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Abstract Using network control structures, this paper introduces a general class of
network communication games and studies their decomposition into unanimity games.
We obtain a relation between the dividends in any network communication game
and its underlying transferable utility game, which depends on the structure of the
communicationnetwork.Moreover,we introduce anewclass of network control values
which contains both the Myerson value and the position value. The decomposition
results are used to explicitly express these values in terms of dividends.
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1 Introduction

Cooperative game theory analyzes allocations of joint revenues among cooperating
players, taking the economic possibilities of subcoalitions into account. To describe
an allocation problem for a set of players, Von Neumann and Morgenstern (1944)
introduced the model of a transferable utility game, in which a characteristic function
assigns to each subgroup of the cooperating players its worth, a number reflecting the
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408 B. Dietzenbacher et al.

economic possibilities of the coalition if it acts on its own. Shapley (1953) introduced
a well-known solution for this model, known as the Shapley value, which divides the
dividend of each coalition (cf. Harsanyi 1959) equally among its members.

In a cooperative gamewith communication structure, the players are subject to coop-
eration restrictions. Myerson (1977) introduced communication situations in which
these cooperation restrictions are modeled by an undirected graph. Vertices of the
undirected graph represent the players of the game and there is an edge between two
vertices if and only if the corresponding players are able to communicate directly.
A coalition can attain its worth if its members are able to communicate, i.e. if their
corresponding vertices induce a connected subgraph.

Myerson (1977) introduced the graph-restricted game corresponding to a commu-
nication situation in which each coalition of vertices is assigned the sum of the worths
of the components in its induced subgraph. We refer to this game as the corresponding
vertex game. Owen (1986) studied the decomposition into unanimity games of these
vertex games for the special case that the communication network is cycle-free. The
Myerson value of a communication situation is defined as the Shapley value of the
corresponding vertex game.

Borm et al. (1992) introduced a game on the edges corresponding to a communi-
cation situation in which each coalition of edges is assigned the sum of the worths of
the components in its induced subgraph. We refer to this game as the corresponding
edge game. Borm et al. (1992) also studied the decomposition into unanimity games
of these edge games for the special case that the communication network is cycle-free.
The position value of a communication situation assigns to each player half of the
payoffs allocated to its incident edges by the Shapley value of the corresponding edge
game.

This paper introduces a general class of network communication games and a cor-
responding class of network control values for communication situations. A network
communication game is a transferable utility game integrating the features of a com-
munication situation and a network control structure on a communication network.
Here, a network control structure models the way in which the vertices and edges of
the graph control the communication network. Where Myerson (1977) considered the
vertices and Borm et al. (1992) considered the edges as controllers of the network, a
network control structure allows both the vertices and edges to control the network in
any way. In the corresponding network communication game, each coalition of ver-
tices and edges is assigned the sum of the worths of the components in the subgraph
which the members control together.

Focusing on the decomposition into unanimity games of network communication
games, it turns out that a communication situation with an underlying unanimity game
induces a simple network communication game for any network control structure.
The minimal winning coalitions in this game play a central role in its decomposition.
We obtain a relation between the dividends in the network communication game
and the underlying transferable utility game, which depends on the structure of the
communication network. This relation is used to extend the results of Owen (1986)
and Borm et al. (1992) for cycle-free networks to all undirected graphs.

For each network control structure, the corresponding network control value of a
communication situation assigns to each player the payoff allocated by the Shapley
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Decomposition of network communication games 409

value of the corresponding network communication game to its corresponding vertex
and half of the payoff allocated to its incident edges. The Myerson value and the
position value are network control valueswhich correspond to specific network control
structures. We derive an explicit expression of any network control value in terms of
the dividends in the underlying transferable utility game.

The main aim of this paper is to develop the decomposition theory for network
communication games as amathematical tool which can be used to derive any network
control value for communication situations in a structured way. Future research should
study further interpretations and applications of this new framework. Moreover, one
could aim to axiomatically characterize the class of all network control values or a
specific network control value for communication situations.

This paper is organized in the following way. Section 2 provides an overview of
the basic game theoretic and graph theoretic notions and notations. Section 3 formally
introduces network control structures, network communication games and network
control values, and studies the decomposition into unanimity games. Section 4 dis-
cusses the Myerson value and the position value, and the decomposition of their
corresponding vertex games and edge games. Section 5 illustrates how the decom-
position theory can be extended to more general communication structures such as
multigraphs and hypergraphs.

