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Abstract In the paper we discuss three general properties of values of TU-games:
λ-standardness, general probabilistic consistency and some modifications of the null
player property. Necessary and sufficient conditions for different families of efficient,
linear and symmetric values are given in terms of these properties. It is shown that the
results obtained can be used to get new axiomatizations of several classical values of
TU-games.
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1 Introduction

Classical cooperative game in the characteristic function form (also called a TU-game)
is a function v : 2N �→ R with a finite set N as the grand coalition of the players
(agents, individuals). For each coalition S (a subset of N ), v(S) represents the worth
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of S (the gain possible to be achieved jointly by all the players from S when they
collaborate). One of the essential problems addressed in the papers on this topic is the
following: Assuming that all the players in N will collaborate and create (finally) the
grand coalition N , how to divide “fairly” the whole worth v(N ) between them? In the
literature, many various procedures (called values) have been proposed for solving this
problem, and the classical Shapley value (Shapley 1953) is the most prominent and the
best known one among them. However this value has the so-called null player property
that does not allow for solidarity between the players, assigning zero payoff to every
“unproductive player”; that is to every player i with all his marginal contributions
v(S ∪ i)− v(S) = 0 for S ⊂ N (called then a null player). On the opposite side, there
is a very classical value allowing for the total solidarity between the players, which
radically rejects the null player property—the so-called equal split value. It awards
everyplayer in the grand coalition N , independently of his contributions,v(S∪i)−v(S)

to coalitions S, the same payoff equal to v(N )
n where n is the cardinality of N . In the

literature, many other values for TU-games “standing” between the Shapley value and
the equal split value were constructed and characterized by proper sets of axioms. The
most interesting results here are axiomatizations of the class of convex combinations
of those two values (called egalitarian Shapley values) found in the two recent papers
by van den Brink et al. (2013) and Casajus and Huettner (2013).

Two of the properties used most frequently to axiomatize the values of cooperative
games are the null player axiom and consistency. The consistency property for a value
states that if all the players are supposed to be paid according to a payoff vector in the
original game, then the players in every “reduced game” (with a smaller number of
players) can achieve some payoff vector closely related with the value of the reduced
game. A survey of consistency properties of several classical values for cooperative
games can be found inDriessen (1991). The present paper introduces some generalized
versions of both the properties, the null player axiom and consistency, and studies
different axiomatizations using them. The results obtained here have allowed to get
new axiomatizations for several classical values.

The firstmain result (Theorem1 in Sect. 3) gives necessary and sufficient conditions
for efficient, linear and symmetric values to satisfy some generalized version of the
classical null player property. Next, a number of its applications to several classical
values for TU-games and their convex combinations is shown. Among others, we get
an axiomatization for a new value for TU-games called the per-capita value, as well
as new axiomatizations of the equal split value and the solidarity value.

In Hart and Mas-Colell (1989) and in Sobolev (1973), one can find the main results
related to the consistency of the Shapley value. Hart and Mas-Colell construct an
elegant theory of potential for cooperative games and apply it to get an axiomatization
of the Shapley value with the consistency axiom. Their theory is extended in Driessen
and Radzik (2003) where the authors give an axiomatization based on generalized
consistency properties for some wide class of values of cooperative games. The main
results given there have been completed and remarkably strengthened in Sect. 4 of our
paper. The group of three results (Propositions 5 and 6, and Theorem 2) establishes
necessary and sufficient conditions for the class of efficient, linear and symmetric
values to satisfy the so-called λ-standardness and a general consistency property. The
latter generalizes the consistency property considered by Hart and Mas-Colell (1989)
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and is based on some modification of Sobolev’s approach to arbitrary values of TU-
games.

The results of Sect. 4 have been used to get next two results (Theorems 3 and 4
in Sect. 5), that are related to a construction of a new subclass of values satisfying
the λ-standardness and the so-called probabilistic consistency. As an application of
this result, we get new axiomatizations of the Shapley value, the per-capita value, the
solidarity value and the equal split value in terms of these two properties. Also a wide
discussion of the results obtained here is given.

Section 2 is our preliminary one, where we recall some standard definitions and
several basic axioms desired for the values of TU-games, and we quote three results
from the literature, fundamental for our considerations. We also recall the formulas
for five particular values, essential for illustrating the results obtained in the paper.
The last Sect. 6 is devoted to the proofs of the theorems.

2 Preliminaries

Let N = {1, 2, · · · , n}, with n ≥ 2, be a fixed finite set of n players. Subsets of N are
called coalitions while N is called the grand coalition.

The cardinality of a set X will be denoted by |X |. For brevity, throughout the paper,
the cardinality of sets (coalitions) N , S and T will be also denoted by appropriate
small letters n, s and t , respectively. All the set inclusions “⊂” are meant to be weak.
Also, for notational convenience, we will write singleton {i} as i .

A (transferable utility) game (on N ) is any function v : 2N → R with v(∅) = 0,
whereR denotes the set of real numbers. Then for any coalition S in N , v(S) describes
theworthof the coalition Swhen all the players in S collaborate.Agame v ismonotonic
if v(S) ≤ v(T ) for any S ⊂ T ⊂ N . The set of all games v on N is denoted by �N .

For a coalition T ⊂ N , the unanimity game uT is defined by uT (S) = 1 for
S ⊃ T and uT (S) = 0 otherwise, for S ⊂ N .

A value �(v) = (�1(v), . . . , �n(v)) on �N is thought of as a vector-valued map-
ping� : �N → Rn , which uniquely determines, for each game v ∈ �N , a distribution
of the total wealth available to all the players 1, 2, . . . , n, through their participation
in the game v. We quickly recall several basic properties a value � may have.

A value � is called efficient if
∑

i∈N �i (v) = v(N ) for all games v. If �(αv +
βw) = α�(v) + β�(w) for all games v and w and for all reals α and β, a value
� is called linear. If the last equality holds for α = β = 1, a value is additive.
A player i is called a null player (dummy player) in game v if v(S ∪ i) = v(S)

(v(S ∪ i) = v(S) + v(i)) for every coalition S ⊂ N \ i . If �i (v) = 0 in case of any
null player i in game v, we say that a value� satisfies the null player axiom. If a value
� satisfies the equality �π i (N , πv) = �i (v) for all i ∈ N and every permutation
π of the player set N , then we say that � satisfies the anonymity axiom, sometimes
also called the symmetry axiom (here πv is defined as game πv by πv(π(S)) = v(S)

for S ⊂ N ). If a value � satisfies �i (v) = � j (v) if v(S ∪ i) = v(S ∪ j) for any
S ⊂ N \{i, j}, we say that it has the equal treatment property. This property is weaker
than symmetry.
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182 T. Radzik, T. Driessen

In this paper we will mainly discuss values which satisfy efficiency, symmetry
and linearity. Hence, for brevity, every value satisfying those three properties will be
shortly called an ESL-value.

Now we recall four classical ESL-values (the equal split value, the Shapley value,
the solidarity value, the δ-discounted Shapley value) and define a new one essential
for the illustration of the results obtained in the paper. The first two values are standard
in cooperative game theory. The solidarity value was introduced in Nowak and Radzik
(1994). In the recent paper of Calvo (2008), two variations of the non-cooperative
model for games in coalitional form, introduced by Hart and Mas-Colell (1996), were
proposed, and two new, very interestingNTU-values have been introduced: the random
marginal and random removal values. It turned out that for TU-games, the random
marginal value coincides with the Shapley value and that, which was completely
surprising, the random removal value coincides with the solidarity value.

The fourth value, called the δ-discounted Shapley value is constructed as a certain
modification of the Shapley value, while the fifth new one, called the per-capita value,
is a modification of the solidarity value.

The equal split value �Eq . By definition, it is the ESL-value on �N defined by
�Eq(v) = (�

Eq
i (v))i∈N , where

�
Eq
i (v) = v(N )

n
, i ∈ N . (1)

So, the equal split value divides the worth v(N ) of the grand coalition N equally
between all the players, independently of the worth of other coalitions.

