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Abstract Wedealwith discountedARAT stochastic games on aBorel state spacewith
finite action spaces and nonatomic transition probabilities. We prove the existence of
pure Nash equilibria in stationary almost Markov strategies that depend only on the
current and previous state of the game. Our proof is based on an existence theorem for
correlated equilibria in stochastic games and some results on the integrals of set-valued
mappings with respect to a probability measure depending on a parameter.

Keywords Nonzero-sum stochastic game · Borel state space · Additive reward ·
Additive nonatomic transition probability ·Pure stationary almostMarkov equilibrium

1 Introduction

An integral analysis of set-valued mappings plays an important role in the study of
various equilibria in nonzero-sum stochastic games with general state spaces; see
Mertens and Parthasarathy (1991, 2003), Nowak and Raghavan (1992), Jaśkiewicz
and Nowak (2005) and Barelli and Duggan (2014). In particular, certain results on
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170 A. Jaśkiewicz, A. S. Nowak

the integrals with respect to a parametrized measure, proved by Artstein (1989)
or Mertens (2003), are significant in showing the existence of Nash equilibria in
general models of games in the class of randomised history dependent or semi-
Markov strategies; see Mertens and Parthasarathy (1991, 2003), Barelli and Dug-
gan (2014). In this paper, we focus on some special class of nonzero-sum stochastic
games with Borel state space, finite action spaces and additive reward and transi-
tion structure, called in the sequel ARAT games. We are interested in Nash equilib-
ria among pure stationary almost Markov strategies that depend, in each period of
the game, on the current and previous state of the game. This class of strategies is
a subclass of stationary semi-Markov strategies considered in Barelli and Duggan
(2014). More precisely, they showed the existence of randomised Nash equilibria in
the class of strategies, where dependence on the current, previous states and the previ-
ous actions is assumed. A stationary Markov Nash equilibrium consists of strategies
that depend only on the current state. For convenience, they will be also called sta-
tionary. This term is common and has been used in a number of papers on stochastic
games.

ARAT games with Borel state and finite action spaces were first studied by Him-
melberg et al. (1976), who showed the existence of stationary Nash equilibria for
p-almost all initial states. Their result was strengthened by Parthasarathy (1982), who
obtained stationary Nash equilibria for all initial states. Pure stationary Markov Nash
equilibria may not exist in ARAT stochastic games; see Example 3.1 (a game with
4 states) in Raghavan et al. (1985) or Example 4 (a game with 2 states) in Nowak
(2006). The existence of pure stationary ε-equilibria in ARAT games was proved by
Nowak (1987) under the assumption that the transition probabilities are nonatomic
and the discounted payoffs are “averaged” with respect to a nonatomic distribution
of the initial state. Markovian ε-equilibria in pure strategies for ARAT games can be
shown to exist by using the backward induction in the finite horizon game; see Rieder
(1979). Thuijsman and Raghavan (1997) (for finite state space) and Küenle (1999)
(for Borel state space and compact metric action spaces) established the existence of
nonstationary history dependent pure Nash equilibria in ARAT games. Their proofs
are based on the well-known idea of threats used frequently in repeated games. Sto-
chastic games with average payoffs, additive transitions and finite state and action
spaces were studied by Flesch et al. (2007), where some results on ε-equilibria were
given in the class of randomised strategies.

In this paper, we study pure strategies in ARAT games, which are special cases
of stationary semi-Markov ones introduced recently by Barelli and Duggan (2014).
Assuming that the action spaces are finite and the transition probabilities are dominated
by a nonatomic probability measure on a Borel state space, we prove the existence of
pure Nash equilibria in stationary almost Markov strategies that depend only on the
current and previous state of the game. Similarly as in Barelli and Duggan (2014),
our proof is a combination of some arguments used by Nowak and Raghavan (1992)
to study correlated equilibria and a measurable selection theorem for parametrized
set-valued integrals due to Mertens (2003). Our main result on pure Nash equilibria in
the class of above-mentioned strategies contributes to the literature on ARAT games.
This result, however, cannot be extended to ARAT stochastic games with transition
probabilities involving atoms. We give an example with two states where pure station-
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Pure equilibria in ARAT stochastic games 171

ary almost Markov Nash equilibria do not exist. This fact shows that our assumption
on nonatomic transitions is indeed essential.

2 The model and main result

We consider a two-person nonzero-sum discounted stochastic game G with additive
rewards and additive transitions (an ARAT game for short) for which:

(i) (S,B) is a nonempty Borel state space with its Borel σ -algebra B.

(ii) A = {1, 2, . . . , n1} and B = {1, 2, . . . , n2} are action spaces for players 1 and
2, respectively.