2 Preliminaries

Let N be a nonempty and finite set of players. The set of all coalitions is denoted
by 2N = {S | S ⊆ N }. A collection of coalitions B ⊆ 2N is called a Sperner
family if R �⊂ S for all R, S ∈ B. A transferable utility game (cf. Von Neumann and
Morgenstern 1944) is a pair (N , v) in which v : 2N → R is a characteristic function
assigning to each coalition S ∈ 2N a worth v(S) ∈ R such that v(∅) = 0. The worth
of a coalition can be considered as the maximal joint revenue of the members which
can be obtained without any assistance of a player which is not a member. Let TUN

denote the class of all transferable utility games with player set N . For convenience,
we denote a TU-game by v ∈ TUN . A TU-game v ∈ TUN is called simple if the
following three conditions are satisfied:

(i) v(S) ∈ {0, 1} for all S ∈ 2N ;
(ii) v(N ) = 1;
(iii) v(R) ≤ v(S) for all R, S ∈ 2N for which R ⊆ S.

Let SIN denote the class of all simple games with player set N . A coalition S ∈ 2N

is called winning in v ∈ SIN if v(S) = 1 and losing if v(S) = 0. The collection of
minimal winning coalitions in v ∈ SIN is given by

M(v) = {S ∈ 2N |v(S) = 1,∀R⊂S : v(R) = 0}. (1)

The maximum game max{v | v ∈ V} ∈ TUN of a nonempty and finite set of transfer-
able utility games V ⊂ TUN is defined by max{v | v ∈ V}(S) = max{v(S) | v ∈ V}
for all S ∈ 2N . The minimum game is defined analogously. Note that both the max-
imum game and the minimum game of a nonempty set of simple games are simple.
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410 B. Dietzenbacher et al.

The unanimity game uR ∈ SIN on R ∈ 2N \ {∅} is for all S ∈ 2N defined by

uR(S) =
{
1 if R ⊆ S;
0 if R � S.

We have v ∈ SIN and M(v) = B if and only if B ⊆ 2N \ {∅} is a nonempty Sperner
family and v = max{uR | R ∈ B}.

A TU-game v ∈ TUN can be uniquely decomposed into unanimity games,

v =
∑

S∈2N \{∅}
�v(S)uS, (2)

where�v : 2N \{∅} → R assigns to each nonempty coalition S ∈ 2N \{∅} its dividend
(cf. Harsanyi 1959)

�v(S) =
∑
R⊆S

(−1)|S|−|R|v(R). (3)

A solution for transferable utility games f : TUN → R
N assigns to any TU-game

v ∈ TUN a payoff allocation f (v) ∈ R
N such that

∑
i∈N fi (v) = v(N ). The Shapley

value (cf. Shapley 1953) � : TUN → R
N is for all v ∈ TUN and all i ∈ N given by

�i (v) =
∑

S∈2N :i∈S

1

|S|�
v(S). (4)

Let E ⊆ {S ∈ 2N | |S| = 2} be a set of unordered pairs of players. The pair (N , E)

represents an undirected graph in which N is the set of vertices and E is the set of
edges. For all i ∈ N we denote Ei = {e ∈ E | i ∈ e}. For all S ∈ 2N we denote
E[S] = {e ∈ E | e ⊆ S}. For all T ∈ 2E we denote N [T ] = {i ∈ N | i ∈ ⋃

e∈T e}.
A pair (S, T ) is called a subgraph of (N , E) if S ∈ 2N , T ∈ 2E and N [T ] ⊆ S. The
collection of all subgraphs of (N , E) is denoted by GN ,E . Let N [H ] denote the set of
vertices and let E[H ] denote the set of edges of a subgraph H ∈ GN ,E , respectively.
The subgraph induced by S ∈ 2N is (S, E[S]). The subgraph induced by T ∈ 2E is
(N [T ], T ).

A path in (S, T ) ∈ GN ,E from i1 ∈ S to in ∈ S is a sequence (ik)nk=1 of n ≥ 2
distinct vertices in S for which {ik, ik+1} ∈ T for all k ∈ {1, . . . , n − 1}. A subgraph
H ∈ GN ,E connects R ∈ 2N \ {∅} if for any i, j ∈ R, i �= j there exists a path in
H from i to j . A coalition C ∈ 2N \ {∅} is called a component in H ∈ GN ,E if H
connects C and H does not connect any R ∈ 2N \ {∅} with C ⊂ R. The collection
of all components in H ∈ GN ,E is denoted by K(H). A subgraph (S, T ) ∈ GN ,E

is called connected if it connects S. A connected subgraph (S, T ) ∈ GN ,E is called
cycle-free if for any i, j ∈ S, i �= j there exists a unique path in (S, T ) from i to j .