The Shapley value �Sh . It is the classical ESL-value on �N (introduced in Shapley
1953), of the form �Sh(v) = (�Sh

i (v))i∈N , where

�Sh
i (v) =

∑

S⊂N\i

s!(n − s − 1)!
n! [v(S ∪ i) − v(S)], i ∈ N . (2)

It is known that the Shapley value �Sh on �N is the unique ESL-value which satisfies
the null player axiom.

The solidarity value �So. This is an ESL-value on �N discussed in the paper of
Nowak and Radzik (1994). It is uniquely determined by the three classical axioms,
efficiency, additivity and symmetry, and by a modification of the null player axiom,
called A-null player axiom. We quickly recall this axiom. To express it we need to
define, for any non-empty coalition T ⊂ N and a game v, the quantity

Av(S) = 1

s

∑

k∈S
[v(S) − v(S \ k)], (3)

where smeans the cardinality of S. Clearly, Av(S) can be seen as the averagemarginal
contribution of a member of a coalition S. The axiom is as follows:

A- null player axiom: If i ∈ N is an A-null player in a game v, that is,
Av(S) = 0 for every coalition S containing player i , then �i (v) = 0.
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It is shown in Nowak and Radzik (1994) that for v ∈ �N , the solidarity value is of
the form �So(v) = (�So

i (v))i∈N , where

�So
i (v) =

∑

S�i

(n − s)!(s − 1)!
n! Av(S), i ∈ N . (4)

Using (4), one can easily deduce that the solidarity value has the following equiv-
alent form

�So
i (v) = v(N )

n + 1
+

∑

S⊂N\i

s!(n − s − 1)!
n! [v(S ∪ i)

s + 2
− v(S)

s + 1
], i ∈ N . (5)

The δ-discounted Shapley value�Shδ
. It is the value on �N of the form �Shδ

(v) =
(�Shδ

i (v))i∈N with δ ∈ R, where

�Shδ

i (v) =
∑

S⊂N\i

s!(n − s − 1)!
n! [δn−s−1v(S ∪ i) − δn−sv(S)], i ∈ N . (6)

(Here, by definition, 00 = 1.) An equivalent form of this generalization of the
Shapley value was first introduced in Joosten et al. (1994), and next axiomatized (in
terms of consistency) by Joosten (1996, Chapter 5). The name “δ-discounted Shapley
value” comes from Driessen and Radzik (2003).

The per-capita value �Pc. It is a modification of the solidarity value of the form
�Pc(v) = (�Pc

i (v))i∈N , where

�Pc
i (v) = n ·

∑

S⊂N\i

s!(n − s − 1)!
n! [v(S ∪ i)

s + 1
− v(S)

s
], i ∈ N . (7)

(Here, by definition, v(S)
s = 0 if S = ∅.) This new value (not studied in the literature

yet) is different from the per-capita Shapley value introduced in Example 3 in Driessen
and Radzik (2003).

To end with, we quote three useful facts from the literature. The first one belongs
to Ruiz et al. (1998) (see Lemma 9 there).

Proposition 1 A value � on �N is linear, efficient and satisfies the equal treatment
property if and only if there exists a unique collection of real constants {λs}s=1,...,n−1
such that for every game v ∈ �N the value payoff vector (�i (v))i∈N is of the following
form:

�i (v) = v(N )

n
+

∑

S�N
S�i

λs

s
v(S)−

∑

S�N
∅�=S ��i

λs

n − s
v(S), i ∈ N . (8)

Remark 1 It is easy to see that any value of the form (8) satisfies the symmetry prop-
erty. On the other hand, the last property is stronger than equal treatment. Hence
Proposition 1 implies the following: A value � on �N is an ESL-value if and only
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if it is efficient, linear and satisfies the equal treatment property. Therefore, in all the
theorems, the phrase “ESL-value on�N ” can be replaced with that equivalent “weaker
form”.

The second result (see statement (iii) of Theorem 3 in Driessen and Radzik (2003))
gives another characterization of the set of ESL-values.

Proposition 2 A value � on �N is an ESL-value if and only if there exists a unique
collection of real constants {bs}s=0,1,...,n with bn = 1 and b0 = 0 such that for every
game v ∈ �N the value payoff vector (�i (v))i∈N is of the following form:

�i (v) =
∑

S⊂N\i

s!(n − s − 1)!
n! [bs+1v(S ∪ i) − bsv(S)], i ∈ N . (9)

Remark 2 One can easily see that the formula (9) generalizes the classical formula (2)
for the Shapley value, giving this value for the constants bs = 1 for 1 ≤ s ≤ n, and
giving the equal split value for the constants bs = 0 for all 1 ≤ s < n. On the other
hand, it follows from (5) that (9) with bs = 1

s+1 for 1 ≤ s < n, describes the formula
for the solidarity value. One can also check that if we rewrite formula (8) with the help
of new parameters b1, b2, . . . , bn−1, putting there λs = bs · (n

s

)
for 1 ≤ s < n, then

(8) coincides with the formula (9).

The third result (Theorems 1 and 2 in Radzik and Driessen (2013)) gives two more
detailed versions of Proposition 2. To quote it we need to introduce the next two very
desirable properties of values.

Fair treatment: Let i , j ∈ N and v ∈ �N . If v(S ∪ i) ≥ v(S ∪ j) for all
S ⊂ N \ i \ j then �i (v) ≥ � j (v).

Monotonicity: Let v be a monotonic game, that is satisfying v(S) ≤ v(T )

whenever S ⊂ T . Then for each player i ∈ N , �i (v) ≥ 0.

It is worth mentioning that the first property (fair treatment) appears in the literature
under different names, such asdesirability (see, e.g. Peleg andSudhölter 2003), or local
monotonocity (see, e.g. Levinský and Silársky 2004), whilemonotonicity is sometimes
called weak monotonicity (see Weber 1988). Besides, four different natural types of
monotonicity are studied in Malawski (2013) and an interesting discussion about their
mutual relations is given.

Proposition 3 Let � be an ESL-value on �N with its representation of the form (9).
Then (a) � satisfies fair treatment if and only if

bn = 1 and bs ≥ 0 f or s = 1, 2, . . . , n − 1 . (10)

(b) � satisfies fair treatment and monotonicity if and only if

bn = 1 and 0 ≤ bs ≤ 1 f or s = 1, 2, . . . , n − 1 . (11)
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Remark 3 First note (by Proposition 2) that all the five values, �Eq , �Sh , �So, �Shδ

and �Pc defined above, are ESL-values on �N . A straightforward comparison of the
formulas (1), (2) and (5) with (9) shows that the constants bs in the representation
formula (9) for the values �Eq , �Sh , �So satisfy inequalities (11). Therefore these
three values satisfy the fair treatment and monotonicity properties. In a similar way
we show that the value �Shδ

with 0 ≤ δ ≤ 1 also satisfies those two properties. But
comparing (7) with (9), we see that the constants bs in the representation formula
for the per-capita value are of the form bs = n

s for s = 1, 2, . . . , n − 1. So, by
Proposition 3, the per-capita value satisfies the fair treatment property but not the
monotonicity property.

3 Theorem on ESL-values with generalized null player properties

In this section we formulate our first main result (Theorem 1) where a wide subfamily
of ESL-values on �N is axiomatized with the help of some theoretical generaliza-
tion of the null player property. Next we show that this result immediately implies
axiomatizations (some of them are new) of eight values of TU-games.

Let N = {1, 2, · · · , n} with n ≥ 2 be a fixed finite set. Let α ∈ R and let
β̄ = (βk)

n
k=0 be a sequence of real numbers. We begin with the following definition

generalizing the classical notion of null player in a game.

Definition 1 Player i is called a β̄-null player in a game v ∈ �N if βs+1v(S ∪ i) −
βsv(S) = 0 for any S ⊂ N \ i .
Consider now the following property of a value � on �N .

(β̄, α)- null player payoff: If player i is a β̄-null player in a game v ∈ �N ,
then �i (N , v) = α

v(N )
n .

Now we are ready to formulate the following characterization theorem, the proof
of which will be given in Sect. 6.