(iii) A(s) ⊂ A, B(s) ⊂ B are nonempty sets of actions available to player 1 and 2 in
state s ∈ S. Assume that the set-valued mappings s �→ A(s) and s �→ B(s) are
lower measurable. Define

D = {(s, a, b) : s ∈ S, a ∈ A(s), b ∈ B(s)}.

Then D is a Borel subset of S × A × B.

(iv) Let un : S × A �→ R and wn : S × B �→ R be bounded Borel measurable
functions for n = 1, 2. The reward (or payoff) function for player n = 1, 2 is
given by

rn(s, a, b) = un(s, a) + wn(s, b), where (s, a, b) ∈ D.

(v) q : D × B �→ [0, 1] is a transition probability such that

q(·|s, a, b) = q1(·|s, a) + q2(·|s, b) for each (s, a, b) ∈ D

and for some Borel measurable subtransition probabilities q1 and q2. We
assume that there exists a nonatomic probability measure μ on (S,B) such that
q(·|s, a, b) � μ for all (s, a, b) ∈ D.

(vi) β ∈ (0, 1) is a discount factor.

These above components describe a discrete-time dynamic game in which each
period t ∈ N begins with a state st ∈ S, and after observing st , the players simulta-
neously choose their actions at ∈ A(st ), bt ∈ B(st ) and obtain rewards r1(st , at , bt )
and r2(st , at , bt ). A new state st+1, is realised from the distribution q(·|st , at , bt ) and
new period begins with rewards discounted by β. The game is played with past history
ht = (s1, a1, b1, . . . , at−1, bt−1, st ) as common knowledge for both players, where
sk is the state in the k-th period of the game, ak ∈ A(sk) and bk ∈ B(sk) are the actions
taken by the players at period k = 1, . . . , t, t ∈ N. In this paper, we are interested in
Nash equilibria in pure strategies. Therefore, we do not define randomised strategies.
A pure strategy for player 1 (2) is a sequence π = (πt ) (σ = (σt )) of Borel mea-
surable mappings, where each πt (σt ) associates with each given history ht an action
at ∈ A(st ) (bt ∈ B(st )). Let F1 (F2) be the set of all Borel measurable functions
f : S × S �→ A (g : S × S �→ B) such that f (s, s′) ∈ A(s′) (g(s, s′) ∈ B(s′)) for
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each s, s′ ∈ S. A pure stationary almost Markov strategy π for player 1 is such that
for some f ∈ F1 we have π1(s1) = f (s1, s1) for all s1 ∈ S and πt (ht ) = f (st−1, st )
for every ht and t ≥ 2. In other words, a pure stationary almost Markov strategy
for player 1 may only depend on the previous and current state for any t ≥ 2. We
will identify any pure stationary almost Markov strategy for player 1 with f ∈ F1.
Similarly, we define pure stationary almost Markov strategies for player 2 and identify
them with Borel measurable mappings g ∈ F2. We would like to indicate that F1 and
F2 are special cases of the classes of stationary semi-Markov strategies considered
in Barelli and Duggan (2014), where dependence of πt (or σt ) on the current state,
previous state and previous actions is assumed. Furthermore, a pure stationary almost
Markov strategy is calledMarkov, if it is independent of the previous state. The set of
all strategies is denoted by Π for player 1 and by Σ for player 2.

For any strategies π ∈ Π and σ ∈ Σ we define the expected discounted payoff or
reward function for player n:

Jn(s, π, σ ) = Eπσ
s

( ∞∑
k=1

βk−1rn(sk, ak, bk)

)
,

where Eπσ
s is the expectation operator corresponding to the uniqueprobabilitymeasure

Pπσ
s defined on the space of all feasible infinite histories of the process starting in

state s = s1 ∈ S and induced by the transition probability q and strategies π and σ.

A pair of strategies (π∗, σ ∗) ∈ Π × Σ is called a Nash equilibrium, if

J1(s, π
∗, σ ∗) ≥ J1(s, π, σ ∗) for all π ∈ Π

and

J2(s, π
∗, σ ∗) ≥ J2(s, π

∗, σ ) for all σ ∈ Σ.

In the sequel, we shall refer to the game G̃ with the state space S × S and action
spaces Ã(s, s′) = A(s′), B̃(s, s′) = B(s′) for all (s, s′) ∈ S×S. The reward functions
in game G̃, denoted by r̃n, are defined as follows

r̃n((s, s
′), a, b) := rn(s

′, a, b) for all (s, s′) ∈ S × S, a ∈ A(s′), b ∈ B(s′).