A subgraph (S, E[S]) ∈ GN ,E is called a minimal R-connecting vertex-induced
subgraph if it connects R ∈ 2N \{∅} and any (S′, E[S′])with S′ ⊂ S does not connect
R. The collection of coalitions of vertices which induce a minimal R-connecting
vertex-induced subgraph is denoted byN R

E ⊆ 2N \{∅}. A subgraph (N [T ], T ) ∈ GN ,E
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Decomposition of network communication games 411

is called a minimal R-connecting edge-induced subgraph if it connects R ∈ 2N \ {∅}
and any (N [T ′], T ′) with T ′ ⊂ T does not connect R. The collection of coalitions
of edges which induce a minimal R-connecting edge-induced subgraph is denoted by
E R
N ⊆ 2E \ {∅}.
A communication situation (cf. Myerson 1977) is a triple (N , v, E) in which

v ∈ TUN is a transferable utility game and (N , E) is an undirected graph representing
the communication possibilities between the players. We assume that v ∈ TUN is
zero-normalized, i.e. v({i}) = 0 for all i ∈ N , and that (N , E) is connected in any
communication situation (N , v, E). Let CSN ,E denote the class of all such commu-
nication situations with communication network (N , E). For convenience, we denote
a communication situation by v ∈ CSN ,E . A solution for communication situations
f : CSN ,E → R

N assigns to any communication situation v ∈ CSN ,E a payoff
allocation f (v) ∈ R

N such that
∑

i∈N fi (v) = v(N ).
The vertex game wv

E ∈ TUN corresponding to v ∈ CSN ,E (cf. Myerson 1977) is
for all S ∈ 2N defined by

wv
E (S) =

∑
C∈K(S,E[S])

v(C).

The Myerson value μ : CSN ,E → R
N is for all v ∈ CSN ,E and all i ∈ N given by

μi (v) = �i (w
v
E ).

The edge game wv
N ∈ TUE corresponding to v ∈ CSN ,E (cf. Borm et al. 1992) is

for all T ∈ 2E defined by

wv
N (T ) =

∑
C∈K(N [T ],T )

v(C).

The position value π : CSN ,E → R
N is for all v ∈ CSN ,E and all i ∈ N given by

πi (v) = 1

2

∑
e∈Ei

�e(w
v
N ).

3 Decomposition of network communication games

In this section we introduce network communication games and study their decompo-
sition into unanimity games. The corresponding network control structure explicitly
models the control of the vertices and edges in the underlying communication network.

Definition 3.1 (Network control structure) A network control structure is a triple
(N , E,G) in which (N , E) is an undirected graph andG : 2N∪E → GN ,E is a control
function assigning to each coalition of vertices and edges a subgraph of (N , E) such
that
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(i) G(∅) = (∅,∅);
(ii) G(N ∪ E) = (N , E);
(iii) N [G(Z)] ⊆ N [G(Z ′)] and E[G(Z)] ⊆ E[G(Z ′)] for all Z , Z ′ ∈ 2N∪E with

Z ⊆ Z ′.

Let NCSN ,E denote the class of all network control structures on (N , E). For conve-
nience, we denote a network control structure by G ∈ NCSN ,E .

Example 1 Let N = {1, 2, 3}, let E = {{1, 2}, {2, 3}} and let G ∈ NCSN ,E be the
network control structure with G(Z) = (

(Z ∩ N )∪ N [Z ∩ E], (Z ∩ E)∪ E[Z ∩ N ])1
for all Z ∈ 2N∪E . This means that each vertex is controlled by itself and its incident
edges, and each edge is controlled by itself and its two endpoints together. The graph
(N , E) is depicted below.

1 2 3

We have

G({1, 2}) = G(
{{1, 2}}) = G(

{
1, {1, 2}}) = G(

{
1, 2, {1, 2}}) = ({1, 2}, {{1, 2}});

G({1, 3}) = ({1, 3},∅);
G(

{
3, {1, 2}}) = G(

{
1, 3, {1, 2}}) = ({1, 2, 3}, {{1, 2}});

G(N ) = G(E) = G(N ∪ E) = (N , E).

�
A network communication game combines a network control structure G ∈

NCSN ,E and a communication situation v ∈ CSN ,E into a transferable utility game
on N ∪ E in which the worth of a coalition of vertices and edges equals the sum of
the worths of the components in the subgraph which the members control together.

Definition 3.2 (Network communication game) Let G ∈ NCSN ,E be a network con-
trol structure and let v ∈ CSN ,E be a communication situation. In the corresponding
network communication game wv

G ∈ TUN∪E the worth of each coalition of vertices
and edges Z ∈ 2N∪E is given by

wv
G(Z) =

∑
C∈K(G(Z))

v(C). (5)

For any network control structure, the network control value of a communication
situation assigns to each player the payoff allocated by the Shapley value of the cor-
responding network communication game to its corresponding vertex and half of the
payoff allocated to its incident edges.

1 The elaborate notation of this network control structure is needed to ensure that each coalition of vertices
and edges is assigned a subgraph of the communication network.
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Decomposition of network communication games 413

Definition 3.3 (Network control value) Let G ∈ NCSN ,E be a network control struc-
ture. The corresponding network control value φG : CSN ,E → R

N is for any
communication situation v ∈ CSN ,E and any player i ∈ N given by

φG
i (v) = �i (w

v
G) + 1

2

∑
e∈Ei

�e(w
v
G). (6)

For any G ∈ NCSN ,E , letMR
G ⊆ 2N∪E \ {∅} denote the collection of coalitions of

vertices and edges Z ∈ 2N∪E for which G(Z) connects R ∈ 2N \ {∅} and any G(Z ′)
with Z ′ ⊂ Z does not connect R. For any network control structure, it turns out that a
communication situation with an underlying unanimity game corresponds to a simple
network communication game with this collection of minimal winning coalitions.