Theorem 1 Let α ∈ R and let β̄ be a sequence of real numbers with β0 = 0 and
βk �= 0 for 1 ≤ k ≤ n. A value � on �N is an ESL-value satisfying the (β̄, α)-null
player payoff property if and only if for every game v ∈ �N the value payoff vector
�(v) = (�i (v))i∈N is of the following form

�i (v) = α
v(N )

n
+ 1 − α

βn

∑

S⊂N\i

s!(n − s − 1)!
n! [βs+1v(S ∪ i) − βsv(S)] . (12)

Now we will present eight immediate corollaries to Theorem 1. They give some
axiomatizations of the equal split value, the per-capita value, the δ-discounted Shapley
value, the solidarity value, and convex combinations of some pairs of these values.

The first result repeats the classical one of Shapley (1953). Namely, taking the
sequence β̄ with βk = 1 for k ≥ 1, and α = 0 in Theorem 1, we immediately get the
following corollary.

Corollary 1 A value � on �N is an ESL-value satisfying the null player axiom if and
only if � is the Shapley value �Sh= {�Sh

i }i∈N of the form (2).
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Now consider the following two modifications of the null player axiom with a clear
interpretation.

null player average payoff: If player i is a null player in a game v ∈ �N ,
then �i (v) = v(N )

n .

null player α- average payoff: Let 0 ≤ α ≤ 1. If player i is a null player in
a game v ∈ �N , then �i (v) = α

v(N )
n .

Now taking the sequence β̄ with βk = 1 for k ≥ 1, and α = 1 or α ∈ [0, 1] in
Theorem 1, we get the next two corollaries.

Corollary 2 A value � on �N is an ESL-value satisfying the null player average
payoff property if and only if � is the equal split value �Eq= {�Eq

i }i∈N of the form
(1).

Corollary 3 Let 0 ≤ α ≤ 1. A value � on �N is an ESL-value satisfying the null
player α-average payoff property if and only if � is the α-egalitarian Shapley value
�̃α of the form �̃α = α�Eq + (1 − α)�Sh.

Remark 4 The null player α-average payoff property can be seen as α-degree of sol-
idarity between the players in a game. So the main idea to consider values with such
property is to “add solidarity” to the problem of distribution of the grand coalition
worth. The α-egalitarian Shapley values �̃α are a consequence of this approach. The
first axiomatization of the value �̃α (equivalent to that of Corollary 3) was found in
Joosten et al. (1994). It turns out that for any 0 ≤ α ≤ 1 the value �̃α has two other,
very desired properties: fair treatment and monotonicity. To see this, it is enough to
note that the constants {bs}s=0,1,...,n for �̃α in its representation (9) are of the form
bn = 1 and bs = 1 − α for s < n, and next to apply Proposition 3. It is also worth
mentioning that three interesting axiomatizations of the whole class of the egalitarian
Shapley values {�̃α : 0 ≤ α ≤ 1} have been found recently, two in van den Brink
et al. (2013) and one in Casajus and Huettner (2013). As far as the equal split value
�Eq is concerned, its three other axiomatizations (different from that of Corollary 2)
are given in van den Brink (2007).

Now, let us introduce the following modification of the notion of null player in a
game (with a clear interpretation).

Definition 2 Player i is called a per-capita null player in a game v ∈ �N if for any
S ⊂ N \ i , v(S∪i)

s+1 − v(S)
s = 0. (Here, by definition, 0

0 = 0.)

One can think that a per-capita null player is not desirable for any coalition, because
after joining him the average per player of any coalition’s worth does not change, and
thereby no coalition may want to join him. Consequently, such a player should get
nothing.On the other hand,whenwe assume the “highest” degree of solidarity between
the players, then a per-capita null player should be awarded v(N )

n . The third solution

is to award such a player with something between 0 and v(N )
n . This leads us to the

following three axioms.

Per- capita null player: If player i is a per-capita null player in a game
v ∈ �N , then �i (v) = 0.
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Per- capita null player average payoff: If player i is a per-capita null
player in a game v ∈ �N , then �i (v) = v(N )

n .

Per- capita null player α- average payoff: Let 0 ≤ α ≤ 1. If player i is
a per-capita null player in a game v ∈ �N , then �i (v) = α

v(N )
n .

Now taking the sequence β̄ with βk = 1
k for k ≥ 1, and α = 0 or α = 1 or

0 ≤ α ≤ 1 in Theorem 1, we easily get the next three new axiomatizations.

Corollary 4 A value � on �N is an ESL-value satisfying the per-capita null player
property if and only if � is the per-capita value �Pc = {�Pc

i }i∈N of the form (7).

Corollary 5 A value � on �N is an ESL-value satisfying the per-capita null player
average payoff property if and only if � is the equal split value �Eq .

By analogy to the α-egalitarian Shapley value, let us call the value � = α�Eq +
(1 − α)�Pc the α-egalitarian per-capita value.

Corollary 6 Let 0 ≤ α ≤ 1. A value � on �N is an ESL-value satisfying the per-
capita null player α-average payoff property if and only if � is the α-egalitarian
per-capita value �α of the form �α = α�Eq + (1 − α)�Pc.

Remark 5 For 0 ≤ α ≤ 1, the α-egalitarian per-capita value �α satisfies the fair
treatment property, but rather surprisingly it satisfies monotonicity only for n−1

n ≤
α ≤ 1, as implied by Proposition 3. It suffices to note that bs = (1 − α) · n

s for
s = 1, . . . , n − 1 in the representation (9) of �α . As a consequence, the per-capita
value �Pc also satisfies the fair treatment property, but not monotonicity.

A further modification of the null player notion to that of δ-reducing player, and the
corresponding property were introduced and discussed in van den Brink and Funaki
(2010).

Definition 3 Let 0 ≤ δ ≤ 1. Player i is called a δ-reducing player in a game v ∈ �N

if for any S ⊂ N \ i , v(S ∪ i) = δ · v(S).

δ- null player: If player i is a δ-reducing player in a game v ∈ �N , then
�i (v) = 0.

Now taking the sequence β̄ with βk = δ−k for k ≥ 1, and α = 0 in Theorem 1, we
immediately get the result obtained in van den Brink and Funaki (2010).

Corollary 7 Let 0 ≤ δ ≤ 1. A value � on �N is an ESL-value satisfying the δ-
reducing player property if and only if � is the δ-discounted Shapley value �Shδ

= {�Shδ

i }i∈N of the form (6).

The last corollary gives a theoretical characterization of the solidarity value. We
will use it in the discussion of its structure in Remark 6 below. To formulate it we need
to modify (slightly) the definition of per-capita null player in a game and the axiom
related to it.

Definition 4 Player i is called an almost per-capita null player in a game v ∈ �N if
for any S ⊂ N \ i , v(S∪i)

s+2 − v(S)
s+1 = 0.
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188 T. Radzik, T. Driessen

Almost per- capita null player average payoff: If player i is an almost
per-capita null player in a game v ∈ �N , then �i (v) = v(N )

n+1 .

Now taking the sequence β̄ with βk = 1
k+1 , and α = n

n+1 in Theorem 1, we get the
new axiomatization of the solidarity value.

Corollary 8 A value � on �N is an ESL-value satisfying the almost per-capita null
player average payoff property if and only if� is the solidarity value�So= {�So

i }i∈N
of the form (5).

Remark 6 The theoretical axiomatization of the solidarity value in the last corollary
does not seem to have a convincing interpretation. However, for large n = |N | it is
very similar to the axiomatization of the equal split value described in Corollary 5.
Considering this fact, one could think that these two values are “close” for large n. In
fact, it turns out that the solidarity value can be seen as “asymptotically equivalent”
to the equal split value. This problem is studied in Radzik (2013). The asymptotic
behavior of some other values, e.g. the discounted Shapley value, remains an open
question.

4 Consistency theory

In the paper of Hart andMas-Colell (1989) the authors introduced some natural notion
of consistency of TU-values and showed that the Shapley value is uniquely determined
by this consistency property and another one, called the standardness for two-person
games. In Driessen and Radzik (2003) we generalized their approach, considering
generalized forms for both of these properties. The main results obtained there are
completed in this section (Proposition 5 and Theorem 2) to “if and only if” forms. They
are formulated in terms of a generalized consistency and generalized standardness.

