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Abstract In this paper, we present an optimal control problem for stochastic differen-
tial games under Markov regime-switching forward–backward stochastic differential
equations with jumps. First, we prove a sufficient maximum principle for nonzero-
sum stochastic differential games problems and obtain equilibrium point for such
games. Second, we prove an equivalent maximum principle for nonzero-sum stochas-
tic differential games.The zero-sumstochastic differential games equivalentmaximum
principle is then obtained as a corollary. We apply the obtained results to study a prob-
lem of robust utility maximization under a relative entropy penalty and to find optimal
investment of an insurance firm under model uncertainty.
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1 Introduction

The expected utility theory can be seen as the theory of decision making under
uncertainty based on some postulates of agent’s preferences. In general, the agent’s
preference is driven by a time-additive functional and a constant rate discount future
reward. The standard expected utility maximization problem supposes that the agent
knows the initial probability measure that governs the dynamics of the underlying.
However, it is difficult or even impossible to find an individual worthwhile probability
distribution of the uncertainty. Moreover, in finance and insurance, there is no con-
formism onwhich original probability should be used tomodel uncertainty. This led to
the study of utility maximization under model uncertainty, the uncertainty being rep-
resented by a family of absolute continuous (or equivalent) probability distributions.
The idea is to solve the problem for each probability measure in the above mentioned
class and choose the one that gives the worst objectives value. More specifically, the
investor maximizes the expected utility with respect to each measure in this class, and
chooses among all, the portfolio with the lowest value. This is also known as robust
optimization problem and has been intensively studied in the past years. For more
information, the reader may consult (Bordigoni et al. 2005; Elliott and Siu 2011; Faidi
et al. 2011; Jeanblanc et al. 2012; Menoukeu-Pamen 2015; Øksendal and Sulem 2012)
and references therein.

Our paper is motivated by the idea developed in Menoukeu-Pamen (2015),
Menoukeu-Pamen (2014) and Øksendal and Sulem (2012) where general maximum
principle for Forward–backward stochastic differential games with or without delay
are presented. We give a general maximum principle for Forward–backwardMarkov
regime-switching stochastic differential equations under model uncertainty. Then we
study a problem of recursive utility maximization with entropy penalty. We show
that the value function is the unique solution to a quadratic Markov regime-switching
backward stochastic differential equation. This result extends the results in Bordigoni
et al. (2005) and Jeanblanc et al. (2012) by considering a Markov regime-switching
state process, and more general stochastic differential utility (SDU). The notion of
SDU was introduced in Duffie and Epstein (1992) as a continuous time extension of
the concept of recursive utility proposed in Epstein and Zin (1989) and Weil (1990).
The latter notion was developed in order to untie the concepts of risk aversion and
intertemporal substitution aversionwhich are not treated independently in the standard
utility formulation.

The other motivation is to study stochastic differential games problem for Markov-
regime switching systems. In a financial market, one may assume that this correspond
to the case in which the mean relative growth rate of the risky asset is not known to
the agent, but subject to uncertainty, hence it is regarded as a stochastic control which
plays against the agent, that is, a (zero-sum) stochastic differential games between the
agent and the market. Similar problem was studied in Elliott and Siu (2011) where
the objective of an insurance company is to choose an optimal investment strategy
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so as to maximize the expected exponential utility of terminal wealth in the worst-
case scenario. The authors use the dynamic programming approach to derive explicit
optimal investment of the company and optimal mean growth rate of the market when
the interest rate is zero. In this paper, our general the stochastic maximum principle
extends their results to the framework of (nonzero-sum) Forward–backward stochastic
differential games and more general dynamics for the state process. In addition, when
the company and the market have the same level of information, we obtain explicit
forms for the optimal strategies of the market and the insurance company, when the
Markov chain has two states and the interest rate is not zero. Let us mention that our
general result can also be applied to study utility maximization under risk constraint
under model uncertainty. This is due to the fact that risk measures can be written
as a solution to a BSDE. Hence transforming the problem with constraint to the
unconstrained one leads to the setting discussed here. Another application of our
result pertains to risk minimization under model uncertainty in a regime-switching
market.

The remaining of the paper is organized as follows: In Sect. 2, we formulate the
control problem. In Sect. 3, we derive a partial information stochastic maximum prin-
ciple for forward backward stochastic differential games for aMarkov switching Lévy
process under model uncertainty. In Sect. 4, we apply the results to study first a robust
utility maximization with entropy penalty and second a problem of optimal invest-
ment of an insurance company under model uncertainty. In the latter case, explicit
expressions for optimal strategies are derived.

2 Model and problem formulation

In this section, we formulate the general problem of stochastic differential games of
Markov regime-switching Forward–backward SDEs. Let (�,F , P) be a complete
probability space, where P is a reference probability measure. On this probabil-
ity space, we assume that we are given a one dimensional Brownian motion B =
{B(t)}0≤t≤T , an irreducible homogeneous continuous-time, finite state space Markov
chain α := {α(t)}0≤t≤T and N (dζ, ds) a independent Poisson random measure on
(R+ × R0,B(R+) ⊗ B0) under P . Here R0 = R\{0} and B0 is the Borel σ -algebra
generated by open subset O of R0.

We suppose that the filtration F = {Ft }0≤t≤T is the P-augmented natural filtration
generated by B, N and α [see for example Donnelly (2011, Section 2) or Elliott and
Siu (2011, p. 369)].

We assume that the Markov chain takes values in a finite state space S =
{e1, e2, . . . , eD} ⊂ R

D , where D ∈ N, and the j th component of en is the Kronecker
delta δnj for each n, j = 1, . . . , D. Denote by � := {λnj : 1 ≤ n, j ≤ D} the rate (or
intensity) matrix of the Markov chain under P . Hence, for each 1 ≤ n, j ≤ D, λnj is
the constant transition intensity of the chain from state en to state e j at time t . Recall
that for n �= j, λnj ≥ 0 and

∑D
j=1 λnj = 0, hence λnn ≤ 0. As shown in Elliott et al.
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(1994), α admits the following semimartingale representation

α(t) = α(0) +
∫ t

0
�Tα(s)ds + M(t), (2.1)

where M := {M(t)}t∈[0,T ] is a R
D-valued (F, P)-martingale and �T denotes the

transpose of a matrix. Next we introduce the Markov jump martingale associated to
α; for more information, the reader should consult Elliott et al. (1994) or Zhang et al.
(2012). For each 1 ≤ n, j ≤ D, with n �= j , and t ∈ [0, T ], denote by Jnj (t) the
number of jumps from state en to state e j up to time t . It can be shown (see Elliott
et al. 1994) that

Jnj (t) = λnj

∫ t

0
〈α(s−), en〉ds + mnj (t), (2.2)

where mnj := {mnj (t)}t∈[0,T ] with mnj (t) := ∫ t
0 〈α(s−), en〉〈dM(s), e j 〉 is a (F, P)-

martingale.
Fix j ∈ {1, 2, . . . , D}, denote by 	 j (t) the number of jumps into state e j up to

time t . Then

	 j (t) :=
D∑

n=1,n �= j

J nj (t) =
D∑

n=1,n �= j

λnj

∫ t

0
〈α(s−), en〉ds + 	̃ j (t)

= λ j (t) + 	̃ j (t), (2.3)

with 	̃ j (t) = ∑D
n=1,n �= j mnj (t) and λ j (t) = ∑D

n=1,n �= j λnj
∫ t
0 〈α(s−), en〉ds. Note

that for each j ∈ {1, 2, . . . , D}, 	̃ j := {	̃ j (t)}t∈[0,T ] is a (F, P)-martingale.
Suppose that the compensator of N (dζ, ds) is given by

ηα(dζ, ds) := να(dζ |s)η(ds) = 〈α(s−), ν(dζ |s)〉η(ds), (2.4)

where η(ds) is a σ -finite measure on R
+ and ν(dζ |s) := (νe1(dζ |s), νe2(dζ |s), . . . ,

νeD (dζ |t)) ∈ R
D is a function of s. Let mention that for each j = 1, . . . , D,

νe j (dζ |s) = ν j (dζ |s) represents the conditional Lévy density of jump sizes of
N (dζ, ds) at time s when α(s−) = e j and satisfies

∫
R0

min(1, ζ 2)ν j (dζ |s) < ∞.
In this paper, we further assume that η(ds) = ds and that ν(dζ |s) is a function of ζ ,
that is,

ν(dζ |s) = ν(dζ )

and denote by Ñα(dζ, ds) := N (dζ, ds)−να(dζ ) ds the compensatedMarkov regime-
switching Poisson random measure.
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Suppose that the state process X (t) = X (u)(t, ω); 0 ≤ t ≤ T, ω ∈ �, is a
controlled Markov regime-switching jump-diffusion process of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX (t) = b(t, X (t), α(t), u(t), ω) dt + σ(t, X (t), α(t), u(t), ω) dB(t)

+
∫

R0

γ (t, X (t), α(t), u(t), ζ, ω) Ñα(dζ, dt)

+ η(t, X (t), α(t), u(t), ω) · d	̃(t), t ∈ [0, T ],
X (0) = x0.

(2.5)

In financial market the above model enables to incorporate the impact of changes
in macro-economic conditions on the behaviour of the dynamics of an asset’s price as
well as the occurrence of unpredictable events that could affect the price’s dynamic.
One could think of the Brownian motion part as the random shocks in the price of
a risky asset. The Poisson jump part takes into account the jumps in the asset price
caused by lack of information or unexpected events. The Markov chain enables to
describe economic cycles. The states of the underlying Markov chain represent the
different states of the economy whereas the jumps given by the martingale of the
underlying Markov chain represent transitions in economic conditions.

In this paper, we consider the nonzero-sum stochastic differential games problem.
This means that, one player’s gain (respectively loss) does not necessarily end in
the other player’s loss (respectively gain). In our model, the control u = (u1, u2)
is such that ui is the control of player i; i = 1, 2. We suppose that the different
levels of information available at time t to the player i; i = 1, 2 are modelled by two
subfiltrations

E (i)
t ⊂ Ft ; t ∈ [0, T ]. (2.6)

Note that one possible subfiltration (E (i)
t )t≥0 in (2.6) is the δ-delayed information

given by
E (i)
t = F(t−δ)+; t ≥ 0

where δ ≥ 0 is a given constant delay. Denote by Ai the set of admissible control
of player i , contained in the set of E (i)

t -predictable processes; i = 1, 2, with value in
Ai ⊂ R.

The functions b, σ, γ and η are given such that for all t, b(t, x, en, u, ·),
σ(t, x, en, u, ·), γ (t, x, en, u, ζ, ·) and η(t, x, en, u, ·), n = 1, . . . , D are Ft -
progressively measurable for all x ∈ R, u ∈ A1 × A2 and ζ ∈ R0, b(·, x, en, u, ω),
σ(·, x, en, u, ω). In addition, γ (·, x, en, u, ζ, ω) and η(·, x, en, u, ω), n = 1, . . . , D
for each x ∈ R, u ∈ A1 × A2, ζ ∈ R0, ζ ∈ R0 and (2.5) has a unique strong solution
for any admissible control u ∈ A1 × A2. Under the above condition, existence and
uniqueness of (2.5) is ensured if b, σ, γ and η are globally Lipschitz continuous in
x and satisfy linear growth in x ; see for example Applebaum (2009, Theorem 6.2.3),
Mao andYuan (2006, Theorem 3.13) and Kulinich andKushnirenko (2014, Theorem).
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For each player i , we consider the associated BSDE’s in the unknowns (Yi (t),
Zi (t), Ki (t, ζ ), Vi (t)) of the form

⎧
⎪⎪⎨

⎪⎪⎩

dYi (t) = −gi (t, X (t), α(t),Yi (t), Zi (t), Ki (t, ·), Vi (t), u(t)) dt + Zi (t) dB(t)

+
∫

R0

Ki (t, ζ ) Ñα(dζ, dt) + Vi (t) · d	̃(t); t ∈ [0, T ],
Yi (T ) = hi (X (T ), α(T )) ; i = 1, 2.