Lemma 3.1 Let G ∈ NCSN ,E and let R ∈ 2N \ {∅}. Then w
uR
G ∈ SIN∪E and

M(w
uR
G ) = MR

G.

Proof Since for any coalition of vertices and edges Z ∈ 2N∪E there is at most one
component C ∈ K(G(Z)) for which R ⊆ C , we can write for each Z ∈ 2N∪E

w
uR
G (Z)

(5)=
∑

C∈K(G(Z))

uR(C) = |{C ∈ K(G(Z)) | R ⊆ C}|

=
{
1 if ∃C∈K(G(Z)) : R ⊆ C;
0 if ∀C∈K(G(Z)) : R � C

=
{
1 if G(Z) connects R;
0 if G(Z) does not connect R.

Since (N , E) is connected, G(N ∪ E) = (N , E) connects R, so w
uR
G (N ∪ E) = 1.

If G(Z) connects R for some Z ∈ 2N∪E , then G(Z ′) connects R for all Z ′ ∈ 2N∪E

for which Z ⊆ Z ′, so w
uR
G (Z) ≤ w

uR
G (Z ′) for all Z , Z ′ ∈ 2N∪E for which Z ⊆ Z ′.

This means that wuR
G (Z) ∈ {0, 1} for all Z ∈ 2N∪E , wuR

G (N ∪ E) = 1 and w
uR
G (Z) ≤

w
uR
G (Z ′) for all Z , Z ′ ∈ 2N∪E for which Z ⊆ Z ′. Hence, wuR

G ∈ SIN∪E . Moreover,
M(w

uR
G ) = MR

G is a direct consequence of Eq. (1). ��
Lemma 3.2 Let v ∈ SIN . Then

v =
∑

B⊆M(v):B �=∅
(−1)|B|+1u(

⋃
R∈B R). (7)

Moreover, for each S ∈ 2N \ {∅} we have

�v(S) =
∑

B⊆M(v):⋃R∈B R=S

(−1)|B|+1. (8)

Proof Since Eq. (8) is a direct consequence of Eq. (7), it suffices to show Eq. (7). We
first show that for each R′ ∈ 2N \ {∅} we have

min{v, uR′ } =
∑

R∈2N \{∅}
�v(R)uR∪R′ . (9)
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414 B. Dietzenbacher et al.

We know v = ∑
R∈2N \{∅} �v(R)uR . Let S ∈ 2N . Then v(S) ∈ {0, 1}. Let R′ ∈

2N \ {∅} and suppose that we have R′
� S. Then we have uR′(S) = 0 and R∪ R′

� S
for any R ∈ 2N \ {∅}, which implies that uR∪R′(S) = 0 for any R ∈ 2N \ {∅}.
Consequently,

min{v, uR′ }(S)=min{v(S), uR′(S)}=min{v(S), 0}=0=
∑

R∈2N \{∅}
�v(R)uR∪R′(S).

Next, suppose that we have R′ ⊆ S. Then we have uR′(S) = 1, and R ∪ R′ ⊆ S if
and only if R ⊆ S for any R ∈ 2N \ {∅}, which implies that uR∪R′(S) = uR(S) for
any R ∈ 2N \ {∅}. Consequently,

min{v, uR′ }(S) = min{v(S), uR′(S)} = min{v(S), 1} = v(S)

=
∑

R∈2N \{∅}
�v(R)uR(S) =

∑
R∈2N \{∅}

�v(R)uR∪R′(S).

Hence, Eq. (9) holds.
Next, we prove Eq. (7) by induction on |M(v)|. Suppose that we have |M(v)| = 1

and denote M(v) = {R1}. Then we can write

v = max{uR | R ∈ M(v)} = max{uR1} = uR1 =
∑

B⊆M(v):B �=∅
(−1)|B|+1u(

⋃
R∈B R).

Let n ∈ N and assume that for any simple game v′ ∈ SIN for which |M(v′)| = n we
have v′ = ∑

B⊆M(v′):B �=∅(−1)|B|+1u(
⋃

R∈B R). Suppose thatwe have |M(v)| = n+1.
Denote M(v) = {R1, . . . , Rn+1}. Then we can write

v =max{uR | R ∈ M(v)}
=max{uR1 , . . . , uRn+1 }
=max{max{uR1 , . . . , uRn }, uRn+1 }
=max{uR1 , . . . , uRn } + uRn+1 − min{max{uR1 , . . . , uRn }, uRn+1 }
(9)=

∑
B⊆{R1,...,Rn }:B �=∅

(−1)|B|+1u(
⋃

R∈B R) + uRn+1 −
∑

B⊆{R1,...,Rn }:B �=∅
(−1)|B|+1u(

⋃
R∈B R)∪Rn+1

=
∑

B⊆{R1,...,Rn+1}:B �=∅
(−1)|B|+1u(

⋃
R∈B R)

=
∑

B⊆M(v):B �=∅
(−1)|B|+1u(

⋃
R∈B R).