In the previous section, a value� of cooperative gameswas understood as a function
defined on the set �N of all games v with a fixed grand coalition N = {1, 2, . . . , n}
with n ≥ 2. Now, we extend this definition in a natural way. Namely, throughout the
next two sections, a value � will be a function defined on the class � of all TU-games
(M, v) with finite grand coalitions M ⊂ {1, 2, . . .} of cardinality |M | ≥ 2, such that
�(M, v) = (�i (M, v))i∈M ∈ R|M| for each M . For any finite set M , let �M be the
set of all games of the form (M, v). Now the definition of an ESL-value on � must be
slightly modified.We say that a value� satisfies the efficiency or the linearity axiom if
for every finite set M ⊂ {1, 2, . . .}, its restriction to �M satisfies one of these axioms,
respectively. A value � satisfies the symmetry axiom (or is symmetric) if for all finite
subsets M1 and M2 of the set {1, 2, . . .} with |M1| = |M2|, for all games (M1, v) and

for every mapping π : M1
1−1→ M2, �π i (M2, πv) = �i (M1, v), where i ∈ M1. (Here

πv is defined by πv(π(S)) = v(S)). In such cases we will say that a value � is an
ESL-value on �.

Now we can repeat Proposition 2 in the version for a value � on �.

Proposition 4 A value � on � is an ESL-value if and only if for any finite M ⊂
{1, 2, . . .} there exists a unique collection of real constants {bm,s}s=0,1,...,m with
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bm,m = 1 and bm,0 = 0 such that for every game (M, v) ∈ �M, the i-th compo-
nent of the value payoff vector (�i (M, v))i∈M is of the following form:

�i (M, v) =
∑

S⊂M\i

s!(m − s − 1)!
m! [bm,s+1v(S ∪ i) − bm,sv(S)], i ∈ M. (13)

We begin with two general definitions which are basic for our paper. They come
from Driessen and Radzik (2003). The first one is related to some kind of generalized
standardness for two-person games, and the second one describes some general notion
of consistency which extends the reduced game property introduced by Hart andMas-
Colell (1989).

Definition 5 Let λ ∈ R. We say that a value � is λ-standard for two-person games
if for every two-person game ({i, j}, v) and every player k ∈ {i, j} it holds that

�k(v) = λ v(k) + 1

2
[v(i, j) − λ v(i) − λ v( j)] . (14)

The λ-standardness of a value for two-person games expresses the fact that the value
allocates the surplus [v(i, j) − λ v(i) − λ v( j)] equally to the players i and j after
each player k concedes to get his weighted individual worth λ v(k).

Remark 7 It is not difficult to check that the value� of the form (13) is λ-standard for
two-person games if and only if λ = b2,1. Therefore the solidarity value is 1

2 -standard,
the Shapley value is 1-standard, the per-capita value is 2-standard, and the equal split
value is 0-standard for two-person games. Generally, a value� is λ-standard for some
λ if and only if � is an ESL-value on the set of two-person games. This fact can be
easily concluded from (14). It is worthmentioning that Joosten et al. (1994) introduced
some equivalent definition to λ-standardness of a value for two-person games.

Now we introduce a property generalizing the consistency property introduced by
Hart and Mas-Colell (1989). It comes from Driessen and Radzik (2003) and is basic
for the rest of our paper.

Definition 6 Let D = {(Ak,s, Bk,s)}k=2,3,...
s=1,...,k be a collection of pairs of real numbers.

Given a game (M, v) with |M | = m ≥ 3 and a player i ∈ M , the corresponding
reduced game (M \ i, v�,i

M ) associated with � and D is defined to be as follows: for
all nonempty sets S ⊂ M \ i

v
�,i
M (S) = Am−1,s [v(S ∪ i) − �i (S ∪ i, v)] + Bm−1,sv(S). (15)

We say that a value� possesses theD-reduced game property on � or is consistent on
� with respect to the reduced games v

�,i
M of the form (15) if it satisfies the following

condition: for every game (M, v) ∈ � with m ≥ 3,

� j (M \ i, v�,i
M ) = � j (M, v) f or all i ∈ M and j ∈ M \ i. (16)

123



190 T. Radzik, T. Driessen

(Hart and Mas-Colell (1989) considered the reduced game v
�,i
M with the constants

Ak,s ≡ 1 and Bk,s ≡ 0.)
The reduced games v

�,i
M of the form (15) have a natural interpretation when the

constants Ak,s, Bk,s are nonnegative and satisfy, Ak,s + Bk,s = 1 for all k, s. It is
presented in the first paragraph of Sect. 5.

Now we are ready to formulate three results about consistency properties of values,
two auxiliary ones (Propositions 5 and 6) and Theorem 2 basic for this section. Their
proofs are given in Sect. 6.

We need to introduce additional notation. Let D be the family of all collections
D = {(Ak,s, Bk,s)}k=2,3,...

s=1,...,k of pairs of real constants.
The first result gives necessary and sufficient conditions for a value to be efficient.

It essentially strengthens the result of Lemma 1 in Driessen and Radzik (2003), where
only the sufficient condition was discussed. Notice that λ-standardness of a value �

(considered there) is a stronger assumption than efficiency of� for two-person games,
which follows from Remark 7.

Proposition 5 Let D ∈ D and assume that a value � possesses D-reduced game
property on �. Then � is efficient on � if and only if � is efficient on two-person
games and the constants in collection D satisfy:

Ak,k = 1 and Bk,k = 0 f or k = 2, 3, . . . . (17)

The second result discusses the properties and a possible uniqueness of a consistent
value. It essentially strengthens and remarkably simplifies the results of Theorems 1
and 2 in Driessen and Radzik (2003), showing that conditions (i) and (ii) are not
necessary to prove the ESL property for a value � in Theorem 1, and that only
conditions (i) and (iii) are sufficient to prove the uniqueness of � in Theorem 2 there.

Proposition 6 Let (λ,D) ∈ R× D with D fulfilling (17), and assume that a value �

is λ-standard for two-person games and possesses D-reduced game property on �.
Then the value � is unique. Moreover it is an ESL-value on �.

In view of Propositions 5 and 6, one could ask when an ESL-value � possesses
D-reduced game property for some D. (Note that in view of Remark 7, it always is
λ-standard for two-person games for some λ.) The answer to this question is given in
Theorem 2 which substantially strengthens Theorem 4 in Driessen and Radzik (2003).

Theorem 2 Let (λ,D) ∈ R× D and let � be an efficient value on �. Then the value
� is λ-standard for two-person games and possesses D-reduced game property on
� if and only � is the unique ESL-value on � such that the constants {bm,s}m=2,3,...

s=1,...,m
in its representation (13), the constant λ and the constants Ak,s, Bk,s in collection D
satisfy the equalities (17) and the system of equations:

⎧
⎨

⎩

b2,1 = λ

bm,s Am,s = xm,s

bm,s Bm,s = bm+1,s − xm,s−1 m = 2, 3, . . . s = 1, . . . ,m − 1,
(18)
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where {xm,s}m=2,3,...
s=0,1,...,m is the set of real numbers uniquely determined by the system

{
xm,m = m + 1 for m ≥ 2

xm,s = (s + 1)
∑m

l=s+1
bl+1,s+1
l(l+1) xm,l for m ≥ 2 and 0 ≤ s ≤ m − 1.

(19)

Corollary 9 Let � be an ESL-value on � with all the constants {bm,s}m=1,2,...
s=0,1,...,m in its

representation (13) different from zero. Then

(a) there is a unique pair (λ,D) ∈ R × D with D fulfilling (17) such that � is
λ-standard for two-person games and possesses D-reduced game property on �;

(b) the pair (λ,D) is the unique solution of the system (18), (19).