The transition probability q̃ in game G̃ is defined as follows

q̃(C1 × C2|(s, s′), a, b) := δs′(C1)q(C2|s′, a, b)

for all (s, s′) ∈ S × S, a ∈ A(s′), b ∈ B(s′) and C1,C2 ∈ B. Here δs′ denotes the
Dirac measure concentrated at s′. Hence, q̃({s′} × C2|(s, s′), a, b) := q(C2|s′, a, b).

Pure strategies are defined in game G̃ in an obvious manner. Note that each strategy
f ∈ F1 or g ∈ F2 in game G is stationary Markov in game G̃. The discounted payoffs
for player n = 1, 2 is denoted by J̃n((s, s′), π, σ ). Note that if s = s′, then

Jn(s
′, f, g) = J̃n((s, s

′), f, g) for all f ∈ F1, g ∈ F2, s
′ ∈ S, n = 1, 2. (1)
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We can now formulate our main result.

Theorem Every ARAT game G satisfying assumptions (i)–(vi) has a Nash equilib-
rium in pure stationary almost Markov strategies.

Proof Let B(S×S) be the space of all boundedBorelmeasurable real-valued functions
on S × S. For any s ∈ S and v = (v1, v2), where v1, v2 ∈ B(S × S), we consider a
static game Γv(s) where the payoff to player n = 1, 2 is given by

U v
n (s, a, b) := rn(s, a, b) + β

∫
S
vn(s, s

′)q(ds′|s, a, b), (2)

where a ∈ A(s), b ∈ B(s).We shall also consider the payoff functions of the form (2)
where v1 and v2 depend only on s′ ∈ S. Let Nv(s) be the set of all pureNash equilibria
in the game 
v(s).Under the ARAT assumption Nv(s) �= ∅. Indeed, (a0, b0) ∈ Nv(s)
if and only if

a0 ∈ arg max
a∈A(s)

[
u1(s, a) + β

∫
S
v1(s, s

′)q1(ds′|s, a)

]

and

b0 ∈ arg max
b∈B(s)

[
w2(s, b) + β

∫
S
v2(s, s

′)q2(ds′|s, b)
]

.

By Pv(s) [coPv(s)] we denote the set of all payoff vectors [convex combinations of
payoff vectors] corresponding to equilibria in Nv(s). Let B(S) be the space of all
bounded Borel measurable real-valued functions on S. A simple adaptation of the
arguments given in Nowak and Raghavan (1992) (see also page 35 in Jaśkiewicz and
Nowak (2005)) yields the existence of some w∗ = (w∗

1, w
∗
2) with w∗

n ∈ B(S) for
n = 1, 2 such that

w∗(s) ∈ coPw∗(s) for all s ∈ S.

Assume that A× B is endowed with the lexicographic order and every A(s)× B(s)
is given the induced order. Write A × B = {p1, p2, . . . , pd} with d = n1n2. Define

q0(C |s, p) :=
{
q(C |s, p), if p ∈ A(s) × B(s)
μ(C), if p /∈ A(s) × B(s),

where C ∈ B. Define the d-dimensional stochastic kernel

K (·|s) := (q0(·|s, p1), q0(·|s, p2), . . . , q0(·|s, pd)).

Let w∗
0(s, p) := ∫

S w∗(s′)q0(ds′|s, p), p ∈ A × B. Put

w∗
0(s) :=

∫
S
w∗(s′)K (ds′|s) = (w∗

0(s, p1), w
∗
0(s, p2), . . . , w

∗
0(s, pd)).

123
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The set-valued mappings s �→ Pw∗(s) and s �→ coPw∗(s) are lower measurable
(see Lemma 6 in Nowak and Raghavan (1992)). Let Ψ be the graph of the mapping
s �→ ∫

S Pw∗(s′)K (ds′|s), i.e.,

Ψ :=
{
(s, y) ∈ S × R

2d : s ∈ S, y ∈
∫
S
Pw∗(s′)K (ds′|s)

}
.

By part 3 in Theorem 2 of Mertens (2003), there exists a Borel measurable mapping
φ : Ψ × S �→ R

2 such that φ(s, y, s′) ∈ Pw∗(s′) for all (s, y) ∈ Ψ, s ∈ S and

y =
∫
S
φ(s, y, s′)K (ds′|s), s ∈ S. (3)

From Lyapunov’s theorem (see Corollary 18.1.10 in Klein and Thompson (1984)),
it follows that

∫
S Pw∗(s′)K (ds′|s) = ∫

S coPw∗(s′)K (ds′|s). Hence, w∗
0(s) ∈∫

S Pw∗(s′)K (ds′|s) for each s ∈ S. Put

v∗(s, s′) := φ(s, w∗
0(s), s

′), s, s′ ∈ S.