��
Example 2 Let N = {1, 2, 3}, let E = {{1, 2}, {2, 3}} and let G ∈ NCSN ,E be the
network control structure withG(Z) = (

(Z∩N )∪N [Z∩E], (Z∩E)∪E[Z∩N ]) for
all Z ∈ 2N∪E . Thismeans that each vertex is controlled by itself and its incident edges,
and each edge is controlled by itself and its two endpoints together as in Example 1.
We have

M{1,3}
G =

{{
1, 2, 3

}
,
{
1, 2, {2, 3}}, {2, 3, {1, 2}}, {{1, 2}, {2, 3}}}.
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Decomposition of network communication games 415

Note that, although (N , E) is cycle-free,M{1,3}
G contains multiple elements. Consider

the communication situation u{1,3} ∈ CSN ,E . Using Lemmas 3.1 and 3.2, we can write

w
u{1,3}
G = u{1,2,3} + u{1,2,{2,3}} + u{2,3,{1,2}} + u{{1,2},{2,3}}

− u{1,2,3,{2,3}} − u{1,2,3,{1,2}} − u{1,2,3,{1,2},{2,3}}
− u{1,2,3,{1,2},{2,3}} − u{1,2,{1,2},{2,3}} − u{2,3,{1,2},{2,3}}
+ u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}}
− u{1,2,3,{1,2},{2,3}}

= u{1,2,3} + u{1,2,{2,3}} + u{2,3,{1,2}} + u{{1,2},{2,3}} − u{1,2,3,{1,2}} − u{1,2,3,{2,3}}
− u{1,2,{1,2},{2,3}} − u{2,3,{1,2},{2,3}} + u{1,2,3,{1,2},{2,3}}.

The corresponding network control value is given by

φG(u{1,3}) =
(

31

120
,
58

120
,
31

120

)
.

�
For any network control structure, the dividends in general network communication

games can be derived from the dividends in the underlying transferable utility game
and the dividends in network communication games with an underlying unanimity
game.

Lemma 3.3 Let G ∈ NCSN ,E , let v ∈ CSN ,E and let Z ∈ 2N∪E \ {∅}. Then
�wv

G (Z) =
∑

R∈2N \{∅}
�v(R)�w

uR
G (Z). (10)

Proof We can write

�wv
G (Z)

(3)=
∑
Z ′⊆Z

(−1)|Z |−|Z ′|wv
G(Z ′)

(5)=
∑
Z ′⊆Z

(−1)|Z |−|Z ′| ∑
C∈K(G(Z ′))

v(C)

(2)=
∑
Z ′⊆Z

(−1)|Z |−|Z ′| ∑
C∈K(G(Z ′))

⎛
⎝ ∑

R∈2N \{∅}
�v(R)uR(C)

⎞
⎠

=
∑

R∈2N \{∅}
�v(R)

∑
Z ′⊆Z

(−1)|Z |−|Z ′| ∑
C∈K(G(Z ′))

uR(C)

(5)=
∑

R∈2N \{∅}
�v(R)

∑
Z ′⊆Z

(−1)|Z |−|Z ′|wuR
G (Z ′)

(3)=
∑

R∈2N \{∅}
�v(R)�w

uR
G (Z).

��
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Using Lemma 3.3, we can extend the decomposition results for network communi-
cation games with an underlying unanimity game to general network communication
games for any network control structure and derive an explicit expression of any net-
work control value in terms of the dividends in the underlying transferable utility
game.

Theorem 3.4 Let G ∈ NCSN ,E be a network control structure and let v ∈ CSN ,E be
a communication situation. Then

wv
G =

∑
R∈2N \{∅}

�v(R)
∑

B⊆MR
G :B �=∅

(−1)|B|+1u(
⋃

Z∈B Z).

Proof Using Lemmas 3.1, 3.2 and 3.3, we can write

wv
G

(2)=
∑

Z∈2N∪E\{∅}
�wv

G (Z)uZ

(10)=
∑

Z∈2N∪E\{∅}

⎛
⎝ ∑

R∈2N \{∅}
�v(R)�w

uR
G (Z)uZ

⎞
⎠

=
∑

R∈2N \{∅}
�v(R)

∑
Z∈2N∪E\{∅}

�w
uR
G (Z)uZ

(2)=
∑

R∈2N \{∅}
�v(R)w

uR
G

(7)=
∑

R∈2N \{∅}
�v(R)

∑
B⊆MR

G :B �=∅
(−1)|B|+1u(

⋃
Z∈B Z).