Proof First note that for everym ≥ 2 the systemof equations (19) allows to calculate in
turn the constants: xm,m , xm,m−1, . . . , xm,0. Hence, the constantλ and all the constants
Am,s, Bm,s are uniquely determined by the system of equations (18), because bm,s �= 0
for all m and s. Consequently, by (⇐) of Theorem 2, the proof is completed. ��
Remark 8 If some of the constants bm,s in representation (13) of an ESL-value � on
� happen to be zero, the system of equations (18), (19) may fail. To see this, it suffices
to consider the case of � with bm,1 = bm,2 = . . . = bm,m−2 = 0 and bm,m−1 �= 0
for all m ≥ 2. Namely, by the second equality in system (18), xm,m−2 = 0. But
then (19) implies that xm,m−2 = bm,m−1· bm+1,m

m �= 0, a contradiction. Therefore (by
Theorem2) such value� is not consistentwith respect to any reduced game of the form
(15). On the other hand, it may also happen that every collection D of the constants
Ak,s, Bk,s is a solution of the system (18), (19). Namely, considering � = �Eq , we
have bm,1 = bm,2 = . . . = bm,m−1 = 0 for all m ≥ 2 in its representation (13), and
it is easy to verify that, in fact, arbitrary constants Ak,s, Bk,s satisfy the system (18)
then.

Remark 9 It is worth mentioning that the formulas for all the constants Ak,s, Bk,s of
collectionD can be obtained explicitly from the system (18), (19) when the parameters
bk,s of � are of the form bk,s = λk βs �= 0 for all k, s (see Corollary 1 in Driessen
and Radzik 2003). However, in general, they have a very complex form without any
natural interpretation. The problem can be highly simplified when we restrict our
considerations to the natural class consisting of ESL-values� on� with the additional
property that the constants bk,s in their representation (13) are independent of k for all
s < k. One can easily see (considering (1), (2) and (5)) that the Shapley value, the equal
split value and the solidarity value have such a property. It turns out that Theorem 2
can be used to show (in the next section) that there are very simple necessary and
sufficient conditions for a value in this class to be “probabilistically consistent”, that
is to satisfy Ak,s + Bk,s = 1 for all k, s.

5 Probabilistically consistent ESL-values

In this sectionwewidely discuss (in two theorems and several corollaries and remarks)
values for TU-games possessing D-reduced game property with some collections of
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nonnegative real numbers in D satisfying the following additional condition: Ak,s +
Bk,s = 1 for all k, s. In this case, the interpretation for the above consistency property
seems to be very natural: Let � be a fixed value on a game (M, v) and suppose that
one of the players, say player i , is removed. Further suppose that for every coalition
S ⊂ M \ i there is still a chance (with a probability equal to Am−1,s) that i will
join that coalition S or not (with a probability equal to Bm−1,s). Since a new game
(M \ i, v) arises, we can ask, how to estimate the worth of a coalition S in this new
reduced game. In case when player i does not join the coalition S, its worth is the
same as before, that is v(S). However, when player i joins the coalition S, the worth
of the coalition S after removing that player could be in a natural way estimated as the
difference v(S ∪ i) − �i (S ∪ i, v). Thus the worth of the coalition S in the reduced
game with the player set equal to M \ i is simply interpreted as the expected worth
given in the definition above. Now the consistency property requires that any player
j different from i should get the same in both games with respect to the considered
value.

In viewof the above comment,we introduce the following definition of probabilistic
consistency.

Definition 7 A value � is probabilistically consistent on � if there is a collection of
pairs of nonnegative real numbers D = {(Ak,s, Bk,s)}k=2,3,...

s=1,...,k satisfying

Ak,s + Bk,s = 1 f or all 2 ≤ s ≤ k, k ≥ 2 , (20)

such that � possesses the D-reduced game property on � with respect to the reduced
games v

�,i
M of the form (15).

Nowwe are ready to formulate our next two results (Theorems 3 and 4 - their proofs
are shifted to Sect. 6) determining a set of probabilistically consistent values in some
subfamily of the family of the ESL-values.

The first theorem characterizes the family of δ-discounted Shapley value �Shδ
on

� in terms of the classical consistency property introduced in Hart and Mas-Colell
(1989); that is, with respect to the reduced games v

�,i
M of the form

v
�,i
M (S) = v(S ∪ i) − �i (S ∪ i, v) for S ⊂ M \ i . (21)

Note that these reduced games are of the form (15) with Am−1,s ≡ 1 and Bm−1,s ≡
0, so any consistent value with respect to such v

�,i
M is also probabilistically consistent.

It is also worth mentioning here that a characterization equivalent to the one pre-
sented in (a) of Theorem 3, was first given (without proof) in Joosten et al. (1994),
and next in Joosten (1996, Proposition 5.32) with the proof following the Hart and
Mas-Collel approach. However, it turns out that this characterization is also a simple
consequence of Theorem 2. Therefore, in spite of the fact that the part (⇐) of the
statement (a) of Theorem 3 was shown in Example 1 of Driessen and Radzik (2003),
for the sake of completeness we write it in the following form:
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Theorem 3 Let δ ∈ R. Then

(a) an ESL-value � on � is δ-standard for two-person games, and consistent with
respect to the reduced games v

�,i
M of the form (21) if and only if � is the δ-

discounted Shapley value �Shδ
of the form (6).

(b) the value�Shδ
satisfies the fair treatment and monotonicity properties if and only

if 0 ≤ δ ≤ 1.

The second theorem characterizes some family of values � on � having the prob-
abilistic consistency property with respect to generalized reduced games v

�,i
M of the

form (15) with arbitrary constants Am−1,s and Bm−1,s satisfying (20). In view of the
comment made in Remark 9, we restrict our consideration to the family of ESL-values
with the constants bm,s (in their representation (13)) independent of m for all s < m.
So putting bm,s = βs in (13), we get the family of ESL-values � on � described by
sequences β̄ = (βs)s≥0 in the following way: For any game (M, v) ∈ � and i ∈ M ,
the value payoff vector �(M, v) = (�i (M, v))i∈M in this family is of the following
form:

�i (M, v) = v(M)

m
(1 − βm) +

∑

S⊂M\i

s!(m − s − 1)!
m! [βs+1v(S ∪ i) − βsv(S)] .

(22)
[Note that after replacing bm,s by βs for s < m in the formula (13), it becomes
equivalent to (22).]

Now we are ready to formulate our next theorem.

Theorem 4 Let λ ∈ R and assume that a value � = (�i (v))i∈M on � is of the form
(22) for some real sequence {βn}n≥0 with β0 = 0. Then

(i) � is a λ-standard for two-person games and probabilistically consistent value if
and only if

β1 = λ, 0 ≤ λ ≤ 1 (23)

and

βs = βλ
s := λ

(1 − λ)s + λ
f or s = 1, 2, . . . . (24)

(ii) If the equalities (24) hold for some 0 ≤ λ ≤ 1, then the value� is probabilistically
consistent with respect to the reduced games v

�,i
M,λ

= v
�,i
M of the form (15) with

the constants Ak,k = 1 and Bk,k = 0 for k = 2, 3, . . .,

Am−1,s = Aλ
m−1,s := (1 − λ)s + λ

(1 − λ)(m − 1) + λ
and

Bm−1,s = Bλ
m−1,s := 1 − Aλ

m−1,s (25)

for m ≥ 2 and 1 ≤ s ≤ m − 1 . If additionally λ �= 0, v�,i
M,λ

are the only reduced
games with respect to which the value � given by (22)–(24) is probabilistically
consistent.
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Now we give several corollaries where, among other things, the Shapley value, the
per-capita value, the solidarity value and the equal split value are discussed in terms
of probabilistic consistency. Before that some notation will be introduced.

For a real λ and a sequence βλ
1 , βλ

2 , . . . determined by (24), let �λ be the value
defined on � such that for every game (M, v) ∈ � the i-th component of the value
vector (�λ

i (T, v))i∈T is of the following form:

�λ
i (T, v) = v(M)

m
[1 − βλ

m] +
∑

S⊂T \i

s!(t − s − 1)!
t ! [βλ

s+1v(S ∪ i) − βλ
s v(S)] .

(26)
Further, let us define the following class of values on �:

F∗ := {�λ : 0 ≤ λ ≤ 1} . (27)

The first two corollaries are immediate consequences of Theorem 4.

Corollary 10 A value � of the form (22) is probabilistically consistent if and only if
� ∈ F∗. Moreover, every value in F∗ satisfies the fair treatment and monotonicity
properties.