(2.7)

Here gi : [0, T ]×R×S×R×R×R×R×A1×A2 → R and h : R×S → R are such
that the BSDE (2.7) has a unique solution for any admissible control u ∈ A1 × A2.
For sufficient conditions for existence and uniqueness of Markov regime-switching
BSDEs, we refer the reader to Cohen and Elliott (2010, Theorem 1.1) or Crepey
(2010, Proposition 14.4.1) or Tang and Li (1994, Lemma 2.4) and references therein.
For example, such unique solution exists if one assumes that g(·, x, ei , y, z, k, v, u)

is uniformly Lipschitz continuous with respect to x, y, z, k, v, the random vari-
able h(X (T ), α(T )) is squared integrable and g(t, 0, ei , 0, 0, 0, 0, u) is uniformly
bounded.

Let fi : [0, T ]×R×S×A1×A2 → R, ϕi : R×S → R andψi : R → R, i = 1, 2
be givenC1 functionswith respect to their arguments andψ ′

i (x) ≥ 0 for all x, i = 1, 2.
For the nonzero-sum games, the control actions are not free and generate for each
player i, i = 1, 2, a performance functional

Ji (t, u) := E
[ ∫ T

t
fi (s, X (s), α(s), u(s)) ds + ϕi (X (T ), α(T ))

+ ψi (Yi (t))
∣
∣
∣E (i)

t

]
; i = 1, 2. (2.8)

Here, fi , ϕi and ψi may be seen as profit rates, bequest functions and “utility evalua-
tions” respectively, of the player i; i = 1, 2. For t = 0, we put

Ji (u) := Ji (0, u), i = 1, 2. (2.9)

Let us note that in the nonzero-sum games the players do not share the same per-
formance functional, instead, each of them uses his own performance functional. In
addition, they all have the same objectives, that is, maximize their performance func-
tional. To be more precise, the nonzero-sum games is the following:

Problem 2.1 Find (u∗
1, u

∗
2) ∈ A1 × A2 (if it exists) such that

1. J1(t, u1, u∗
2) ≤ J1(t, u∗

1, u
∗
2) for all u1 ∈ A1,

2. J2(t, u∗
1, u2) ≤ J2(t, u∗

1, u
∗
2) for all u2 ∈ A2.

If it exists, we call such a pair (u∗
1, u

∗
2) a Nash Equilibrium. This intuitively means that

while player I controls u1, player II controls u2. We assume that each player knows
the equilibrium strategies of the other player and does not gain anything by changing
his strategy unilaterally. If each player is making the best decision she can, based on
the other player’s decision, then we say that the two players are in Nash Equilibrium.
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3 A stochastic maximum principle for Markov regime-switching
forward–backward stochastic differential games

In this section, we derive the Nash equilibrium for Problem 2.1 based on a stochas-
tic maximum principle for Markov regime-switching Forward–backward differential
equation.

Define the Hamiltonians

Hi : [0, T ] × R × S × R
2 × R × R × A1 × A2 × R

3 × R × R −→ R,

by

Hi (t, x, en, y, z, k, v, u1, u2, a, p, q, r(·), w)

:= fi (t, x, en, u1, u2) + agi (t, x, en, y, z, k, v, u1, u2) + pib(t, x, en, u1, u2)

+ qiσ(t, x, en, u1, u2) +
∫

R0

ri (ζ )γ (t, x, en, u1, u2, ζ )να(dζ )

+
D∑

j=1

η j (t, x, en, u1, u2)w
j
n(t)λnj , i = 1, 2 (3.1)

whereR denote the set of all functions k : [0, T ] ×R0 → R for which the integral in
(3.1) converges. An example of such set is the set L2(να).We suppose that Hi , i = 1, 2
is Fréchet differentiable in the variables x, y, z, k, v, u and that ∇k Hi (t, ζ ), i = 1, 2
is a randommeasure which is absolutely continuous with respect to ν. Next, we define
the associated adjoint process Ai (t), pi (t), qi (t), ri (t, ·) and wi (t), t ∈ [0, T ] and
ζ ∈ R by the following Forward–backward SDE

1. The Markovian regime-switching forward SDE in Ai (t); i = 1, 2

⎧
⎪⎪⎨

⎪⎪⎩

dAi (t) = ∂Hi

∂y
(t) dt + ∂Hi

∂z
(t)dB(t) +

∫

R0

d∇k Hi

dν(ζ )
(t, ζ ) Ñα(dζ, dt)

+∇vHi (t) · d	̃(t); t ∈ [0, T ],
Ai (0) = ψ ′

i (Y (0)).

(3.2)

Here and in what follows, we use the notation

∂Hi

∂y
(t) = ∂Hi

∂y
(t, X (t), α(t), u1(t), u2(t),Yi (t), Zi (t), Ki (t, ·), Vi (t), Ai (t),

pi (t), qi (t), ri (t, ·), wi (t)),

etc,
d∇k Hi

dν(ζ )
(t, ζ ) is the Radon-Nikodym derivative of ∇k Hi (t, ζ ) with respect to

ν(ζ ) and ∇vHi (t) · d	̃(t) = ∑D
j=1

∂Hi

∂v j
(t)d	̃ j (t) with V j

i = Vi (t, e j ).
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2. TheMarkovian regime-switching BSDE in (pi (t), qi (t), ri (t, ·), wi (t)); i = 1, 2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dpi (t) = −∂Hi

∂x
(t)dt + qi (t) dB(t) +

∫

R0

ri (t, ζ ) Ñα(dζ, dt)

+wi (t) · d	̃i (t); t ∈ [0, T ],
pi (T ) = ∂ϕi

∂x
(X (T ), α(T )) + Ai (T )

∂hi
∂x

(X (T ), α(T )).

(3.3)

3.1 A sufficient maximum principle

In what follows, we give the sufficient maximum principle.

Theorem 3.1 (Sufficient maximumprinciple for Regime-switching FBSDE nonzero-
sum games) Let (̂u1, û2) ∈ A1 × A2 with corresponding solutions X̂(t), (Ŷi (t),
Ẑi (t), K̂i (t, ζ ), V̂i (t)), Âi (t), ( p̂i (t), q̂i (t), r̂i (t, ζ ), ŵi (t)) of (2.5), (2.7), (3.2) and
(3.3) respectively for i = 1, 2. Suppose that the following holds:

1. For each en ∈ S, the functions

x �→ hi (x, en), x �→ ϕi (x, en), y �→ ψi (y), (3.4)

are concave for i = 1, 2.
2. The functions

H̃1(t, x, en, y, z, k, v)

= ess sup
μ1∈A1

E
[
H1(t, x, μ1, en, y, z, k, v, μ1, û2(t), Â1, p̂1(t), q̂1(t),

r̂1(t, ·), ŵ1(t))
∣
∣
∣E (1)

t

]
(3.5)

and

H̃2(t, x, en, y, z, k, v)

= ess sup
μ2∈A2

E
[
H2(t, x, μ1, en, y, z, k, v, û1(t), μ2, Â2, p̂2(t), q̂2(t),

r̂2(t, ·), ŵ2(t))
∣
∣
∣E (2)

t

]
(3.6)

are all concave for all (t, en) ∈ [0, T ] × S a.s.
3.

E
[
Ĥ1(t, û1(t), û2(t)))

∣
∣
∣E (1)

t

]
= ess sup

μ1∈A1

{
E
[
Ĥ1(t, μ1, û2(t))

∣
∣
∣E (1)

t

]}
(3.7)

for all t ∈ [0, T ], a.s.
and

E
[
Ĥ2(t, û1(t), û2(t))

∣
∣
∣E (2)

t

]
= ess sup

μ2∈A2

{
E
[
Ĥ2(t, û1(t), μ2(t))

∣
∣
∣E (2)

t

]}
(3.8)
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for all t ∈ [0, T ], a.s. Here

Ĥi (t, u1(t), u2(t))

= Hi (t, X̂(t), α(t), Ŷi (t), Ẑi (t), K̂i (t, ·), V̂i (t), u1(t), u2(t), Âi (t), p̂i (t), q̂i (t),

r̂i (t, ·), ŵi (t))

for i = 1, 2.
4. d

dν ∇k Ĥi (t, ξ) > −1 for i = 1, 2.
5. In addition, the integrability condition

E

⎡

⎣
∫ T

0

⎧
⎨

⎩
p̂2i (t)

⎛

⎝ (σ (t) − σ̂ (t))2 +
∫

R0

(γ (t, ζ ) − γ̂ (t, ζ ))2 να(dζ )

+
D∑

j=1

(
η j (t) − η̂ j (t)

)2
λ j (t)

⎞

⎠

+ (X (t) − X̂(t))2

⎛

⎝q̂2i (t) +
∫

R0

r̂2i (t, ζ )να(dζ ) +
D∑

j=1

(w
j
i )

2(t)λ j (t)

⎞

⎠

+ (Yi (t) − Ŷi (t))
2

⎛

⎝
(

∂ Ĥi

∂z

)2

(t) +
∫

R0

∥
∥∇k Ĥi (t, ζ )

∥
∥2 να(dζ )

+
D∑

j=1

(
∂ Ĥi

∂v j

)2

(t)λ j (t)

⎞

⎠

+ Â2
i (t)

(
(Zi (t) − Ẑi (t))

2 +
∫

R0

(Ki (t, ζ ) − K̂i (t, ζ ))2να(dζ )

+
D∑

j=1

(V j
i (t) − V̂ j

i (t))2λ j (t)
)}

dt

⎤

⎦ < ∞ (3.9)

for i = 1, 2. holds.

Then û = (̂u1(t), û2(t)) is a Nash equilibrium for (2.5), (2.7) and (2.8).

Proof of Theorem 3.1 See “Appendix”. ��
Remark 3.2 In the above Theorem and in its proof, we have used the following short-
hand notation: For i = 1, the processes corresponding to u = (u1, û2) are given for
example by X (t) = X (u1,û2)(t) and Y1(t) = Y (u1,û2)

1 (t) and the processes correspond-

ing to u = (û1, û2) are X̂(t) = X (û1,û2)(t) and Ŷ1(t) = Y (û1,û2)
1 (t). Similar notation is

used for i = 2. The integrability condition (3.9) ensures the existence of the stochastic
integrals while using Itô formula in the proof of the Theorem.

Remark 3.3 Let V be an open subset of a Banach space X and let F : V → R.
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• We say that F has a directional derivative (or Gateaux derivative) at x ∈ V in the
direction y ∈ X if

DyF(x) := lim
ε→0

1

ε
(F(x + εy) − F(x)) exists.

• We say that F is Fréchet differentiable at x ∈ V if there exists a linear map

L : X → R

such that

lim
h→0
h∈X

1

‖h‖ |F(x + h) − F(x) − L(h)| = 0.

In this case we call L the Fréchet derivative of F at x , and we write

L = ∇x F.

• If F is Fréchet differentiable, then F has a directional derivative in all directions
y ∈ X and

DyF(x) = ∇x F(y).

3.2 An equivalent maximum principle

The concavity condition on the Hamiltonians does not always hold on many appli-
cations. In this section, we shall prove an equivalent stochastic maximum principle
which does not require this assumption. We shall assume the following:

Assumption A.1 For all t0 ∈ [0, T ] and all bounded E (i)
t0 -measurable randomvariable

θi (ω), the control process βi defined by

βi (t) := χ]t0,T [(t)θi (ω); t ∈ [0, T ], (3.10)

belongs to Ai , i = 1, 2.