��

Theorem 3.5 Let G ∈ NCSN ,E be a network control structure, let v ∈ CSN ,E be a
communication situation and let i ∈ N be a player. Then

φG
i (v) =

∑
Z∈2N∪E

|Z ∩ {i}| + 1
2 |Z ∩ Ei |

|Z |
∑

R∈2N \{∅}
�v(R)

∑
B⊆MR

G :⋃Z ′∈B Z ′=Z

(−1)|B|+1.
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Proof Using Lemmas 3.1, 3.2 and 3.3, we can write

φG
i (v)

(6)=�i (w
v
G) + 1

2

∑
e∈Ei

�e(w
v
G)

(4)=
∑

Z∈2N∪E :i∈Z

1

|Z |�
wv
G (Z) + 1

2

∑
e∈Ei

∑
Z∈2N∪E :e∈Z

1

|Z |�
wv
G (Z)

=
∑

Z∈2N∪E

|Z ∩ {i}| + 1
2 |Z ∩ Ei |

|Z | �wv
G (Z)

(10)=
∑

Z∈2N∪E

|Z ∩ {i}| + 1
2 |Z ∩ Ei |

|Z |
∑

R∈2N \{∅}
�v(R)�w

uR
G (Z)

(8)=
∑

Z∈2N∪E

|Z ∩ {i}| + 1
2 |Z ∩ Ei |

|Z |
∑

R∈2N \{∅}
�v(R)

∑
B⊆MR

G :⋃Z ′∈B Z ′=Z

(−1)|B|+1.

��

4 Network control values

In this section we discuss the Myerson value and the position value, and the decom-
position into unanimity games of their corresponding vertex games and edge games.
Moreover, we focus on the special case that the underlying communication network
is cycle-free.

From the viewpoint ofMyerson (1977) the vertices of the graph control the network
such that each vertex controls itself and each edge is controlled by its two endpoints
together. In other words, each coalition of vertices controls its induced subgraph.
This can be described by the network control structure G ∈ NCSN ,E with G(Z) =
(Z ∩ N , E[Z ∩ N ]) for all Z ∈ 2N∪E . We haveMR

G = M(w
uR
G ) = M(w

uR
E ) = N R

E
for any R ∈ 2N \ {∅} and the corresponding network control value for communication
situations coincides with the Myerson value, i.e. φG = μ.

From the viewpoint of Borm et al. (1992) the edges of the graph control the network
such that each edge controls itself and its both endpoints. In other words, each coalition
of edges controls its induced subgraph. This can be described by the network control
structure G ∈ NCSN ,E with G(Z) = (N [Z ∩ E], Z ∩ E) for all Z ∈ 2N∪E . We have
MR

G = M(w
uR
G ) = M(w

uR
N ) = E R

N for any R ∈ 2N \ {∅} and the corresponding
network control value for communication situations coincides with the position value,
i.e. φG = π .

Using Theorem 3.4, we find the decomposition into unanimity games of vertex
games and edge games in terms of the dividends in the transferable utility game
underlying the corresponding communication situation.
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Theorem 4.1 Let v ∈ CSN ,E be a communication situation. Then

wv
E =

∑
R∈2N \{∅}

�v(R)
∑

B⊆N R
E :B �=∅

(−1)|B|+1u(
⋃

S∈B S)

and wv
N =

∑
R∈2N \{∅}

�v(R)
∑

B⊆E R
N :B �=∅

(−1)|B|+1u(
⋃

T∈B T ).

Using Theorem 3.5, we obtain new expressions of the Myerson value and the
position value in terms of the dividends of the transferable utility game underlying the
corresponding communication situation.

Theorem 4.2 Let v ∈ CSN ,E be a communication situation and let i ∈ N be a player.
Then

μi (v) =
∑

S∈2N :i∈S

1

|S|
∑

R∈2N \{∅}
�v(R)

∑
B⊆N R

E :⋃S′∈B S′=S

(−1)|B|+1

and πi (v) =
∑
T∈2E

|T ∩ Ei |
2|T |

∑
R∈2N \{∅}

�v(R)
∑

B⊆E R
N :⋃T ′∈B T ′=T

(−1)|B|+1.

If the underlying communication network is cycle-free, it contains a uniqueminimal
R-connecting vertex-induced subgraph and a unique minimal R-connecting edge-
induced subgraph which both coincide for any R ∈ 2N with |R| ≥ 2. This means that
any vertex game or edge game forwhich a unanimity game underlies the corresponding
communication situation is a unanimity game as well.

Example 3 Let N = {1, 2, 3} and let E = {{1, 2}, {2, 3}} as in Example 1 and

Example 2. The graph (N , E) is cycle-free. We haveN {1,3}
E = {N } and E {1,3}

N = {E}.
Using Theorem 4.1, we can write

w
u{1,3}
E = uN and w

u{1,3}
N = uE .