Corollary 11 For any 0 ≤ λ ≤ 1 the value �λ, determined by (26) and (24), is
the only value on � which is λ-standard for two person games and probabilistically
consistent with respect to the reduced games v

�,i
M,λ

of the form

v
�,i
M,λ

(S) = (1−λ)s+λ

(1−λ)(m−1)+λ

[
v(S ∪ i) − �λ

i (S ∪ i, v)
] + (1−λ)(m−1−s)

(1−λ)(m−1) + λ
v(S)

(28)

for S ⊂ M \ i . If 0 < λ ≤ 1, v�,i
M,λ

are the only reduced games with respect to which

the value �λ is probabilistically consistent.

The next corollary shows that the Shapley value, the equal split value and the
solidarity value belong to the class F∗.
Corollary 12 (i) �Sh = �1; (ii) �Eq = �0; (iii) �So = �1/2.

Proof It is enough to verify (with the help of (24)) that the formula (26), with λ = 1,
λ = 0 and λ = 1

2 , coincides with the formulas (2), (1) and (5), respectively. ��
Remark 10 In view of (27) and Corollaries 10 and 12, it is rather surprising that such
classical values as the Shapley value and the equal split value are two endpoints of the
class F∗. However, it is much more surprising that the solidarity value is the central
element of F∗ and “lies” exactly in the middle between the Shapley value and the
equal split value. On the other hand, for 0 < α < 1 the α-egalitarian Shapley value
�̃α = α�Eq+(1−α)�Sh does not belong toF∗, and thereby it is not probabilistically
consistent. To see this, note that �̃α is of the form (22) with βs = 1−α for s > 0, but
then the system of equations (23), (24) has no solutions in λ (because 0 < 1−α < 1).
In the same way we can check that for 0 ≤ α < 1, the α-egalitarian per-capita value
�α = α�Eq + (1 − α)�Pc is not probabilistically consistent either.
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The next corollary gives a characterization of the equal split value in terms of
λ-standardness and probabilistic consistency.

Corollary 13 The equal split value �Eq is the only value which is 0-standard for
two-person games and probabilistically consistent with respect to the reduced games
v

�,i
M = v

Eq,i
M of the form

v
Eq,i
M (S) = v(S ∪ i) − �

Eq
i (S ∪ i, v) for S ⊂ M \ i . (29)

Proof It is an immediate consequence of Theorem 3 with δ = 0. ��
Remark 11 Obviously, the equal split value�Eq is 0-standard for two-person games.
It is interesting that for this value Corollary 11 gives also (after putting λ = 0 in (28))
other reduced games v

�,i
M = v

Eq,i
M,0 of the form

v
Eq,i
M,0 (S) = s

m − 1

[
v(S ∪ i) − �

Eq
i (S ∪ i, v)

]
+ m − s − 1

m − 1
v(S).

So reduced game for �Eq is not unique. Nevertheless this does not contradict Theo-
rem 4 because λ = 0 for �Eq . Moreover, it is shown in Remark 8 that for the value
�Eq , arbitrary constants Am,s and Bm,s satisfy the system of equations (18). There-
fore, by Theorem 2, the equal split value is probabilistically consistent with respect
to any reduced games of the form (15) with arbitrary constants 0 ≤ Am,s ≤ 1 and
Bm,s = 1 − Am,s satisfying (17).

The next two corollaries give characterizations of the Shapley value and the sol-
idarity value. These two results were obtained in Driessen and Radzik (2003) (see
Examples 1 and 2 there) without the “uniqueness” in their formulations.

Corollary 14 The Shapley value �Sh is the only value which is 1-standard for two-
person games, and probabilistically consistent with respect to the reduced games v

Sh,i
M

of the form

v
Sh,i
M (S) = v(S ∪ i) − �Sh

i (S ∪ i, v) for S ⊂ M \ i . (30)

The games v
Sh,i
M are the only reduced games with respect to which the value �Sh

is probabilistically consistent.

Proof One can easily check that the reduced games v
�,i
M,λ

of the form (28) with λ = 1
coincide with the ones of the form (30). Hence the statement (i) of Corollary 12 and
Corollary 11 immediately complete the proof. ��
Remark 12 The result of Corollary 14 in a slightly weaker form was earlier proved in
Hart and Mas-Colell (1989). Namely, the uniqueness of the Shapley value was shown
there in the class of values which are relatively invariant under strategic equivalence
and have the equal treatment property instead of 1-standardness. Their result is a simple
consequence of a very nice theory of potential for cooperative games, constructed in
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that paper. It is also worth mentioning here that two other extensions of reduced games
(30) in terms of consistency were discussed in the literature. Namely Joosten et al.
(1994) considered some α-reduced games, while Derks and Peters (1997) applied the
consistency property to TU-games with restricted coalitions.

The next corollary strengthens the results presented in Example 2 in Driessen and
Radzik (2003).

Corollary 15 The solidarity value �So is the only value which is 1
2 -standard for

two-person games and probabilistically consistent with respect to the reduced games
v

�,i
M = v

So,i
M of the form

v
So,i
M (S) = s + 1

m

[
v(S ∪ i) − �So

i (S ∪ i, v)
]

+ m − s − 1

m
v(S) for S ⊂ M \ i .

(31)
The games v

So,i
M are the only reduced games with respect to which the value �So

is probabilistically consistent.

Proof It is easy to verify that the reduced games v
�,i
M,λ

of the form (28) with λ = 1
2

coincide with the ones of the form (31). Hence the statement (ii) of Corollary 12 and
Corollary 11 immediately complete the proof. ��
Remark 13 It is worth mentioning that Sobolev (1973) considered a slightly different
consistency property, and showed that the Shapley value is the only one which is 1-
standard for two person games and consistent with respect to the reduced games of
the form

v
�,i
M (S) = s

m − 1

[
v(S ∪ i) − �Sh

i (M, v)
]

+ m − s − 1

m − 1
v(S),

surprisingly similar to the reduced games v
So,i
M of the form (31), related to the solidarity

value, and to the reduced game v
Eq,i
M,0 (from Remark 11), implied by Theorem (4) for

the equal split value. Sobolev’s result was recently generalized by van den Brink
et al. (2013) who showed that for any 0 ≤ α ≤ 1, the α-egalitarian Shapley value
�̃α = α�Eq + (1 − α)�Sh is the unique value which is α-standard for two person
games and consistent with respect to the same reduced games v

�,i
M . It is also worth

mentioning that Joosten (1996) showed that for 0 ≤ δ ≤ 1, δ-standardness combined
with Hart and Mas-Colell consistency (with respect to reduced games of the form
(30)) characterize the δ-discounted Shapley value �Shδ

of the form (6).

6 Proofs of the theorems

In this section we give the proofs of Theorems 1–4 formulated in Sects. 3–5.

Proof of Theorem 1 (⇐) Let N = {1, 2, · · · , n}with n ≥ 2, and let� = (�i (v))i∈N
be a value on �N of the form (12). We can easily check that � coincides with the
value of the form (9) with bn = 1 and with bs = 1−α

βn
βs for 1 ≤ s < n. Therefore, by
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Proposition 2, � is an ESL-value on �N . The fact that � also satisfies the (β̄, α)-null
player axiom follows immediately from (12).

(⇒) Assume now that � is an ESL-value on �N satisfying the (β̄, α)-null
player property. By Proposition 2, there exists a unique collection of real constants
{bs}s=0,1,...,n with bn = 1 and b0 = 0 such that for all i ∈ N , �i (v) is of the form (9).
But then �i (v) can be easily rewritten in the form

�i (v) = v(N )

n
(1 − b′

n) +
∑

S⊂N\i

s!(n − s − 1)!
n! [b′

s+1v(S ∪ i) − b′
sv(S)] (32)

for all i ∈ N and v ∈ �N , where b′
s = bs for s = 0, 1, . . . , n − 1 and b′

n is arbitralily
chosen. Therefore we can take b′

n = 1 + α,.
Let us define another value �′ = (�′

i (v))i∈N on �N as in (12), that is by

�′
i (v) = α

v(N )

n
+ 1 − α

βn

∑

S⊂N\i

s!(n − s − 1)!
n! [βs+1v(S ∪ i) − βsv(S)] (33)

for all i ∈ N and v ∈ �N . It is clear that� = �′ if b′
s = 1−α

βn
βs for s = 1, 2, . . . , n−1.