Assumption A.2 For all ui ∈ Ai and all bounded βi ∈ Ai , there exists δi > 0 such
that

ũi (t) := ui (t) + �βi (t) t ∈ [0, T ], (3.11)

belongs to Ai for all � ∈] − δi , δi [, i = 1, 2.
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Assumption A.3 For all bounded βi ∈ Ai , the derivatives processes

X1(t) = d

d�
X (u1+�β1,u2)(t)

∣
∣
∣
�=0

; X2(t) = d

d�
X (u1,u2+�β2)(t)

∣
∣
∣
�=0

;

y1(t) = d

d�
Y (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

; y2(t) = d

d�
Y (u1,u2+�β2)
2 (t)

∣
∣
∣
�=0

;

z1(t) = d

d�
Z (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

; z2(t) = d

d�
Z (u1,u2+�β2)
2 (t)

∣
∣
∣
�=0

;

k1(t, ζ ) = d

d�
K (u1+�β1,u2)
1 (t, ζ )

∣
∣
∣
�=0

; k2(t, ζ ) = d

d�
K (u1,u2+�β2)
2 (t, ζ )

∣
∣
∣
�=0

;

v
j
1 (t) = d

d�
V j,(u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

, j = 1, . . . , n; v
j
2 (t)

= d

d�
V j,(u1,u2+�β1)
2 (t)

∣
∣
∣
�=0

, j = 1, . . . , n

exist and belong to L2([0, T ] × �).

It follows from (2.5) and (2.7) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX1(t) = X1(t)

{
∂b

∂x
(t)dt + ∂σ

∂x
(t)dB(t) +

∫

R0

∂γ

∂x
(t, ζ )Ñα(dt, dζ ) + ∂η

∂x
(t) · d	̃(t)

}

+β1(t)

{
∂b

∂u1
(t)dt + ∂σ

∂u1
(t)dB(t) +

∫

R0

∂γ

∂u1
(t, ζ )Ñα(dt, dζ ) + ∂η

∂u1
(t) · d	̃(t)

}

; t ∈ (0, T ]
X1(0) = 0

(3.12)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1(t) = −
⎧
⎨

⎩

∂g1
∂x

(t)X1(t) + ∂g1
∂y

(t)y1(t) + ∂g1
∂z

(t)z1(t) +
∫

R0

∇kg1(t)k1(t, ζ )να(dζ )

+
D∑

j=1

∂g1

∂v
j
1

(t)v j
1 (t)λ j (t) + ∂g1

∂u
(t)β1(t)

}

dt + z1(t) dB(t)

+
∫

R0

k1(t, ζ )Ñα(dζ, dt) + v1(t) · d	̃(t); t ∈ [0, T ]

y1(T ) = ∂h1
∂x

(X (T ), α(T ))X1(T ).

(3.13)

We can obtain dX2(t) and dy2(t) in a similar way.

Remark 3.4 As for sufficient conditions for the existence and uniqueness of solutions
(3.12) and (3.13), the reader may consult Peng (1993, Eq. 4.1) (in the case of diffusion
state processes).

As an example, a set of sufficient conditions under which (3.12) and (3.13) admit
a unique solution is as follows:

1. Assume that the coefficients b, σ, γ, η, gi , hi , fi , ψi and φi for i = 1, 2 are con-
tinuous with respect to their arguments and are continuously differentiable with
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respect to (x, y, z, k, v, u). (Here, the dependence of gi and fi on k is through∫
R0

k(ζ )ρ(t, ζ )ν(dζ ), where ρ is a measurable function satisfying 0 ≤ ρ(t, ζ ) ≤
c(1∧ |ζ |), ∀ζ ∈ R0. Hence the differentiability in this argument is in the Fréchet
sense.)

2. The derivatives of b, σ, γ, η with respect to x, u, the derivative of hi , i = 1, 2
with respect to x and the derivatives of gi , i = 1, 2 with respect to x, y, z, k, v, u
are bounded.

3. The derivatives of fi , i = 1, 2with respect to x, u are bounded byC(1+|x |+|u|).
4. The derivatives of ψi and φi with respect to x are bounded by C(1 + |x |).
We can state the following equivalent maximum principle:

Theorem 3.5 (Equivalent Maximum Principle) Let ui ∈ Ai with correspond-
ing solutions X (t) of (2.5), (Yi (t), Zi (t), Ki (t, ζ ), Vi (t)) of (2.7), Ai (t) of (3.2),
(pi (t), qi (t), ri (t, ζ ), wi (t)) of (3.3) and corresponding derivative processes Xi (t)
and (yi (t), zi (t), ki (t, ζ ), vi (t)) given by (3.12) and (3.13), respectively. Suppose that
Assumptions A.1, A.2 and A.3 hold. Moreover, assume the following integrability
conditions

E

[∫ T

0
p2i (t)

{(
∂σ

∂x

)2

(t)X2
i (t) +

(
∂σ

∂ui

)2

(t)β2
i (t)

+
∫

R0

((
∂γ

∂x

)2

(t, ζ )X2
i (t) +

(
∂γ

∂ui

)2

(t, ζ )β2
i (t)

)

να(dζ )

+
D∑

j=1

((∂η j

∂x

)2
(t)x2i (t) +

(∂η j

∂ui

)2
(t)β2

i (t)
)
λ j (t)

}
dt

+
∫ T

0
X2
i (t)

{
q2i (t) +

∫

R0

r2i (t, ζ )να(dζ ) +
D∑

j=1

(η j )2(t)λ j (t)
}
dt
]

< ∞

(3.14)

and

E

⎡

⎣
∫ T

0
y2i (t)

⎧
⎨

⎩

(
∂Hi

∂z

)2

(t)+
∫

R0

‖∇k Hi‖2(t, ζ )να(dζ )+
D∑

j=1

(
∂Hi

∂v j

)2

(t)λ j (t)

⎫
⎬

⎭
dt

+
∫ T

0
A2
i (t)

⎧
⎨

⎩
z2i (t) +

∫

R0

k2i (t, ζ )να(dζ ) +
D∑

j=1

(v
j
i )

2(t)λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ < ∞

for i = 1, 2. (3.15)

Then the following are equivalent:

1.
d

d�
J (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

= d

d�
J (u1,u2+�β2)
2 (t)

∣
∣
∣
�=0

= 0 for all bounded β1 ∈
A1, β2 ∈ A2
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2.
0 = E

[
∂H1

∂μ1
(t, X (t), α(t), μ1, u2,Y1(t), Z1(t), K1(t, ·), V1(t),

A1(t), p1(t), q1(t), r1(t, ·), w1(t))
∣
∣
∣E (1)

t

]

μ1=u1(t)

= E

[
∂H2

∂μ2
(t, X (t), α(t), u1, μ2,Y2(t), Z2(t), K2(t, ·), V2(t),

A2(t), p2(t), q2(t), r2(t, ·), w2(t))
∣
∣
∣E (2)

t

]

μ2=u2(t)
(3.16)

for a.a. t ∈ [0, T ].
Proof See “Appendix”. ��
Remark 3.6 The integrability conditions (3.14) and (3.15) guarantee the existence of
the stochastic integrals while using Itô formula in the proof of the Theorem. Note also
that the result is the same if we start from t ≥ 0 in the performance functional, hence
extending Øksendal and Sulem (2012, Theorem 2.2) to the Markov regime-switching
setting.

Zero-sum Game

In this section, we solve the zero-sum Markov regime-switching Forward–backward
stochastic differential games problem (or worst case scenario optimal problem): that
is, we assume that the performance functional for Player II is the negative of that of
Player I, i.e.,

J (t, u1, u2) = J1(t, u1, u2)

:= E
[ ∫ T

t
f (s, X (s), α(s), u1(s), u2(s)) ds + ϕ(X (T ), α(T )) + ψ(Y (t))

∣
∣
∣E1

t

]

=: −J2(t, u1, u2). (3.17)

In this case (u∗
1, u

∗
2) is a Nash equilibrium iff

ess sup
u1∈A1

J (t, u1, u
∗
2) = J (t, u∗

1, u
∗
2) = ess inf

u2∈A2

J (t, u∗
1, u2). (3.18)

On one hand (3.18) implies that

ess inf
u2∈A2

(ess sup
u1∈A1

J (t, u1, u2)) ≤ ess sup
u1∈A1

J (t, u1, u
∗
2)

= J (t, u∗
1, u

∗
2) = ess inf

u2∈A2

J (t, u∗
1, u2)

≤ ess sup
u1∈A1

(ess inf
u2∈A2

J (t, u1, u2)).
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On the other hand we always have ess inf(ess sup) ≥ ess sup(ess inf). Hence, if
(u∗

1, u
∗
2) is a saddle point, then

ess inf
u2∈A2

(ess sup
u1∈A1

J (t, u1, u2)) = ess sup
u1∈A1

(ess inf
u2∈A2

J (t, u1, u2)).

The zero-sum Markov regime-switching Forward–backward stochastic differential
games problem is therefore the following:

Problem 3.7 Find u∗
1 ∈ A1 and u∗

2 ∈ A2 (if they exist) such that

ess inf
u2∈A2

(ess sup
u1∈A1

J (t, u1, u2)) = J (t, u∗
1, u

∗
2) = ess sup

u1∈A1

(ess inf
u2∈A2

J (t, u1, u2)). (3.19)

When it exists, a control (u∗
1, u

∗
2) satisfying (3.19), is called a saddle point. The actions

of the players are opposite, more precisely, between player I and II there is a payoff
J (t, u1, u2) and it is a reward for Player I and cost for Player II.

Remark 3.8 As in the nonzero-sum case, we give the result for t = 0 and get the result
for t ∈]0, T ] as a corollary. The results obtained in this section generalize the ones
in Øksendal and Sulem (2012), Bordigoni et al. (2005), Faidi et al. (2011), Jeanblanc
et al. (2012) and Elliott and Siu (2011).

In the case of a zero-sum games, we only have one value function for the players and
therefore, Theorem 3.1 becomes

Theorem 3.9 (Sufficientmaximumprinciple forRegime-switchingFBSDEzero-sum
games) Let (̂u1, û2) ∈ A1 × A2 with corresponding solutions X̂(t), (Ŷ (t), Ẑ(t),
K̂ (t, ζ ), V̂ (t)), Â(t), ( p̂(t), q̂(t), r̂(t, ζ ), ŵ(t)) of (2.5), (2.7), (3.2) and (3.3) respec-
tively. Suppose that the following hold:

1. For each en ∈ S, the functions

x �→ ϕ(x, en) and y �→ ψ(y), (3.20)

are affine and x �→ h(x, en) is concave.
2. The functions

H̃(t, x, en, y, z, k, v)

= ess sup
μ1∈A1

E
[
H(t, x, μ1, en, y, z, k, v, μ1, û2(t), Â,

× p̂(t), q̂(t), r̂(t, ·), ŵ(t))
∣
∣
∣E (1)

t

]
(3.21)
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is concave for all (t, en) ∈ [0, T ] × S a.s. and

H̃(t, x, en, y, z, k, v)

= ess inf
μ2∈A2

E
[
H(t, x, μ1, en, y, z, k, v, û1(t), μ2, Â,

p̂(t), q̂(t), r̂(t, ·), ŵ(t))
∣
∣
∣E (2)

t

]
(3.22)

is convex for all (t, en) ∈ [0, T ] × S a.s.
3.

E
[
Ĥ(t, û1(t), û2(t)))

∣
∣
∣E (1)

t

]
= ess sup

μ1∈A1

{
E
[
Ĥ(t, μ1, û2(t))

∣
∣
∣E (1)

t

]}
(3.23)

for all t ∈ [0, T ], a.s.
and

E
[
Ĥ(t, û1(t), û2(t))

∣
∣
∣E (2)

t

]
= ess inf

μ2∈A2

{
E
[
Ĥ(t, û1(t), μ2(t))

∣
∣
∣E (2)

t

]}
(3.24)

for all t ∈ [0, T ], a.s. Here

Ĥ(t, u1(t), u2(t))

= H(t, X̂(t), α(t), Ŷ (t), Ẑ(t), K̂ (t, ·), V̂ (t), u1(t), u2(t), Â(t), p̂(t),

q̂(t), r̂(t, ·), ŵ(t))

4. d
dν ∇k ĝ(t, ξ) > −1.