Using Theorem 4.2, we derive

μ(u{1,3}) =
(
1

3
,
1

3
,
1

3

)
and π(u{1,3}) =

(
1

4
,
1

2
,
1

4

)
.

�
If (N , E) is cycle-free, let SR

E ∈ 2N \ {∅} denote for any R ∈ 2N with |R| ≥ 2
the unique coalition of vertices for which SR

E ∈ N R
E . We haveN R

E = {SR
E } and E R

N =
{E[SR

E ]}. Moreover, w
uR
E = uSRE

and w
uR
N = uE[SRE ]. Combining these observations

with Lemma 3.3, we obtain the following relations.
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Corollary 4.3 Let v ∈ CSN ,E be a communication situation. If (N , E) is cycle-free,
then

�wv
E (S) =

∑
R∈2N \{∅}:SRE=S

�v(R) for all S ∈ 2N \ {∅}

and �wv
N (T ) =

∑
R∈2N \{∅}:E[SRE ]=T

�v(R) for all T ∈ 2E \ {∅}.

Corollary 4.3 offers results which were also found by Owen (1986) and Borm et al.
(1992). The following results are derived from Theorems 4.1 and 4.2, respectively.

Corollary 4.4 Let v ∈ CSN ,E be a communication situation. If (N , E) is cycle-free,
then

wv
E =

∑
R∈2N \{∅}

�v(R)uSRE

and wv
N =

∑
R∈2N \{∅}

�v(R)uE[SRE ].

Corollary 4.5 Let v ∈ CSN ,E be a communication situation and let i ∈ N be a
player. If (N , E) is cycle-free, then

μi (v) =
∑

R∈2N \{∅}:i∈SRE

1

|SR
E |�

v(R)

and πi (v) =
∑

R∈2N \{∅}

|E[SR
E ] ∩ Ei |

2|E[SR
E ]| �v(R).

(11)

Example 4 Let N = {1, 2, 3, 4} and let E = {{1, 2}, {2, 3}, {2, 4}}. The cycle-free
graph (N , E) is depicted below.

1 2 3

4

Consider the communication situation v ∈ CSN ,E for which

v = 2u{1,2} + 3u{1,3} − 3u{1,2,3} + 5u{1,3,4} + 7u{1,2,3,4}.
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Using Corollary 4.4, we can write

wv
E = 2u{1,2} + 3u{1,2,3} − 3u{1,2,3} + 5u{1,2,3,4} + 7u{1,2,3,4}

= 2u{1,2} + 12u{1,2,3,4}

and

wv
N = 2u{{1,2}} + 3u{{1,2},{2,3}} − 3u{{1,2},{2,3}} + 5u{{1,2},{2,3},{2,4}} + 7u{{1,2},{2,3},{2,4}}

= 2u{{1,2}} + 12u{{1,2},{2,3},{2,4}}.

Using Corollary 4.5, we derive

μ(v) = (1 + 3, 1 + 3, 3, 3) = (4, 4, 3, 3)

and π(v) = (1 + 2, 1 + 6, 2, 2) = (3, 7, 2, 2).

�
The special uniqueness relation in cycle-free communication networks not only

holds for the Myerson value and the position value, but also for other network control
values with a specific type of network control structure. In particular, for the network
control structure G̃ ∈ NCSN ,E with G̃(Z) = (

Z ∩N [Z ∩E], Z ∩E[Z ∩N ]) in which
each vertex and each edge only controls itself. We haveMR

G̃
= {N [T ]∪ T | T ∈ E R

N }
for any R ∈ 2N with |R| ≥ 2. If (N , E) is cycle-free, we haveMR

G̃
= {SR

E ∪ E[SR
E ]}

and w
uR
G̃

= uSRE∪E[SRE ] for any R ∈ 2N with |R| ≥ 2.

Example 5 Let N = {1, 2, 3} and let E = {{1, 2}, {2, 3}} as in Example 1, Example

2 and Example 3. The graph (N , E) is cycle-free and we have S{1,3}
E = N . We can

write

w
u{1,3}
G̃

= uN∪E and φG̃(u{1,3}) =
(

3

10
,
4

10
,
3

10

)
.

Note that φG̃(u{1,3}) = 3
5μ(u{1,3}) + 2

5π(u{1,3}). �
In Example 5 we observe that the value φG̃ is a specific convex combination of the

Myerson valueμ and the position valueπ . This holds for any communication situation
with an underlying unanimity game and a cycle-free communication network.

Theorem 4.6 Let R ∈ 2N with |R| ≥ 2. If (N , E) is cycle-free, then

φG̃(uR) = |SR
E |

2|SR
E | − 1

μ(uR) + |SR
E | − 1

2|SR
E | − 1

π(uR).