This is thus what we show in the remainder of the proof.
Let us denote

αn = 0 , α0 = 0 and αs = b′
s − 1 − α

βn
βs for s = 1, . . . , n − 1. (34)

Now consider the vector function E(v) = {Ei (v)}i∈N on �N defined by

Ei (v) =
∑

S⊂N\i

s!(n − s − 1)!
n! [αs+1v(S ∪ i) − αsv(S)], i ∈ N . (35)

One can easily check that E(v) = �i (v) − �′
i (v) for v ∈ �N . Hence, we need

only to show that
αs = 0 for s = 1, . . . , n − 1. (36)

By assumption, � is an ESL-value on �N and has the (β̄, α)-null player property.
By the part (⇐), the value �′ has the same properties. Consequently, for every game
v ∈ �N

Ei (v) = 0 if i is a β̄ -null player in v. (37)

Let us consider the class of games V = {vK : ∅ �= K ⊂ N }, defined on N by the
following: vK (S) = 1

βs
if K ⊂ S ⊂ N and vK (S) = 0, otherwise.

Let Ks = N \ {1, 2, . . . , s} for s = 1, . . . , n − 1. One can easily state that player
1 is a β̄-null player in all the games vK1 , vK2 , , . . . , vKn−1 . Therefore by (37)

E1(vKs ) = 0 for s = 1, . . . , n − 1. (38)

123



198 T. Radzik, T. Driessen

But (35) leads to the equality

E1(vK1) = 1

n

[
αn

βn
− αn−1

βn−1

]

, (39)

whence, by (34) and (38) with s = 1, we get

αn−1 = 0 . (40)

Further, (35) implies the following:

E1(vK2) = 1

n

[
αn

βn
− αn−1

βn−1

]

+ 2

n(n − 1)

[
αn−1

βn−1
− αn−2

βn−2

]

. (41)

But this, in view of (34), (40) and (38) with s = 2, immediately gives

αn−2 = 0. (42)

We can continue these calculations successively for E1(vK3), . . . , E1(vKn−1) to get

αn−s = 0 for s = 3, . . . , n − 1 . (43)

Therefore we have proved (36) and thereby the proof of the theorem is completed.
��

Proof of Proposition 5 (⇒) Let� be an efficient value satisfying the assumption. We
need only to show that (17) holds.

Let us fix any finite set M with |M | = m ≥ 3 and a game v ∈ �M . Choose
i ∈ M and consider the reduced game v

�,i
M on the set M \ i of the form (15). By the

assumption, � is efficient on the class of games �M\i . Therefore, by (15) and (16),

∑

j∈M\i
� j (M, v) =

∑

j∈M\i
� j (M \ i, v�,i

M ) = v
�,i
M (M \ i)

= Am−1,m−1 [v(M) − �i (M, v)] + Bm−1,m−1v(M \ i) .

for i ∈ M . Hence, using the efficiency of �, we get the following sequence of equal-
ities:

(m − 1)v(M) = mv(M) −
∑

i∈M
�i (M, v) =

∑

i∈M
[v(M) − �i (M, v)]

=
∑

i∈M

⎡

⎣
∑

j∈M
� j (M, v) − �i (M, v)

⎤

⎦ =
∑

i∈M

∑

j∈M\i
� j (M, v)

=
∑

i∈M

[
Am−1,m−1 [v(M) − �i (M, v)] + Bm−1,m−1v(M \ i)]
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= Am−1,m−1

[

mv(M) −
∑

i∈M
�i (M, v)

]

+ Bm−1,m−1

∑

i∈M
v(M \ i)

= Am−1,m−1(m − 1)v(M) + Bm−1,m−1

∑

i∈M
v(M \ i) .

Therefore

(m − 1)(1 − Am−1,m−1)v(M) = Bm−1,m−1

∑

i∈M
v(M \ i).

Hence, since m ≥ 3 and the game (M, v) is arbitrarily fixed, we easily deduce that
both sides of the last equality must be equal to 0. Consequently, (17) holds because of
the arbitrarity of m.

(⇐) To prove this part we can repeat the proof of Lemma 1 in Driessen and Radzik
(2003), with the exception that the λ-standardness for � should be changed by effi-
ciency of � for two person games. This ends the proof of Proposition 5. ��

Proof of Proposition 6 Let � be a value satisfying the assumption. It is easily seen
from (14) that � is efficient for two person games. Hence, in view of the part (⇐) of
Proposition 5, � is efficient on �, Therefore, to prove the theorem it suffices only to
show for every finite M ⊂ {1, 2, . . .} with |M | ≥ 2, that � is uniquely determined,
linear and symmetric on �M . We will show it by induction with respect to the number
m = |M |, m = 2, 3, . . ..

When m = 2, � is uniquely defined on every �M with |M | = 2, because of the
λ-standardness of � on the set of all two-person games, and it is obviously linear and
symmetric on�M (see (14) in Definition 5). Now, by the induction hypothesis, assume
that for some m ≥ 3, the value � is uniquely determined, linear and symmetric on
every set �T with |T | < m.

By Proposition 1, there is a unique collection of constants {λt
s |t = 2, 3, . . . ,m −

1, s = 1, 2, . . . , t − 1} such that for any |T | < m and v ∈ �T

�i (T, v) = v(T )

t
+

∑

S�T
S�i

λt
s v

s
v(S)−

∑

S�T
∅�=S ��i

λt
s v

t − s
v(S), i ∈ T . (44)

Now, let M be any finite set with |M | = m. We will show that our inductive
assumption implies uniqueness, as well as linearity and symmetry of � on �M .

Let us arbitrarily fix a game v ∈ �M , and denote

� j (M, v) = x j , j ∈ M. (45)

Choose i ∈ M and consider the reduced game v
�,i
M on the set M \ i of the form

(15). By the inductive assumption, the value � is uniquely determined on the class of
games �M\i , and is an ESL-value on this set. Hence, by (44),
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� j (M \ i, v�,i
M ) = 1

m − 1
v

�,i
M (M \ i) +

∑

S�M\i
S� j

λm−1
s

s
v

�,i
M (S)

−
∑

S�M\i
S �� j

λm−1
s

m − 1 − s
v

�,i
M (S). (46)

By the efficiency of �, we have

∑

i∈N
�i (M, v) = v(M). (47)

Further, by (16), (17) and (15), we have:

� j (M \ i, v�,i
M ) = � j (M, v) for j ∈ M \ i, (48)

v
�,i
M (M \ i) = v(M) − �i (M, v) (49)

and

v
�,i
M (S) = Am−1,s [v(S ∪ i) − �i (S ∪ i, v)] + Bm−1,sv(S) for S � M \ i . (50)

Besides (44) implies that

�i (S ∪ i, v) = 1

s + 1
v(S ∪ i) +

∑

U�S∪i
U�i

λs+1
u

u
v(U )−

∑

U�S∪i
U ��i

λs+1
u

s + 1 − u
v(U ) (51)

for all S � M \ i .
Now, putting (51) in (50), and next, putting (48), (49) and (50) in (46), we get

� j (M, v) + 1

m − 1
�i (M, v) = ai j (v) (52)

for i ∈ M and j ∈ M \ i , where ai j (v) is the uniquely determined linear function of
v of the form

ai j (v) =
∑

S⊂M
S�i, S� j

βsv(S) +
∑

S⊂M
S�i, S �� j

γsv(S) +
∑

S⊂M
S ��i, S� j

δsv(S) +
∑

S⊂M
S ��i, S �� j

τsv(S) (53)

with some constants βs , γs , δs and τs , dependent only on the cardinality s = |S| of
sets S ⊂ M .