5. In addition, the integrability condition (3.9) is satisfied for p̂i = p̂, etc.

Then û = (̂u1(t), û2(t)) is a saddle point for J (u1, u2)

The equivalent maximum principle (Theorem 3.5) is then reduced to

Theorem 3.10 (Equivalent maximum principle for zero-sum games) Let u ∈ A
with corresponding solutions X (t) of (2.5), (Y (t), Z(t), K (t, ζ ), V (t)) of (2.7),
A(t) of (3.2), (p(t), q(t), r(t, ζ ), wi (t)) of (3.3) and corresponding derivative pro-
cesses X1(t) and (y1(t), z1(t), k1(t, ζ ), v1(t)) given by (3.12) and (3.13), respectively.
Assume that conditions of Theorem 3.5 are satisfied. Then the following statements
are equivalent:

1. d

d�
J (u1+�β1,u2)(t)

∣
∣
∣
�=0

= d

d�
J (u1,u2+�β2)(t)

∣
∣
∣
�=0

= 0 (3.25)

for all bounded β1 ∈ A1, β2 ∈ A2.
2.

E
[ ∂H

∂μ1
(t, μ1(t), u2(t))

∣
∣
∣E (1)

t

]

μ1=u1(t)
= E

[ ∂H

∂μ2
(t, u1(t), μ2(t))

∣
∣
∣E (2)

t

]

μ2=u2(t)

= 0 (3.26)
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for a.a t ∈ [0, T ], where

H(t, u1(t), u2(t))

= H((t, X (t), α(t), u1, u2,Y (t), Z(t), K (t, ·), V1(t), A(t), p(t),

q(t), r(t, ·), w(t)).

Proof It follows directly from Theorem 3.5. ��
Corollary 3.11 If u = (u1, u2) ∈ A1 × A2 is a Nash equilibrium for the zero-sum
games in Theorem 3.10, then equalities (3.26) holds.

Proof If u = (u1, u2) ∈ A1×A2 is a Nash equilibrium, then it follows from Theorem
3.10 that (3.25) holds by (3.18). ��

4 Applications

4.1 Application to robust utility maximization with entropy penalty

In this section, we apply the results obtained in Sect. 3 to study an utility maximization
problem under model uncertainty. We assume that E (1)

t = E (2)
t = Ft . The framework

is that of Bordigoni et al. (2005). For any Q ∈ (�,FT ), let

H(Q|P) :=
{
EQ

[
ln dQ

dP

]
if Q � P on FT

+∞ otherwise
(4.1)

be the relative entropy of Q with respect to P .
We aim at finding a probability measure Q ∈ QF that minimizes the functional

EQ

[ ∫ t

0
a0S

κ (s)U1(s)ds + a0S
κ(T )U2(T )

]
+ EQ

[
Rκ(0, T )

]
, (4.2)

where

QF :=
{
Q|Q � P on FT , Q = P on F0 and H(Q|P) < +∞

}
,

with a0 and a0 being non-negative constants; κ = (κ(t))0≤t≤T a non-negative
bounded and progressively measurable process; U1 = (U1(t))0≤t≤T a progres-

sively measurable process with EP

[
exp[γ1

∫ T
0 |U1(t)|dt]

]
< ∞, ∀γ1 > 0; U2(T )

a FT−measurable random variable with EP

[
exp[|γ1U2(T )|]

]
< ∞, ∀γ1 > 0;

Sκ(t) = exp(− ∫ t0 κ(s)ds) is the discount factor and Rκ(t, T ) is the penalization
term, representing the sum of the entropy rate and the terminal entropy, i.e.

Rκ(t, T ) = 1

Sκ(t)

∫ T

t
κ(s)Sκ(s) ln

GQ
0 (s)

GQ
0 (t)

ds + Sκ (T )

Sκ(t)
ln

GQ(T )

GQ
0 (t)

, (4.3)

123



A maximum principle for Markov regime-switching forward… 365

with GQ = (GQ(t))0≤t≤T is the RCLL P-martingale representing the density of Q
with respect to P , i.e.

GQ(t) = dQ

dP

∣
∣
∣Ft

.

GT represents the Radon-Nikodym derivative on FT of Q with respect to P . More
precisely

Problem 4.1 Find Q∗ ∈ QF such that

Y Q∗
(t) = ess infQ∈QF Y Q(t) (4.4)

with

Y Q(t) := 1

Sκ(t)
EQ

[ ∫ T

t
a0S

κ(s)U1(s)ds + a0S
κ(T )U2(T )

∣
∣
∣Ft

]

+ EQ

[
Rκ(t, T )

∣
∣
∣Ft

]
. (4.5)

In the present regime switching jump-diffusion setup, we consider the model uncer-
tainty given by a probability measure Q having a density (Gθ (t))0≤t≤T with respect
to P and whose stochastic differential equation is as follows

⎧
⎨

⎩

dGθ (t) = Gθ (t−)
[
θ0(t)dB(t) + θ1(t) · d	̃(t) +

∫

R0

θ2(t, ζ ) Ñα(dζ, dt)
]
, t ∈ [0, T ]

Gθ (0) = 1.

(4.6)

Here θ = (θ0, θ1, θ2) (with θ1 = (θ1,1, θ1,2, . . . , θ1,D) ∈ R
D) may be seen as a

scenario control. Denote by A the set of all admissible controls θ = (θ0, θ1, θ2) such
that

E

⎡

⎣
∫ T

0

⎛

⎝θ20 (t) +
D∑

j=1

θ21, j (t)λ j (t) +
∫

R0

θ22 (t, ζ )να(dζ )

⎞

⎠ dt

⎤

⎦ < ∞

and θ2(t, ζ ) ≥ −1 + ε for some ε > 0.
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Using Itô’s formula (see Zhang et al. (2012, Theorem 4.1)), one can easily check
that

Gθ (t) = exp
[ ∫ t

0
θ0(s)dB(s) − 1

2

∫ t

0
θ20 (s)ds +

∫ t

0

∫

R0

ln(1 + θ2(ζ, s))Ñα(dζ, ds)

+
∫ t

0

∫

R0

{ln(1 + θ2(s, ζ )) − θ2(s, ζ )}να(dζ )ds

+
D∑

j=1

∫ t

0
ln(1 + θ1, j (s)) · d	̃ j (s)

+
D∑

j=1

∫ t

0
{ln(1 + θ1, j (s)) − θ1, j (s)}λ j (s)ds

]
. (4.7)

Now, put Gθ (t, s) = Gθ (s)
Gθ (t)

, s ≥ t then (Gθ (t, s))0≤t≤s≤T satisfies

⎧
⎨

⎩

dGθ (t, s) = Gθ (t, s−)
[
θ0(s)dB(s) + θ1(s) · d	̃(s) +

∫

R0

θ2(s, ζ ) Ñα(ds, dζ )
]
, s ∈ [t, T ]

Gθ (t, t) = 1.

(4.8)

Hence (4.5) can be rewritten as

Y Q(t) = EQ

[∫ T

t
a0e

− ∫ st κ(r)drU1(s)ds + a0e
− ∫ Tt κ(r)drU2(T )

∣
∣
∣Ft

]

+ EQ

[∫ T

t
κ(s)e− ∫ st κ(r)dr lnGθ (t, s)ds + e− ∫ Tt κ(r)dr lnGθ (t, T )

∣
∣
∣Ft

]

= E

[∫ T

t
a0G

θ (t, s)e− ∫ st κ(r)drU1(s)ds + a0G
θ (t, T )e− ∫ Tt κ(r)drU2(T )

∣
∣
∣Ft

]

+ E

[∫ T

t
κ(s)e− ∫ st κ(r)drGθ (t, s) lnGθ (t, s)ds

+ e− ∫ Tt κ(r)drGθ (t, T ) lnGθ (t, T )

∣
∣
∣Ft

]
. (4.9)

Now, define h1 by

h1(θ(t)) := 1

2
θ20 (t) +

D∑

j=1

{(1 + θ1, j (t) ln(1 + θ1, j (t)) − θ1, j }λ j (t)

+
∫

R0

{(1 + θ2(t, ζ )) ln(1 + θ2(t, ζ )) − θ2(t, ζ )}να(dζ ). (4.10)
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Using the Itô-Lévy product rule, we have

E

[∫ T

t
κ(s)e− ∫ st κ(r)drGθ (t, s) lnGθ (t, s)ds+e− ∫ Tt κ(r)drGθ (t, T ) lnGθ (t, T )

∣
∣
∣Ft

]

= E

[∫ T

t
e− ∫ st κ(r)drGθ (t, s)h(θ(s))ds

∣
∣
∣Ft

]

. (4.11)

Substituting (4.11) into (4.9), leads to

Y Q(t) = Et

[∫ T

t
a0G

θ (t, s)e− ∫ st κ(r)drU1(s)ds + a0G
θ (t, T )e− ∫ Tt κ(r)drU2(T )

]

+ Et

[ ∫ T

t
κ(s)e− ∫ st κ(r)drGθ (t, s) lnGθ (t, s)ds

+ e− ∫ Tt κ(r)drGθ (t, T ) lnGθ (t, T )
]

= Et

[∫ T

t
e− ∫ st κ(r)drGθ (t, s) (a0U1(s) + h(θ(s))) ds

+ a0G
θ (t, T )e− ∫ Tt κ(r)drU2(T )

]
. (4.12)

Here Et denotes the conditional expectation with respect to the Ft .
We have the following theorem

Theorem 4.2 Suppose that the penalty function is given by (4.10). Then the optimal
Y Q∗

is such that (Y Q∗
, Z ,W, K ) is the unique solution to the following quadratic

BSDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dY (t) = −
[
−κ(t)Y (t) + aU1(t) − Z2(t) +∑D

j=1 λ j (t)(−eWj − Wj + 1)

+
∫

R0

(−e−K (t,ζ ) − K (t, ζ ) + 1)ναdζ ]dt + Z(t)dB(t)

+ ∑D
j=1 Wj (t)d	̃ j (t) +

∫

R0

K (t, ζ )Ñα(dt, dζ )

Y (T ) = a0U2(T ).

(4.13)

Moreover, the optimal measure Q∗ solution of Problem 4.1 admits the Radon-Nikodym
density (GQ(t, s))0≤t≤s≤T given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dGθ (t, s) = Gθ (t, s−)
[
−Z(s)dB(s) +∑D

j=1(e
−Wj − 1) · d	̃) j (s)

+
∫

R0

(e−K (s,ζ ) − 1) Ñ (ds, dζ )

]

, s ∈ [t, T ]
G(t, t) = 1.

(4.14)

Proof Fix u1 and denote by X (T ) the corresponding wealth process. One can see
that Problem 4.1 can be obtained from our general control problem by setting X (t) =
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0, ∀t ∈ [0, T ], h(X (T ), α(T )) = a0U2(T ), f = 0, φ(x) = 0 and ψ(x) = I . Since
h1(θ) given by (4.10) is convex in θ0, θ1 and θ2, it follows that conditions of Theorem
3.1 are satisfied. The Hamiltonian in this case is reduced to:

H(t, y, z, K ,W ) = λ(U1(t) + h(θ) + θ0z) +
D∑

j=1

λ jθ1, jW j

+
∫

R0

θ2(·, ζ )K (·, ζ )να(dζ ). (4.15)

Minimizing H with respect to θ = (θ0, θ1, θ2) gives the first order condition of
optimality for an optimal θ∗,

⎧
⎪⎨

⎪⎩

∂H
∂θ0

= 0 i.e., θ∗
0 (t) = −Z(t),

∂H
∂θ1, j

= 0 i.e., − ln(1 + θ∗
1, j )(t) = −W1, j (t) for j = 1, . . . , D,

∇θ2H = 0 i.e., − ln(1 + θ∗
2 )(t, ζ ) = −K (·, ζ ), να- a.e.