123



Decomposition of network communication games 421

Proof Assume that (N , E) is cycle-free and let i ∈ N . If i /∈ SR
E , then e /∈ E[SR

E ] for
all e ∈ Ei , so φG̃

i (uR) = μi (uR) = πi (uR) = 0 and the statement follows. Suppose
that i ∈ SR

E . Using Corollary 4.5 and |E[SR
E ]| = |SR

E | − 1, we can write

φG̃
i (uR) = �i (w

uR
G̃

) + 1

2

∑
e∈Ei

�e(w
uR
G̃

)

(4)=
∑

Z∈2N∪E :i∈Z

1

|Z |�
w
uR
G̃ (Z) + 1

2

∑
e∈Ei

∑
Z∈2N∪E :e∈Z

1

|Z |�
w
uR
G̃ (Z)

= 1

|SR
E ∪ E[SR

E ]| + |E[SR
E ] ∩ Ei |

2|SR
E ∪ E[SR

E ]|

= 1

2|SR
E | − 1

+ |E[SR
E ] ∩ Ei |

4|SR
E | − 2

= |SR
E |

2|SR
E | − 1

(
1

|SR
E |

)
+ |SR

E | − 1

2|SR
E | − 1

(
|E[SR

E ] ∩ Ei |
2|E[SR

E ]|

)

(11)= |SR
E |

2|SR
E | − 1

μi (uR) + |SR
E | − 1

2|SR
E | − 1

πi (uR).

��
The value φG̃ is not necessarily a convex combination of the values μ and π in

communication situations for which the underlying game is not a unanimity game or
the underlying communication network is not cycle-free.

Example 6 Let N = {1, 2, 3, 4} and let E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}. The graph
(N , E) is depicted below.

1 2

3 4

We have

N {1,2,3}
E = {{1, 2, 3}}

and E {1,2,3}
N =

{{{1, 2}, {1, 3}}, {{1, 2}, {2, 4}, {3, 4}}, {{1, 3}, {2, 4}, {3, 4}}}.

We derive

w
u{1,2,3}
E = u{1,2,3}

and w
u{1,2,3}
N = u{{1,2},{1,3}} + u{{1,2},{2,4},{3,4}} + u{{1,3},{2,4},{3,4}} − 2uE
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422 B. Dietzenbacher et al.

and w
u{1,2,3}
G̃

= u{1,2,3,{1,2},{1,3}} + uN∪{{1,2},{2,4},{3,4}} + uN∪{{1,3},{2,4},{3,4}} − 2uN∪E .

Consequently,

μ(u{1,2,3}) =
(
1

3
,
1

3
,
1

3
, 0

)

and π(u{1,2,3}) =
(

4

12
,
3

12
,
3

12
,
2

12

)

and φG̃(u{1,2,3}) =
(
23

70
,
21

70
,
21

70
,
5

70

)
.

Note that φG̃(u{1,2,3}) is not a convex combination of μ(u{1,2,3}) and π(u{1,2,3}). �

In general, a network control value is not necessarily a convex combination of the
Myerson value and the position value, even if the underlying game is a unanimity
game and the underlying communication network is cycle-free.

5 Concluding remarks

We conclude this paper with two examples of possible extensions of the decompo-
sition theory to more general communication networks: undirected multigraphs and
hypergraphs. For convenience, we restrict ourselves to an outline of the edge game
and the corresponding position value in these examples.

Example 7 Let {1, 2, 3} be the set of vertices and let {a, b, c, d} be the set of edges
of the multigraph depicted below, and consider the communication structure with
underlying game u{1,3}.

1 2 3a b
c

d

The collection of coalitions of edges which induce a minimal {1, 3}-connecting edge-
induced subgraph is given by

{{b, c}, {b, d}}. The corresponding edge game can be
written as u{b,c} +u{b,d} −u{b,c,d}. The position value of this communication structure
is given by ( 26 ,

3
6 ,

1
6 ). �

Example 8 Let {1, 2, 3, 4} be the set of vertices and let {{1, 2}, {2, 3}, {2, 3, 4}} be the
set of (hyper)edges of the hypergraph depicted below, and consider the communication
structure with underlying game u{1,3}.
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1 2 3

4

The collection of coalitions of edges which induce a minimal {1, 3}-connecting edge-
induced subgraph is given by

{{{1, 2}, {2, 3}}, {{1, 2}, {2, 3, 4}}}. The corresponding
edge game can be written as u{{1,2},{2,3}} + u{{1,2},{2,3,4}} − u{{1,2},{2,3},{2,3,4}}. The
position value of this communication structure is given by ( 1236 ,

17
36 ,

5
36 ,

2
36 ). �

Hypergraph communication structures were introduced by Myerson (1980) and
further studied by Van den Nouweland et al. (1992). Besides, Algaba et al. (2000) and
Algaba et al. (2001) studied the position value and the Myerson value, respectively,
for communication structures in which cooperation restrictions are modeled by union
stable systems. Algaba et al. (2004) studied the relation between the position value for
communication structures on hypergraphs and union stable systems. Future research
could formalize these or other extensions to more general communication structures.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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