Hence, after using (45), equalities (52) lead to the system of m(m − 1) linear
equations with m variables (xi )i∈M of the following form:

1

m − 1
xi + x j = ai j (v) i ∈ M, j ∈ M \ i . (54)
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Without loss of generality we can assume that M = {1, 2, . . . ,m}. Consider now
the following (m × m)-subsystem of (54) consisting of the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
m−1 x1 + x2 = a12(v)
1

m−1 x1 + x3 = a13(v)

................. ......
1

m−1 x1 + xm = a1m(v)
1

m−1 x2 + x1 = a21(v)

(55)

Let A be its coefficient matrix, and let Ak be the matrix arising from A by changing
its k-th column with column [a12(v), a13(v), . . . , a1m(v), a21(v)]T , k = 1, 2, . . . ,m.
It is not difficult to check that det A = (−1)m m(m−2)

(m−1)2
�= 0 because m ≥ 3. On the

other hand, we easily see that each det Ak is a linear function of v because all ai j (v) are
linear functions of v. Hence, using (45) and Cramer’s theorem applied to the system
(55), we conclude that all �i (M, v), i ∈ M , are uniquely determined and are linear
functions of v. Consequently,� is a linear function on the set of games�M . Therefore,
to end the proof we only need to show that � is symmetric on �M .

By (52), for arbitrary i, j ∈ M, i �= j , we have 1
m−1�i (M, v)+� j (M, v) = ai j (v)

and 1
m−1� j (M, v) + �i (M, v) = a ji (v). Hence, we easily get the equation

�i (M, v) = (m − 1)ai j (v) − (m − 1)2a ji (v)

m(2 − m)
for all i, j ∈ M, i �= j .

Therefore, for any permutation π of M ,

�π i (M, πv) = (m − 1)aπ(i),π( j)(πv) − (m − 1)2aπ( j),π(i)(πv)

m(2 − m)
= �i (M, v),

because of the equality, aπ(i),π( j)(πv) = ai j (v), easily seen from (53). Thus, by the
induction principle, value � is uniquely determined and satisfies efficiency, linearity
and symmetry, completing the proof. ��
Proof of Theorem 2 (⇒) Then, by Proposition 5, the equalities (17) hold. Conse-
quently, Proposition 6 implies that� is an ESL-value on �. Now the fact that (18) and
(19) hold is implied by the part (⇒) of Theorem 4 in Driessen and Radzik (2003).
The uniqueness of � follows from Proposition 6.

(⇐) Assume now that � is an ESL-value, and (17), (18) and (19) hold. Hence,
by Proposition 4, � is of the form (13). Then we can again apply Theorem 4 in
Driessen and Radzik (2003) to get that the value � possesses D-reduced property on
�. Therefore it is left to show that � is λ standard on the set of two person games.

One can easily check that any value of the form (13) is b2,1-standard for two person
games (see also Remark 7 in Sect. 3), but b2,1 = λ according to (18). ��
Proof of Theorem 3 (⇒) Assume that an ESL-value � of the form (13) is δ-standard
for two person games, and consistent with respect to the reduced games v

�,i
M of the
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form (21). Hence, � is consistent with respect to the reduced games of the form (15)
with all the constants Ak,s = 1 and Bk,s = 0 for 1 ≤ s ≤ k, k ≥ 2. Therefore
Theorem 2 implies that the constants bm,s in the representation formula (13) satisfy
(18) and (19) with λ = δ and all the constants Ak,s = 1 and Bk,s = 0. However,
it is straightforward to check that it uniquely determines the solution of the form
bm,s = δm−s for all 1 ≤ s ≤ k, k ≥ 2. But then (13) coincides with (6), and thereby
� is the δ-discounted Shapley value �Shδ

.
(⇐) The δ-discounted Shapley value �Shδ

is of the form (13) with bm,s = δm−s

for all 1 ≤ s ≤ k, k ≥ 2, as it was stated before. Therefore b2,1 = δ and one can
verify that this value is δ-standard for two person games. Next note that (18) and (19)
with λ = δ are satisfied by Ak,s = 1 and Bk,s = 0 for 1 ≤ s ≤ k, k ≥ 2. This implies
that the δ-discounted Shapley value is consistent with respect to the reduced games
v

�,i
M of the form (21).

The fact that under 0 ≤ δ ≤ 1, the value �Shδ
satisfies the fair treatment and

monotonicity properties was justified in Remark 3. ��
Proof of Theorem 4 First we will prove the part (⇒) of the statement (i).

By the assumption, � is a value of the form (22) with the λ-standardness property
for two-person games. But (22) with M = {i, j} is equivalent to (14) for β1 = λ.

Now assume that a value � on � of the form (22) with β1 = λ, is probabilis-
tically consistent. Therefore � is an ESL-value (because of (22)) and possesses
the D-reduced game property for some collection of pairs of nonnegative constants
D = {(Ak,s, Bk,s)}k=2,3,...

s=1,...,k satisfying (20). The constants in D must also satisfy (17)
which is a consequence of Proposition 5. Besides, by Theorem 2, the constants Ak,s

and Bk,s satisfy the system of equations (18) - (19) with bk,s = βs for all s.
One can easily verify that (19) implies the following:

xk,s = βs+1

k∏

i=s+2

[
i − 1 + βi

i

]

for 1 ≤ s < k . (56)

(Here and in the sequel
∏k

i=k+1(·) ≡ 1.) Hence, by (18), the constants Ak,s and Bk,s

for 1 ≤ s < k satisfy the system of equations:

⎧
⎪⎨

⎪⎩

β1 = λ

βs Ak,s = βs+1
∏k

i=s+2[ i−1+βi
i ]

0 = βs

[
1 − Bk,s − ∏k

i=s+1[ i−1+βi
i

]
.

(57)

But this system implies that

βs As+1,s = βs+1 for s = 1, 2, . . . (58)

and

βs

[

1 − Bs+1,s − s + βs+1

s + 1

]

= 0 for s = 1, 2, . . . . (59)
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Now, we consider two cases.
Case 1: λ = 0.
Then β1 = λ = 0. Hence, by (58), βs = 0 for all s ≥ 1, and thereby (24) holds.

Case 2: λ �= 0.
Then β1 �= 0, and suppose that for some u ≥ 1, βu �= 0 and βu+1 = 0. Then, by (58)
and (59), Au+1,u = 0 and Bu+1,u = 1

u+1 , contradicting (20). Therefore, for all s ≥ 1
βs �= 0, and consequently, the only solution of the system (57) is

Ak,s = βs+1

βs

k∏

i=s+2

[ i − 1 + βi

i
] and Bk,s = 1 −

k∏

i=s+1

[ i − 1 + βi

i
] (60)

for k ≥ 2 and 1 ≤ s < k. Hence, it follows that for 1 ≤ s < k

Bk,s = 1 − (s + βs+1)βs

(s + 1)βs+1
Ak,s and Bk,s+1 = 1 − βs

βs+1
Ak,s . (61)

On the other hand, for all 1 ≤ s ≤ k we also have

Bk,s = 1 − Ak,s , (62)

because � is probabilistically consistent. Therefore, (61) and (62) imply that

Ak,s

[

1 − (s + βs+1)βs

(s + 1)βs+1

]

= 0 for 1 ≤ s < k . (63)

Suppose now that Ak,u = 0 for some 1 ≤ u < k with u chosen maximal. Since
Ak,k = 1 (because of (17)), we have Ak,u+1 �= 0. Therefore, by the second equality
in (61), it follows that Bk,u+1 = 1, contradicting (62) for s = u + 1. Consequently,
Ak,s �= 0 for all 1 ≤ s < k, whence, by (63), we easily get

βs+1 = sβs

(s + 1) − βs
for s = 1, 2, . . . , (64)

together with β1 = λ. One can check that the formula for the sequence described by
(64) is the following:

βs = λ

s(1 − λ) + λ
for s = 1, 2, . . . , (65)

which proves (24) also in the second case (λ �= 0). Now, one can directly verify that
the equalities in (60) with k = m − 1 and βs of the form (65) imply (25). Therefore
the numbers Ak,s and Bk,s are uniquely determined in the considered case λ �= 0.
However this implies that then v

�,i
M,λ

are the only reduced games with respect to which
the value � given by (22)–(24) is probabilistically consistent.
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Further, since the value � is probabilistically consistent, 0 ≤ A2,1 ≤ 1, which, by
(25), is equivalent to 0 ≤ λ ≤ 1. Thus we have proved the part (⇒) of the statement
(i) and the statement (ii) of Theorem 4.

Now, assume that the constants βs are of the form (23) and (24) for some 0 ≤ λ ≤ 1.
Then, by the statement (ii), � is a probabilistically consistent value, which proves the
part (⇐) of the statement (i), completing the proof of Theorem 4. ��
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