(4.16)

On the hand, one can show using product rule (see e.g., Menoukeu-Pamen 2015) that
Y given by (4.12) is solution to the following linear BSDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dY (t) = −
[

− κ(t)Y (t) + aU1(t) + h(θ) + θ0Z(t) +∑D
j=1 θ1, j (t)λ j (t)Wj

+
∫

R0

θ2(t, ζ )K (t, ζ )ναdζ
]
dt + Z(t)dB(t) + W (t) · d	̃(t)

+
∫

R0

K (t, ζ )Ñα(dt, dζ )

Y (T ) = a0U2(T ).

(4.17)

Using comparison theorem for BSDE, Q∗ is an optimal measure for Problem 4.1 if
θ∗ is such that

g(θ∗) = min
θ

g(θ) (4.18)

for each t and ω, with g(θ) := h(θ) + θ0Z(t) + ∑D
j=1 θ1, j (t)λ j (t)Wj +

∫

R0

θ2(t, ζ )K (t, ζ )ναdζ . This is equivalent to the first condition of optimal-

ity. Hence (θ∗
0 , θ∗

1,1, . . . , θ
∗
1,D, θ∗

2 ) satisfying (4.16) will satisfy (4.18). Substitut-
ing θ∗

0 , θ∗
1,1, . . . , θ

∗
1,D, θ∗

2 into (4.17) leads to (4.13). Furthermore, substituting
θ∗
0 , θ∗

1,1, . . . , θ
∗
1,D, θ∗

2 into (4.8) gives (4.14). The proof of the theorem is complete. ��
Remark 4.3 • This result can be seen as an extension to the Markov regime-

switching setting of Jeanblanc et al. (2012, Theorem 1) or Bordigoni et al. (2005,
Theorem 2).

• Let us mention that in the case (X (t))0≤t≤T is not zero and has a particular dynam-
ics (mean-reverting or exponential Markov Lévy switching) one can use Theorem
3.1 to solve a problem of recursive robust utility mazimization as in Øksendal and
Sulem (2012, Section 4.2) or Menoukeu-Pamen (2015, Theorem 4.1)
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4.2 Application to optimal investment of an insurance company under model
uncertainty

In this section, we use our general framework to study a problem of optimal invest-
ment of an insurance company under model uncertainty. The uncertainty here is also
described by a family of probability measures. Such problem was solved in Elliott and
Siu (2011) using dynamic programming approach when the interest rate is 0.We show
that the general maximum principle enables us to find the explicit optimal investment
when r �= 0. We restrict ourselves to the case E (1)

t = E (2)
t = Ft , t ∈ [0, T ] in order

to have explicit result. Let us mention that if E (i)
t ⊂ Ft , t ∈ [0, T ], i = 1, 2 then the

problem is non-Markovian and hence the dynamic programming used in Elliott and
Siu (2011) cannot be applied.

The model is that of Elliott and Siu (2011, Section 2.1). Let (�,F , P) be a com-
plete probability space with P representing a reference probability measure from
which a family of real-world probability measures are generated. We shall suppose
that (�,F , P) is big enough to take into account uncertainties coming from future
insurance claims, fluctuation of financial prices and structural changes in economics
conditions.We consider a continuous-timeMarkov regime-switching economicmodel
with a bond and a stock or share index.

The evolution of the state of an economy over time ismodeled by a continuous-time,
finite-state, observable Markov chain α := {α(t), t ∈ [0, T ]; T < ∞} on (�,F , P),
taking values in the state space S = {e1, e2, . . . , eD}, where D ≥ 2. We denote by
� := {λnj : 1 ≤ n, j ≤ D} the intensity matrix of the Markov chain under P . Hence,
for each 1 ≤ n, j ≤ D, λnj is the transition intensity of the chain from state en to
state e j at time t . It is assumed that for n �= j, λnj > 0 and

∑D
j=1 λnj = 0, hence

λnn < 0. The dynamics of (α(t))0≤t≤T is given in Sect. 2.
Let r = {r(t)}t∈[0,T ] be the instantaneous interest rate of the moneymarket account

B at time t . Then

r(t) := 〈r , α(t)〉 =
D∑

j=1

r j 〈α(t), e j 〉 , (4.19)

where 〈·, ·〉 is the usual scalar product in R
D and r = (r1, . . . , rD) ∈ R

D+ . Here the
value r j , the j th entry of the vector r , represents the value of the interest rate when
the Markov chain is in the state e j , i.e., when α(t) = e j . The price dynamics of B can
now be written as

dS0(t) = S0r(t)dt, S0(0) = 1, t ∈ [0, T ]. (4.20)

Moreover, let μ = {μ(t)}t∈[0,T ] and σ = {σ(t)}t∈[0,T ] denote respectively the
mean return and the volatility of the stock at time t . Using the same convention, we
have

μ(t) =〈μ, α(t)〉 =
D∑

j=1

μ j 〈α(t), e j 〉 ,
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σ(t) =〈σ , α(t)〉 =
D∑

j=1

σ j 〈α(t), e j 〉 ,

where

μ = (μ1, μ2, . . . , μD) ∈ R
D,

and

σ = (σ1, σ2, . . . , σD) ∈ R+D.

In a similarway,μ j andσ j represent respectively the appreciation rate and volatility
of the stock when the Markov chain is in state e j , i.e., when α(t) = e j . Let B =
{Bt }t∈[0,T ] denote the standard Brownian motion on (�,F , P) with respect to its
right-continuous complete filtration F B := {F B

t }0≤t≤T . Then, the dynamic of the
stock price S = {S(t)}t∈[0,T ] is given by the following Markov regime-switching
geometric Brownian motion

dS(t) = S(t) [μ(t)dt + σ(t)dB(t)] , S(0) = S0. (4.21)

Let Z0 := {Z0(t)}t∈[0,T ] be a real-valuedMarkov regime-switching pure jump process
on (�,F , P). Here Z0(t) can be considered as the aggregate amount of claims up to
and including time t . Since Z0 is a pure jump process, one has

Z0(t) =
∑

0<u≤t

�Z0(u), Z0(0) = 0, P-a.s, t ∈ [0, T ], (4.22)

where for each u ∈ [0, T ], �Z0(u) = Z0(u) − Z0(u−), represents the jump size of
Z0 at time u.

Assume that the state space of claim size denoted by Z is (0,∞). Let M be
the product space [0, T ] × Z of claim arrival time and claim size. Define a random
measure N 0(·, ·) on the product space M, which selects claim arrivals and size ζ :=
Z0(u) − Z0(u−) at time u, then the aggregate insurance claim process Z0 can be
written as

Z0(t) =
∫ t

0

∫ ∞

0
ζN 0(du, dζ ), t ∈ [0, T ]. (4.23)

Define, for each t ∈ [0, T ]

N�0(t) =
∫ t

0

∫ ∞

0
N 0(du, dζ ), t ∈ [0, T ]. (4.24)

Then N�0(t) counts the number of claim arrivals up to time t . Assume that, under the
measure P , N�0 := {N�0(t)}t∈[0,T ] is a conditional Poisson process on (�,F , P)

with intensity �0 := {λ0(t)}t∈[0,T ] modulated by the chain α given by
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λ0(t) := 〈λ0, α(t)〉 =
D∑

j=1

λ0j 〈α(t), e j 〉 , (4.25)

with λ0 = (λ01, . . . , λ
0
D) ∈ R

D+ . Here the value λoj , the j th entry of the vector λ0,
represents the intensity rate of N when the Markov chain is in the space state e j , i.e.,
when α(t−) = e j . Denote by Fj (ζ ), j = 1, . . . , D the probability distribution of the
claim size
ζ := Z0(u)− Z0(u−)when α(t−) = e j . Then the compensator of the Markov regime
switching random measure N 0(·, ·) under P is given by

ν0α(dζ )du :=
D∑

j=1

〈α(u−), e j 〉λ0j Fj (dζ )du. (4.26)

Hence a compensated version Ñ 0
α(·, ·) of the Markov regime-switching random

measure is defined by

Ñ 0
α(du, dζ ) = N 0(du, dζ ) − ν0α(dζ )du. (4.27)

The premium rate P0(t) at time t is given by

P0(t) := 〈P0, α(t)〉 =
D∑

j=1

P0, j 〈α(t), e j 〉, (4.28)

with P0 = (P0,1, . . . , P0,D) ∈ R
D+ . Let R0 := {R0(t)}t∈[0,T ] be the surplus process

of the insurance company without investment. Then

R0(t) := r0 +
∫ t

0
P0(u)du − Z0(t)

= r0 +
D∑

j=1

P0, jJ j (t) −
∫ t

0

∫ ∞

0
ζN 0(du, dζ ), t ∈ [0, T ], (4.29)

with R0(0) = r0. For each j = 1, . . . , D and each t ∈ [0, T ], J j (t) is the occupation
time of the chain α in the state e j up to time t , that is

J j (t) =
∫ t

0
〈α(u), e j 〉du. (4.30)

The following information structure will be important for the derivation of the
dynamics of the company’ surplus process. Let F Z0 := {F Z0}0≤t≤T denote the
right-continuous P-completed filtration generated by Z0. For each t ∈ [0, T ] define
Ft := F Z0

t ∨F B
t ∨Fα

t as the minimal σ -algebra generated by F Z0
t , F B

t and Fα
t and

write F = {Ft }0≤t≤T as the information accessible to the company.
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From now on, we assume that the insurance company invests the amount of π(t)
in the stock at time t , for each t ∈ [0, T ]. Then π = {π(t), t ∈ [0, T ]} represents the
portfolio process. Denote by X = {Xπ (t)}t∈[0,T ] the wealth process of the company.
One can show that the dynamics of the surplus process is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX (t) =
{
P0(t) + r(t)X (t) + π(t)(μ(t) − r(t))

}
dt + σ(t)π(t)dB(t)

−
∫ ∞

0
ζN 0(dt, dζ )

=
{
P0(t) + r(t)X (t) + π(t)(μ(t) − r(t)) −

∫ ∞

0
ζν0α( dζ )

}
dt

+ σ(t)π(t)dB(t) −
∫ ∞

0
ζ Ñ 0

α(dt, dζ ), t ∈ [0, T, ]
X (0) = X0.

(4.31)

Definition 4.4 A portfolio π is admissible if it satisfies

1. π is F-progressively measurable;
2. (4.31) admits a unique strong solution;

3.
∑D

j=1 E
[ ∫ T

0

{
|P0, j +r j X (t)+π(t)(μ j −r j )|+σ 2

j π
2(t)+λ0j

∫∞
0 ζ 2Fj ( dζ )

}
dt
]

< ∞;
4. X (t) ≥ 0, ∀t ∈ [0, T ], P-a.s.
We denote by A the space of all admissible portfolios.

Note that although condition (4) is strong, it is intuitively natural to only consider
positive wealth for the insurance company. Define G := {Gt , t ∈ [0, T ]}, where
Gt := F B

t ∨ F Z0
t , and for n, j = 1, . . . , D, let {Cnj (t), t ∈ [0, T ]} be a real-valued,

G-predictable, bounded, stochastic process on (�,F , P) such that for each t ∈ [0, T ]
Cnj ≥ 0 for n �= j and

∑D
n=1 Cnj (t) = 0, i.e, Cnn ≤ 0.

We consider a model uncertainty setup given by a probability measure Q = Qθ,C

which is equivalent to P , with Radon-Nikodym derivative on Ft given by

dQ

dP

∣
∣
∣Ft

= Gθ,C (t), (4.32)

where, for 0 ≤ t ≤ T , Gθ,C is a F-martingale. Under Qθ,C, C := {C(t), t ∈ [0, T ]}
with C(t) := [Cnj (t)]n, j=1,...,D is a family of rate matrices of the Markov chain α(t);
see for example Dufour and Elliott (1999). For each t ∈ [0, T ], we set

DC
0 (t) := DC(t) − diag(dC (t)),

with dC (t) = (dC11, . . . , d
C
DD)′ ∈ R

D and

DC :=
[Cnj (t)

λnj (t)

]

n, j=1,··· ,D = [dC
nj (t)]. (4.33)
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We denote by C the space of all families intensity matrices C with bounded compo-
nents.

