0.66 0.36 0.009 1.72

0.61 −0.049 0.77 0.39 −0.025 1.73

4(X, Y ) 0.59 0.70 0.27 2.76 0.68 0.028 0.42 0.34 0.004 1.90

0.52 −0.113 1.34 0.34 0.001 1.95

5(X, Y ) 0.71 0.41 0.32 2.12 0.72 −0.103 0.59 0.43 −0.099 1.83

0.67 −0.152 0.82 0.29 −0.134 3.97

6(X, Y ) 0.83 0.20 0.38 1.65 0.85 −0.030 0.21 0.39 −0.077 2.07

0.91 −0.105 0.22 0.39 −0.181 2.72

• C = Cs = I and Cs �= I, where |{Cs}i j | ≤ 0.5, j �= i
• aT

o (1) = [ 2 −3 1 4 ] and
aT

o (2) = [−0.43 −0.20 0.59 −0.49 ]

To save space in this article, the analysis results will be pre-
sented in graphical form only, i.e. for the variant ao(1)—in
Figs. 4 and 5, and for ao(2)—in Figs. 6 and 7. In each case
the two variants of the correlation matrix will be taken into
consideration.

The coefficient γ as defined in (33), is common for all the
variants and takes the value 0.20. We can check that γ =
h̄avr(EIV)

h̄avr(GM)
= 0.075

0.375 = 0.20.

The coefficient η as defined in (36) and denoted by η(1), is

η(1) = ‖ao(1)‖2
2

s
= 30.0

4
= 7.5

We can check that η(1) = h̄avr(ind)

h̄avr(dep)
= 0.0907

0.0121 = 7.5

The coefficient η denoted here by η(2), is η(2) =
‖ao(2)‖2

2

s
= 0.81

4
= 0.20.

Fig. 4 Analysis results for correlated and uncorrelated observations—
multiple regression; ao(1); symbols “avr” in the indices h̄(·) are delib-
erately omitted

We can check that η(2) = h̄avr(ind)

h̄avr(dep)
= 0.0420

0.207 = 0.20.

The analysis shows (Figs. 5, 7) that the investigated GM
model, except for one observation, does not satisfy the
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Fig. 5 Analysis results for correlated observations—multiple regres-
sion; ao(1)

Fig. 6 Analysis results for correlated and uncorrelated observations—
multiple regression; ao(2); symbols “avr” in the indices h̄(·) are delib-
erately omitted

reliability criteria (hii > 0.5). According to the theory we

have γ = h̄avr (E I V )

h̄avr (G M)
= 0.075

0.375 = 0.2, which means that the
average value of the reliability index being in GM model
equal to 0.375, drops down in the EIV model to 0.075. We
observe significant differences in the values of the reliability
indices hii both for uncorrelated and the correlated observa-
tions. Some values reach 0.03 or even 0.01.

For the EIV model with uncorrelated observations, in the
variant ao(1) (see Fig. 4) all the y-observations and in the
variant ao(2) (see Fig. 6) most of the x-observations are prac-
tically uncontrolled by the other observations in the model,
and hence, potential gross errors residing in them are practi-
cally undetectable. This example of multiple regression con-
firms the theory that the distribution of the response-based
reliability indices between the independent and dependent

Fig. 7 Analysis results for correlated observations—multiple regres-
sion; ao(2)

variables is dependent on the norm of the vector of regres-
sion coefficients (a).

In the case ao(1), the coefficient η is much greater than 1
and the independent variables x display better average reli-
ability than the dependent variables y. For the case ao(2),
where η is much smaller than 1, we have the opposite relation,
i.e. the dependent variables y show better average reliability
than the independent variables x .

8 Conclusions

The response-based reliability of EIV models can be ana-
lyzed in an analogous way as for the corresponding GM
models. The theoretical derivations showed that in terms of
average reliability indices EIV models are at least two times
weaker than the GM models. This can be simply explained
by the fact that the coefficients are treated as error-free (deter-
ministic) quantities in GM models, whereas they are consid-
ered as random variables in the EIV models. This confirms
that the EIV models are subject to a greater number of sources
of observation errors than GM models, which results in the
lower level of their response-based reliability. Therefore, the
reliability criteria for EIV models should be set at a lower
level than for GM models. Such criteria are not proposed in
this paper and require separate research.

Taking into account the empirically confirmed connection
between the level of reliability indices and effectiveness of
outlier detection in GM models, we have grounds to conclude
that the relatively low response-based reliability of EIV mod-
els may indicate lower effectiveness of outlier detection than
in GM models.

The a priori reliability analysis proposed within this
paper is only one particular aspect of EIV models. Other
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aspects, obviously of greater importance when considering
a full scope of practical problems, include numerical algo-
rithms for parameter estimation and the associated outlier
detection procedures (see e.g., Schaffrin 2011). It seems,
however, that the revealed reliability properties of EIV
models can be helpful in constructing the outlier detec-
tion procedures. For doing so, the research findings of geo-
desists in the area of hypotheses testing (eg. Teunissen
1996) can be a valuable theoretical basis. On the grounds
of this theory, one might also undertake the task of deriv-
ing a generalized formula for minimal detectable biases
(MDBs) of observed quantities in EIV models. The testing-
based approach to reliability measures (Schaffrin 1997;
Knight et al. 2010) might be helpful in carrying out that
task.

The equality r = n as a specific case of EIV models being
equivalent to GM models, has been proposed in this paper
only for the needs of the response-based reliability analy-
sis. Therefore, it does not have a general character. At any
rate, it is commonly known that both EIV and GM mod-
els can be treated by the classical method of least-squares
adjustment.

A more forward-looking approach to reliability analysis,
however, has already been undertaken by Schaffrin and Uzun
(2011) who applied the TLS-techniques within EIV mod-
els. It would be interesting to see any correspondence to
the approach presented. However, despite differences in the
assumptions, both the approaches are important to the devel-
opment of geodetic technologies, as they are extending the
methods of reliability analyses upon the observation systems
that fall into the class of EIV models.
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