The Radon-Nikodym derivative or density process Gθ,C is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dGθ,C(t) = Gθ,C (t−)
{
θ(t)dB(t) +

∫ ∞

0
θ(t)Ñ 0

α(dt, dζ )

+ (DC
0 (u)α(u) − 1)′ · d	̃(t)

}
, t ∈ [0, T ],

Gθ,C(0) = 1,

(4.34)

where ′ represents the transpose. Here (θ, C) may be regarded as scenario control. A
control θ is admissible if θ is F-progressively measurable, with θ(t) = θ(t, ω) ≤ 1
for a.a (t, ω) ∈ [0, T ] × �, and

∫ T
0 θ2(t)dt < ∞. We denote by � the space of such

admissible processes.
Next, we formulate the optimal investment problem under model uncertainty. Let

U : (0,∞) −→ R, be an utility function which is strictly increasing, strictly concave
and twice continuously differentiable. The objectives of the insurance firm and the
market are the following:

Problem 4.5 Find a portfolio process π∗ ∈ A and the process (θ∗, C∗) ∈ �×C such
that

sup
π∈A

inf
(θ,C)∈�×C

EQθ,C

[
Uπ (XT )

]
=EQθ∗,C∗

[
Uπ∗

(XT )
]

= inf
(θ,C)∈�×C

sup
π∈A

EQθ,C

[
Uπ (XT )

]
. (4.35)

This problem can be seen as a zero-sum stochastic differential games of an insurance
firm. We have

EQθ,C

[
Uπ (XT )

]
= E

[
Gθ,C(T )U (Xπ (T ))

]
. (4.36)

Now, define Y (t) = Y θ,C,π (t) by

Y (t) = E
[Gθ,C(T )

Gθ,C(t)
U (Xπ (T ))

∣
∣
∣Ft

]
. (4.37)

Then, it can easily be shown that Y (t) is the solution to the following linear BSDE

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dY (t) = −
[
θ(t)Z0(t) +

∫

R0

θ(t)K (t, ζ )ν0α( dζ )+
D∑

j=1

(DC
0 (t)α(t) − 1) jλ j V j (t)

]
dt

Z0(t)dB(t) +
∫

R0

K (t, ζ )Ñ 0
α(dζ, dt) + V (t) · d	̃(t), t ∈ [0, T ],

Y (T ) = U (Xπ (T )).

(4.38)
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Noting that

Y (0) = Y θ,C,π (0) = EQθ,C

[
Uπ (XT )

]
, (4.39)

Problem 4.5 becomes

Problem 4.6 Find a portfolio process π∗ ∈ A and the process (θ∗, C∗) ∈ �×C such
that

sup
π∈A

inf
(θ,C)∈�×C

Y θ,C,π (0) = Y θ∗,C∗,π∗
(0) = inf

(θ,C)∈�×C
sup
π∈A

Y θ,C,π (0), (4.40)

where Y θ,C,π is described by the Forward–backward system (4.31) and (4.38).

Theorem 4.7 Let Xπ (t) be dynamics of the surplus process satisfying (4.31) with r
deterministic. Consider the optimization problem to findπ∗ ∈ A and (θ∗, C∗) ∈ �×C
such that (4.35) (or equivalently (4.40)) holds, with

Y θ,C,π (t) = E
[Gθ,C(T )

Gθ,C(t)
U (Xπ (T ))

∣
∣
∣Ft

]
. (4.41)

In addition, suppose U (x) = −e−βx , β ≥ 0. Then the optimal investment π∗(t) and
the optimal scenario measure of the market (θ∗, C∗) are given respectively by

θ∗(t) = −
D∑

j=1

(μ j − r j − σ 2
j π

∗(t, e j )βe
∫ T
t r(s)ds

σ j

)
〈α(t), e j 〉, (4.42)

π∗(t) =
D∑

n=1

(

∫

R+
(eβζe

∫ T
t r(s)ds − 1)λ0n Fn(dζ )

βσne
∫ T
t r(s)ds

)
〈α(t), en〉. (4.43)

and the optimal C∗ satisfies the following constraint linear optimization problem:

min
C1 j ,...,CDj

D∑

j=1

(DC
0 (t)en − 1) jλnj Vj (t) j = 1, . . . , D, (4.44)

subject to the linear constraints

D∑

n=1

Cnj (t) = 0,

where Vj is given by (4.67).
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Moreover, if we assume that the space of familymatrix rates (Cnj )n, j=1,2 is bounded

and write Cnj (t) ∈
[
Cl(n, j),Cu(n, j)

]
with Cl(n, j) < Cu(n, j), n, j = 1, 2.

Then, in this case, the optimal C∗ is given by:

C∗
21(t) = Cl(2, 1)IV1(t)−V2(t)>0 + Cu(2, 1)IV1(t)−V2(t)<0, (4.45)

C∗
11(t) = −C∗

21(t), (4.46)

C∗
12(t) = Cl(1, 2)IV2(t)−V1(t)>0 + Cu(1, 2)IV2(t)−V1(t)<0, (4.47)

C∗
22(t) = −C∗

12(t). (4.48)

Proof One can see that this is a particular case of a zero-sum stochastic differential
games of the Forward–backward system of the form (2.5) and (2.7) with ψ = I d,
ϕ = f = 0 and h(x) = U (x). The Hamiltonian in Sect. 3 is reduced to

H(t, x, en, y, z, k, v, π, θ, a, p, q, r0, w)

= a

⎡

⎣θ z +
∫

R+
θk(t, ζ )ν0en ( dζ ) +

D∑

j=1

(DC
0 (t)en − 1) jλnjv j (t)

⎤

⎦

+
[

P0(t) + r x + π(μ − r) −
∫

R+
ζν0en (dζ )

]

p

+ σπq −
∫

R+
ζr0(t, ζ )ν0en (dζ ). (4.49)

The adjoint processes A(t) ,(p(t), q(t), r0(t, ζ ), w(t)) associated with the Hamilto-
nian are given by the following Forward–backward SDE

⎧
⎨

⎩

dA(t) = A(t)
[
θ(t)dB(t) +

∫

R+
θ(t)Ñ 0

α(dζ, dt) + (DC
0 (t)α(t) − 1)′ · d	̃(t)

]
, t ∈ [0, T ],

A(0) = 1,

(4.50)

and

⎧
⎨

⎩

dp(t) = −r(t)p(t)dt + q(t)dB(t) +
∫

R+
r0(t, ζ )Ñ 0

α(dζ, dt) + w(t) · d	̃(t), t ∈ [0, T ],
p(T ) = A(T )U ′(X (T )).

(4.51)

It is easy to see that the functions h and H satisfy the assumptions of Theorem 3.9.
Let us now find θ∗ and π∗. First, maximizing the Hamiltonian H with respect to π

gives the first order condition for an optimal π∗.

E[(μ − r)p + σq|Ft ] = 0. (4.52)
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The BSDE (4.51) is linear in p, hence we shall try a process p(t) of the form

p(t) = β f (t, α(t))A(t)e−βX (t)e
∫ T
t r(s)ds

, (4.53)

where f (·, en) satisfies a differential equation to be determined. Applying Itô-Lévy’s
formula for jump-diffusion process, we have

d
(
e−βX (t)e

∫ T
t r(s)ds

)
= e−βX (t)e

∫ T
t r(s)ds

[(
− βe

∫ T
t r(s)ds

{
P0(t) + π(t)(μ(t) − r(t))

}

+ 1

2
β2e2

∫ T
t r(s)dsσ 2(t)π2(t) +

∫

R+
(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )

)
dt

− βe
∫ T
t r(s)dsσ(t)π(t)dB(t)

+
∫

R+
(eβζe

∫ T
t r(s)ds − 1)Ñ 0

α(dζ, dt)
]
. (4.54)

Applying the Itô-Lévy’s formula for jump-diffusion, Markov regime-switching pro-
cess (see e.g., Zhang et al. (2012, Theorem 4.1)), we get

d
(
A(t)e−βX (t)e

∫ T
t r(s)ds

)

= e−βX (t)e
∫ T
t r(s)ds

A(t)
[
θ(t)dB(t)+

∫

R+
θ(t)Ñ 0

α(dζ, dt)+(DC
0 (t)α(t)−1)′ · d	̃(t)

]

+ A(t)e−βX (t)e
∫ T
t r(s)ds

[(
− βe

∫ T
t r(s)ds

{
P0(t) + π(t)(μ(t) − r(t))

}

+ 1

2
β2e2

∫ T
t r(s)dsσ 2(t)π2(t) +

∫

R+
(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )

)
dt

− βe
∫ T
t r(s)dsσ(t)π(t)dB(t) +

∫

R+
(eβζe

∫ T
t r(s)ds − 1)Ñ 0

α(dζ, dt)
]

− βA(t)e−βX (t)e
∫ T
t r(s)ds

θ(t)e
∫ T
t r(s)dsσ(t)π(t)dt

+
∫

R+
θ(t)A(t)e−βX (t)e

∫ T
t r(s)ds

(eβζe
∫ T
t r(s)ds − 1)N 0

α(dζ, dt)

= A(t)e−βX (t)e
∫ T
t r(s)ds

[(
− βe

∫ T
t r(s)ds

{
P0(t) + π(t)(μ(t) − r(t))

}

− βe
∫ T
t r(s)dsθ(t)σ (t)π(t)

+ 1

2
β2e2

∫ T
t r(s)dsσ 2(t)π2(t) +

∫

R+
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )

)
dt

+ (θ(t) − βe
∫ T
t r(s)dsσ(t)π(t))dB(t) +

∫

R+

{
(1

+ θ(t))(eβζe
∫ T
t r(s)ds − 1) + θ(t)

}
Ñ 0

α(dζ, dt)

+ (DC
0 (t)α(t) − 1)′ · d	̃(t)

]
. (4.55)
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Putting A(t)e−βX (t)e
∫ T
t r(s)ds = P1(t), then p(t) = β f (t, α(t))P1(t) and using once

more the Itô-Lévy’s formula for jump-diffusion Markov regime-switching process,
we get

dp(t) = βd
(
f (t, α(t))P1(t)

)

= β
[
f ′(t, α(t))P1(t)dt + f (t, α(t))P1(t)

[(
− βe

∫ T
t r(s)ds

{
P0(t)

+ π(t)(μ(t) − r(t))
}

− βe
∫ T
t r(s)dsθ(t)σ (t)π(t) + 1

2
β2e2

∫ T
t r(s)dsσ 2(t)π2(t)

+
∫

R+
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )

)
dt

+ (θ(t) − βe
∫ T
t r(s)dsσ(t)π(t))dB(t)

]
+

D∑

j=1

(
f (t, e j )

− f (t, α(t))
)
P1(t)(DC

0,α(t)) jλ j (t)dt

+
∫

R+
f (t, α(t))P1(t)

{
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1) + θ(t)

}
Ñ 0

α(dζ, dt)

+
D∑

j=1

P1(t)
(
f (t, e j )(DC

0,α(t)) j − f (t, α(t))
)
d	̃ j (t)

]
, (4.56)

where (DC
0,α(t)) j = (DC

0 (t)α(t)) j . Comparing (4.56) with (4.51), by equating the
terms in dt , dB(t), Ñα(dζ, dt), and d	̃ j (t) j = 1, . . . , D, respectively, we get

q(t) = (θ∗(t) − β(t)σ (t)π∗(t)e
∫ T
t r(s)ds)p(t). (4.57)

Substituting this into (4.52) gives,

E[(μ(t) − r(t))p(t)|Ft ] = −E[σ(t)
(
θ∗(t) − σ(t)π∗(t)βe

∫ T
t r(s)ds

)
p(t)|Ft ],

i.e., θ∗(t) = −
D∑

j=1

⎛

⎝
μ j − r j − σ 2

j π
∗(t, e j )βe

∫ T
t r(s)ds

σ j

⎞

⎠ 〈α(t), e j 〉,

(4.58)

where the last inequality follows since all coefficients are adapted to Ft . Thus (4.42)
in the Theorem is proved. On the other hand, we also have

r0(t, ζ ) = p(t)
{
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1) + θ(t)

}
(4.59)
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and

w j (t) = β
{
P1(t)

(
f (t, e j )(DC

0,α(t)) j − f (t, α(t))
)}

, (4.60)

with the function f (·, en) satisfying the following backward differential equation:

f ′(t, en) + f (t, en)
[

− βe
∫ T
t r(s)ds

{
P0(t, en) + π(t)(μ(t, en) − r(t, en))

}

− βe
∫ T
t r(s)dsθ(t)σ (t, en)π(t)

+ 1

2
β2e2

∫ T
t r(s)dsσ 2(t, en)π

2(t) +
∫

R+
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1)λ0n Fen (dζ )

]

+
D∑

j=1

(
f (t, e j ) − f (t, en)

)
(DC

0,en (t))njλnj = 0, (4.61)

with the terminal condition f (T, en) = 1, for n = 1, . . . , D. For r = 0, the solution
of such backward equation can be found in Elliott and Siu (2011). Minimizing the
Hamiltonian H with respect to θ gives the first order condition for an optimal θ∗.

E[z +
∫

R+
k(t, ζ )ν0α(dζ )|Ft ] = 0. (4.62)

The BSDE (4.38) is linear in Y , hence we shall try the process Y (t) of the form

Y (t) = f1(t, α(t))Y1(t) with Y1(t) = e−βX (t)e
∫ T
t r(s)ds

, (4.63)

where f1(·, en), n = 1, . . . , D is a deterministic function satisfying a backward
differential equation to be determined. Applying the Itô-Lévy’s formula for jump-
diffusion Markov regime-switching, we get

dY (t) = f ′
1(t, α(t))e−βX (t)e

∫ T
t r(s)ds

dt − f1(t, α(t))Y1(t)βe
∫ T
t r(s)ds

{
P0(t)

+ π(t)(μ(t) − π(t))

− 1

2
βe
∫ T
t r(s)dsσ 2(t)π2(t) + 1

β

∫

R+
(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )

}
dt

+
D∑

j=1

(
f1(t, e j ) − f1(t, α(t))

)
Y1(t)λ j (t)dt

− f1(t, α(t))Y1(t)βe
∫ T
t r(s)dsσ(t)π(t)dB(t)

+
∫

R+
f1(t, α(t))Y1(t)(e

βζe
∫ T
t r(s)ds − 1)Ñ 0

α(dζ, dt)

+
D∑

j=1

(
f1(t, e j ) − f1(t, α(t))

)
Y1(t)d	̃ j (t). (4.64)
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Comparing (4.64) and (4.38), we get

Z(t) = − βe
∫ T
t r(s)dsY (t)σ (t)π(t), (4.65)

K (t, ζ ) =Y (t)(eβζe
∫ T
t r(s)ds − 1), (4.66)

Vj (t) =
{
f1(t, e j ) − f1(t, α(t)

}
Y1(t). (4.67)

Substituting Z0(t) and K (t, ζ ) into (4.62), we get

E[βe
∫ T
t r(s)dsσ(t)π∗(t)|Ft ] =E

[ ∫

R+
(eβζe

∫ T
t r(s)ds − 1)ν0α(dζ )|Ft

]
,

i.e., π∗(t) =
D∑

n=1

⎛

⎜
⎜
⎝

∫

R+
(eβζe

∫ T
t r(s)ds − 1)λ0n Fn(dζ )

βσne
∫ T
t r(s)ds

⎞

⎟
⎟
⎠ 〈α(t), en〉.

(4.68)

Thus (4.43) in the Theorem is proved. Substituting (4.65)-(4.67) into (4.64), we deduce
that the function f1(·, en) satisfies the following backward differential equation

f ′
1(t, en) + f1(t, en)

[
− βe

∫ T
t r(s)ds

{
P0(t, en) + π(t)(μ(t, en) − r(t, en))

}

− βe
∫ T
t r(s)dsθ(t)σ (t, en)π(t)

+ 1

2
β2e2

∫ T
t r(s)dsσ 2(t, en)π

2(t) +
∫

R+
(1 + θ(t))(eβζe

∫ T
t r(s)ds − 1)λ0n Fen (dζ )

]

+
D∑

j=1

(
f1(t, e j ) − f1(t, en)

)
(DC

0,en (t))njλnj = 0, (4.69)

with the terminal condition f1(T, en) = −1 for n = 1, . . . , D.
As for the optimal (Cnj )n, j=1,...,D , the only part of the Hamiltonian that depends on

C is the sum
∑D

j=1(D
C
0 (t)en − 1) jλnj Vj (t). Hence minimizing the Hamiltonian with

respect to C is equivalent to minimizing the following system of differential operator

min
C1 j ,...,CDj

D∑

j=1

(DC
0 (t)en − 1) jλnj Vj (t) j = 1, . . . , D, (4.70)

subject to the linear constraints

D∑

n=1

Cnj (t) = 0.

Hence, one can obtain the solution in the two-states case (since C is bounded) with Vj

and f1 given by (4.67) and (4.69) respectively. More specifically, if the Markov chain
only has two states, we have to solve the following two linear programming problems:
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min
C11(t),C21(t)

(V1(t) − V2(t))C21(t) + λ21(V2(t) − V1(t)) (4.71)

subject to the linear constraint

C11 + C21 = 0

and

min
C12(t),C22(t)

(V2(t) − V1(t))C12(t) + λ12(V1(t) − V2(t)) (4.72)

subject to the linear constraint

C12 + C22 = 0.

By imposing that the space of family matrix rates (Cnj )n, j=1,2 is bounded we can

write that Cnj (t) ∈
[
Cl(n, j),Cu(n, j)

]
with Cl(n, j) < Cu(n, j), i, j = 1, 2. The

solution to the preceding two linear control problems are then given by:

C∗
21(t) = Cl(2, 1)IV1(t)−V2(t)>0 + Cu(2, 1)IV1(t)−V2(t)<0,

C∗
11(t) = −C∗

21(t) (4.73)

and

C∗
12(t) = Cl(1, 2)IV2(t)−V1(t)>0 + Cu(1, 2)IV2(t)−V1(t)<0,

C∗
22(t) = −C∗

12(t). (4.74)

The proof is completed ��
Remark 4.8 • Assume for example that the distribution of the claim size is of expo-

nential type (with parameter λ̃0j > 2β, j = 1, . . . , n). Moreover, assume that π, θ

and C are given by (4.68), (4.58) and (4.70), respectively. Then each of the fol-
lowing equations: (4.31), (4.38), (4.50) and (4.51) admits a unique solution. The
solution (Ŷ (t), Ẑ(t), K̂ (t, ζ ), V̂ (t)) (respectively ( p̂(t), q̂(t), r̂0(t, ζ ), ŵ(t))) to
(4.38) (respectively (4.51)) is given by (4.63), (4.65), (4.66) and (4.67) (respec-
tively (4.53), (4.57), (4.59) and (4.60)).

• We note that f given by (4.61) and f1 given by (4.69) coincide. Moreover, for
r = 0, the backward differential equation (4.61)is the same as Elliott and Siu
(2011, Eq. (4.13))

5 Conclusion

In this paper, we use a general maximum principle for Markov regime-switching
Forward–backward stochastic differential equation to study optimal strategies for
stochastic differential games. The proposed model covers the model uncertainty in
Bordigoni et al. (2005), Elliott and Siu (2011), Faidi et al. (2011), Jeanblanc et al.
(2012), Øksendal and Sulem (2012). The results obtained are applied to study two
problems: first, we study robust utility maximization under relative entropy penal-
ization. We show that the value function in this case is described by a quadratic
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regime-switching backward stochastic differential equation. Second, we study a prob-
lem of optimal investment of an insurance company under model uncertainty. This
can be formulated as a two-player zero-sum stochastic differential games between the
market and the insurance company,where themarket controls themean relative growth
rate of the risky asset and the company controls the investment. We find “closed form”
solutions of the optimal strategies of the insurance company and the market, when the
utility is of exponential type and the Markov chain has two states.

Optimal control for delayed systems has also received attention recently, due to the
memory dependence of some processes. In this situation, the dynamics at the present
time t does not only depend on the situation at time t but also on a finite part of their past
history. Extension of the present work to the delayed case could be of interest. Such
results were derived in Menoukeu-Pamen (2015) in the case of no regime-switching.

It would also be interesting to study the sensitivity of the optimal controls with
respect to the given parameters. However this is not straightforward since the param-
eters (coefficients) in this case depend on the regime and thus stochastic. This is the
object of future works.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proof of Theorem 3.1 Let show that J1(u1, û2, en) ≤ J1(̂u1, û2, en) for all û1 ∈ A1.

Fix u1 ∈ A1, then, we have

J1(u1, û2, en) − J1(̂u1, û2, en) = I1 + I2 + I3, (5.1)

where

I1 =E
[ ∫ T

0

{
f1(t, X (t), α(t),Y (t), u(t)) − f1(t, X̂(t), α(t), û(t))

}
dt
]
, (5.2)

I2 =E
[
ϕ1(X (T ), α(T )) − ϕ1(X̂(T ), α(T ))

]
, (5.3)

I3 =E
[
ψ1(Y1(0)) − ψ1(Ŷ1(0))

]
. (5.4)

By the definition of H1, we get

I1 = E

[∫ T

0

{
H1(t, u(t)) − Ĥ1(t, û(t)) − Â1(t)(g1(t) − ĝ1(t)) − p̂1(t)(b(t) − b̂(t))

− q̂1(t)(σ (t) − σ̂ (t)) −
∫

R0

r̂1(t, ζ )(γ (t, ζ ) − γ̂ (t, ζ ))να( dζ )

−
D∑

j=1

ŵ1
j (t)(η j (t) − η̂ j (t))λ j (t)

⎫
⎬

⎭
dt

⎤

⎦ . (5.5)
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By concavity of ϕ1 in x , Itô formula, and (3.3) we have

I2 ≤ E

[
∂ϕ1

∂x
(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

= E
[
p̂1(T )(X (T ) − X̂(T ))

]− E

[

Â1(T )
∂h1
∂x

(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

= E

[∫ T

0
p̂1(t)(dX (t) − d X̂(t)) +

∫ T

0
(X (t−) − X̂(t−)) d p̂1(t) +

∫ T

0
(σ (t)

− σ̂ (t))q̂1(t) dt

+
∫ T

0

∫

R0

(γ (t) − γ̂ (t))̂r1(t, ζ )να(dζ ) dt +
∫ T

0

D∑

j=1

ŵ1
j (t)(η j (t)

− η̂ j (t))λ j (t) dt
]

− E

[

Â1(T )
∂h1
∂x

(X̂(T ), α(T ))(X (T ) − X̂(T ))

]

= E
[ ∫ T

0
p̂1(t)(b(t) − b̂(t)) dt +

∫ T

0
(X (t−) − X̂(t−))

(
− ∂ Ĥ1

∂x
(t)
)
dt

+
∫ T

0
(σ (t) − σ̂ (t))q̂(t) dt

+
∫ T

0

∫

R0

(γ (t) − γ̂ (t))̂r1(t, ζ )να(dζ ) dt +
∫ T

0

D∑

j=1

ŵ1
j (t)(η j (t)

− η̂ j (t))λ j (t) dt
]

− E
[
Â1(T )

∂h1
∂x

(X̂(T ), α(T ))(X (T ) − X̂(T ))
]
. (5.6)

By concavity of ψ1, h1, Itô formula, (2.7) and (3.2), we get

I3 ≤E
[
ψ ′
1(Ŷ1(0))(Y1(0) − Ŷ1(0))

]

=E
[
Â1(0)(Y1(0) − Ŷ1(0))

]

=E
[
Â1(T )(Y (T ) − Ŷ1(T ))

]
− E

[ ∫ T

0
Â1(t)( dY1(t) − dŶ1(t))

+
∫ T

0
(Y1(t

−) − Ŷ1(t
−)) d Â1(t) +

∫ T

0
(Z1(t) − Ẑ1(t))

∂ Ĥ1

∂z
(t) dt

+
∫ T

0

∫

R0

(K1(t, ζ ) − K̂1(t, ζ ))∇k Ĥ1(t, ζ )να( dζ ) dt +
∫ T

0

D∑

j=1

∂ Ĥ1

∂v j
(t)(V j

1 (t)

− V̂ j
1 (t))λ j (t) dt

]
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=E
[
Â1(T ){h1(X (T ), α(T )) − h1(X̂(T ), α(T ))}

]

− E
[ ∫ T

0

∂ Ĥ1

∂y
(t)(Y1(t) − Ŷ1(t)) dt

+
∫ T

0
Â1(t)(−g(t) + ĝ(t)) dt +

∫ T

0
(Z(t) − Ẑ(t))

∂ Ĥ

∂z
(t) dt

+
∫ T

0

∫

R0

(K1(t, ζ ) − K̂1(t, ζ ))∇k Ĥ1(t, ζ )να(dζ ) dt +
∫ T

0

D∑

j=1

∂ Ĥ1

∂v j
(t)(V j

1 (t)

− V̂ j
1 (t))λ j (t) dt

]
.

Hence we get

I3 ≤E
[
Â1(T )

∂h1
∂x

(X̂(T ), α(T ))(X (T ) − X̂(T ))
]

− E
[ ∫ T

0

∂ Ĥ1

∂y
(t)(Y1(t) − Ŷ1(t)) dt

+
∫ T

0
Â1(t)(−g(t) + ĝ1(t)) dt +

∫ T

0
(Z1(t) − Ẑ1(t))

∂ Ĥ1

∂z
(t) dt

+
∫ T

0

∫

R0

(K1(t, ζ ) − K̂1(t, ζ ))∇k Ĥ1(t, ζ )να(dζ ) dt +
∫ T

0

D∑

j=1

∂ Ĥ1

∂v j
(t)(V j

1 (t)

− V̂ j
1 (t))λ j (t) dt

]
. (5.7)

Summing (5.5)–(5.7) up, we have

I1 + I2 + I3 ≤E
[ ∫ T

0

{
H1(t, u(t)) − Ĥ1(t, û(t)) − ∂ Ĥ1

∂x
(t)(X (t) − X̂(t))

− ∂ Ĥ1

∂y
(t)(Y1(t) − Ŷ1(t))

+
∫

R0

(K1(t, ζ ) − K̂1(t, ζ ))∇k Ĥ1(t, ζ )να(dζ ) dt

+
D∑

j=1

∂ Ĥ1

∂v j
(t)(V j

1 (t) − V̂ j
1 (t))λ j (t)

}
dt
]
. (5.8)

One can show, using the same arguments in Framstad et al. (2004) that, the right
hand side of (5.8) is non-positive. For sake of completeness we shall give the details
here. Fix t ∈ [0, T ]. Since H̃1(x, y, z, k, v) is concave, it follows by the standard
hyperplane argument (see e.g Rockafeller (1970, Chapter 5, Section 23)) that there
exists a subgradient d = (d1, d2, d3, d4(·), d5) ∈ R

3 ×R×R for H̃1(x, y, z, k, v) at
x = X̂(t), y = Ŷ1(t), z = Ẑ1(t), k = K̂1(t, ·), v = V̂1(t) such that if we define

123



384 O. Menoukeu-Pamen, R. H. Momeya

i1(x, y, z, k, v) := H̃1(x, y, z, k, v) − Ĥ1(t) − d1(x − X̂(t)) − d2(y − Ŷ1(t))

− d3(z − Ẑ1(t))

−
∫

R0

d4(ζ )(k(ζ ) − K̂1(t, ζ ))να(dζ ) −
D∑

j=1

d j
5 (V j

1 (t)

− V̂ j
1 (t))λ j (t). (5.9)

Then i(x, y, z, k, v) ≤ 0 for all x, y, z, k, v.
Furthermore, we clearly have i(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)). It follows that,

d1 = ∂ H̃1

∂x
(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)),

d2 = ∂ H̃1

∂y
(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)),

d3 = ∂ H̃1

∂z
(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)),

d4 = ∇k H̃1(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)),

d j
5 = ∂ H̃1

∂v j
(X̂(t), Ŷ1(t), Ẑ1(t), K̂1(t, ·), V̂1(t)).

Combining this with (5.8), and using the concavity of H̃1, we conclude that
J1(u1, û2, ei ) ≤ J1(̂u1, û2, ei ) for all u1 ∈ A1. In a similar way, one can show that
J2(̂u1, u2, ei ) ≤ J2(̂u1, û2, ei ) for all u2 ∈ A2. This completed the proof. ��

Proof of Theorem 3.5 We have that

d

d�
J (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

= E
[ ∫ T

0

{∂ f1
∂x

(t)X1(t) + ∂ f1
∂u1

(t)β1(t)
}
dt + ∂ϕ1

∂x
(X (u1,u2)(T ), α(T ))X1(T )

+ ψ ′
1(Y1(0))y1(0)

]

= J1 + J2 + J3, (5.10)

with

J1 = E
[ ∫ T

0

{∂ f1
∂x

(t)X1(t) + ∂ f1
∂u1

(t)β1(t)
}
dt
]
,

J2 = E
[∂ϕ1

∂x
(X (u1,u2)(T ), α(T ))X1(T )

]
,

J3 = E
[
ψ ′
1(Y10))y1(0)

]
.
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By Itô’s formula, (3.3), (3.12) and (3.14), we have

J2 = E
[∂ϕ1

∂x
(X (u1,u2)(T ), α(T ))X1(T )

]

= E
[
p1(T )X (T )

]
− E

[∂h1
∂x

(X (u1,u2)(T ), α(T ))A1(T )X1(T )
]

= E
[ ∫ T

0

{
p1(t)

( ∂b

∂x
(t)X1(t) + ∂b

∂u1
(t)β1(t)

)
− X1(t)

∂H1

∂x
(t)

+ q1(t)
(∂σ

∂x
(t)X1(t) + ∂σ

∂u1
(t)β1(t)

)
+
∫

R0

r1(t, ζ )
(∂γ

∂x
(t, ζ )X1(t)

+ ∂γ

∂u1
(t, ζ )β1(t)

)
να(dζ )

+
D∑

j=1

w
j
1(t)

(∂η j

∂x
(t)X1(t) − ∂η j

∂u1
(t)β1(t)

)
λ j (t)

}
dt
]

− E
[∂h1

∂x
(X (u1,u2)(T ), α(T ))A1(T )X1(T )

]]
. (5.11)

Applying once more the Itô’s formula and using (3.13) and (3.15), we get

J3 =E
[
ψ ′
1(Y (0))y1(0)

]
= E

[
A(0)y1(0)

]

=E
[
A1(T )y1(T )

]
− E

[ ∫ T

0

{
A1(t

−) dy1(t) + y1(t
−) dA1(t) + ∂H1

∂z
(t)z1(t) dt

+
∫

R0

∇k H1(t, ζ )k1(t, ζ )να(dζ ) dt +
D∑

j=1

∂H1

∂v
j
1

(t)v j
1 (t)λ j (t) dt

}]

=E
[∂h1

∂x
(X (u1,u2)(T ), α(T ))A1(T )X1(T )

]

+ E
[ ∫ T

0

{
A1(t)

(∂g1
∂x

(t)x1(t) + ∂g1
∂y

(t)y1(t)

+ ∂g1
∂z

(t)z1(t) +
∫

R0

∇kg1(t, ζ )k1(t, ζ )να(dζ ) +
D∑

j=1

∂g1
∂v j

(t)v j
1 (t)λ j (t)

+ ∂g1
∂u1

(t)β1(t)
)

− ∂H1

∂y
(t)y1(t) − ∂H1

∂z
(t)z1(t) −

∫

R0

∇k H1(t, ζ )k1(t, ζ )να(dζ )

−
D∑

j=1

∂H1

∂v j
(t)v j

1 (t)λ j (t)
}
dt
]
. (5.12)

Substituting (5.11) and (5.12) into (5.10), we get

d

d�
J (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0
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=E
[ ∫ T

0
X1(t)

{∂ f1
∂x

(t) + A1(t)
∂g1
∂x

(t) + p1(t)
∂b

∂x
(t) + q1(t)

∂σ

∂x
(t)

+
∫

R0

r1(t, ζ )
∂γ

∂x
(t, ζ )να(dζ )

+
D∑

j=1

w
j
1(t)

∂η j

∂x
(t)λ j (t) − ∂H1

∂x
(t)
}
dt
]

+ E
[ ∫ T

0
y1(t)

{
A1(t)

∂g1
∂y

(t)

− ∂H1

∂y
(t)
}
dt
]

+ E
[ ∫ T

0
z1(t)

{
A1(t)

∂g1
∂z

(t) − ∂H1

∂z
(t)
}
dt
]

+ E
[ ∫ T

0

∫

R0

k1(t, ζ )
{
A1(t)∇kg1(t, ζ ) − ∇k H1(t, ζ )

}
να(dζ )dt

+ E
[ ∫ T

0

D∑

j=1

v
j
1 (t)

{
A1(t)

∂g

∂v j
(t) − ∂H

∂v j
(t)
}
dt
]

+ E
[ ∫ T

0
β1(t)

{ ∂ f1
∂u1

(t) + A1(t)
∂g1
∂u1

(t) + ∂b

∂u1
(t) + ∂σ

∂u1
(t)

+
∫

R0

r1(t, ζ )
∂γ

∂u1
(t, ζ )να(dζ ) +

D∑

j=1

w
j
1(t)

∂η j

∂u1
(t)λ j (t)

}
dt
]
. (5.13)

By the definition of H1, the coefficients of the processes X1(t), y1(t), z1(t), k1(t, ζ )

and v
j
1 (t), j = 1, . . . , D, are all equal to zero in (5.13). We conclude that

d

d�
J (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

=E
[ ∫ T

0

∂H1

∂u1
(t)β1(t) dt

]

=E
[ ∫ T

0
E
[∂H1

∂u1
(t)β1(t)

∣
∣
∣E (1)

t

]
dt
]
. (5.14)

Hence,
d

d�
J (u1+�β1,u2)
1 (t)

∣
∣
∣
�=0

= 0 for all bounded β1 ∈ A1 implies that the same

holds in particular for β1 ∈ A1 of the form

β1(t) = β1(t, ω) = θ1(ω)ξ[t0,T ](t), t ∈ [0, T ]

for a fix t0 ∈ [0, T ), where θ1(ω) is a bounded E (1)
t0 -measurable random variable.

Therefore

E
[ ∫ T

t0
E
[∂H1

∂u1
(t)
∣
∣
∣E (1)

t

]
θ1 dt

]
= 0. (5.15)
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Differentiating with respect to t0, we have

E
[∂H1

∂u1
(t0) θ1

]
= 0 for a.a., t0. (5.16)

Since the equality is true for all bounded E (1)
t0 -measurable random variables θ1, we

have

E
[∂H1

∂u1
(t0)|E (1)

t0

]
= 0 for a.a., t0 ∈ [0, T ]. (5.17)

A similar argument gives that

E
[∂H2

∂u2
(t0)|E (2)

t0

]
= 0 for a.a., t0 ∈ [0, T ],

under the condition that

d

ds
J (u1,u2+�β2)(t)

∣
∣
∣
�=0

= 0 for all bounded β2 ∈ A2.

This shows that (1) ⇒ (2).
Conversely, using the fact that every bounded βi ∈ Ai can be approximated by a

linear combinations of controls βi (t) of the form (3.11), the above argument can be
reversed to show that (2) ⇒ (1). ��
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