Clearly v∗ ∈ B(S × S). By (3), we have that

w∗
0(s) =

∫
S
v∗(s, s′)K (ds′|s) =

∫
S
w∗(s′)K (ds′|s) for every s ∈ S, s′ ∈ S.

This fact implies that∫
S
v∗(s, s′)q(ds′|s, a, b) =

∫
S
w∗(s′)q(ds′|s, a, b) for every (s, a, b) ∈ D. (4)

Put v∗ = (v∗
1 , v

∗
2) and let s− denote the previous state. Since v∗(s, s′) ∈ Pw∗(s′) for

every s, s′ ∈ S or equivalently, v∗(s−, s) ∈ Pw∗(s) for every s−, s ∈ S, by Filippov’s
implicit function theorem (see Theorem 18.17 in Aliprantis and Border (2006) or
Lemma 4 in Nowak and Raghavan (1992)), there exists a pair ( f ∗, g∗) ∈ F1 × F2
such that

v∗
1(s

−, s) = Uw∗
1 (s, f ∗(s−, s), g∗(s−, s)) = max

a∈ Ã(s−,s)
Uw∗
1 (s, a, g∗(s−, s)) (5)

and

v∗
2(s

−, s) = Uw∗
2 (s, f ∗(s−, s), g∗(s−, s)) = max

b∈B̃(s−,s)
Uw∗
2 (s, f ∗(s−, s), b) (6)

for all s−, s ∈ S. By (4), we have Uw∗
n (s, a, b) = U v∗

n (s, a, b) for each (s, a, b) ∈ D
and n = 1, 2. Thus, from (5) and (6), we conclude that

v∗
1(s

−, s) = U v∗
1 (s, f ∗(s−, s), g∗(s−, s)) = max

a∈ Ã(s−,s)
U v∗
1 (s, a, g∗(s−, s))
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and

v∗
2(s

−, s) = U v∗
2 (s, f ∗(s−, s), g∗(s−, s)) = max

b∈B̃(s−,s)
U v∗
2 (s, f ∗(s−, s), b)

for every s−, s′ ∈ S. We have obtained two Bellman equations (for players 1 and 2) in
the game G̃. By standard dynamic programming arguments (see Blackwell (1965)),
these equations imply that

J̃1((s
−, s), f ∗, g∗) = max

f ∈F1
J̃1((s

−, s), f, g∗) (7)

and
J̃2((s

−, s), f ∗, g∗) = max
g∈F2

J̃2((s
−, s), f ∗, g) (8)

for all s−, s ∈ S. Putting s− = s in (7), (8) and using (1), we obtain

J1(s, f ∗, g∗) = max
f ∈F1

J1(s, f, g∗), J2(s, f ∗, g∗) = max
g∈F2

J2(s, f ∗, g)

for each s ∈ S. These equations and standard dynamic programming arguments (see
Blackwell (1965)) imply that ( f ∗, g∗) is aNash equilibrium in the class of all strategies
of the players. 
�
Remark 1 From the proof, it follows that ( f ∗, g∗) is subgame perfect in the sense
of Selten (1975). Pure stationary Markov Nash equilibria can be shown to exist in
the same manner as in Theorem 2 in Nowak (2006), if the transition probability is a
convex combination of finitely many nonatomic measures on S. The existence of pure
stationary Markov Nash equilibria under assumptions made in this paper (i.e. with
non-atomic additive transitions and additive rewards) is an open problem. Studying
stochastic ARAT games Küenle (1999) did not assume that the transition probability is
dominated by any probability measure. He obtained a pure Nash equilibrium (π∗, σ ∗)
where each π∗

t and σ ∗
t depends on the entire history ht . We assume the dominance of

q with respect to an nonatomic measure μ and obtain an equilibrium in the simplest
possible class of strategies. Our result cannot be extended to the case where μ has
some atoms, which is illustrated in the next section. The survey of the existing results
on randomised Nash equilibria in stochastic games without ARAT structure the reader
may find in Nowak (2003), Jaśkiewicz and Nowak (2005) and Barelli and Duggan
(2014). Related result to our theorem on randomised equilibria in games with finite
state independent action sets is mentioned on page 147 in Mertens and Parthasarathy
(1991).

Remark 2 The Nash equilibrium strategy for each player considered in this paper is
called “stationary”, since it is determined by a single function independent of calendar
time. The term“almostMarkov”, on the other hand, refers to the property that a strategy
does not depend only on the current state (at any stage t ≥ 2), but also on the previous
state. The fact that our strategies in Nash equilibrium depend on the current and
previous state follows from applying a parametrised version of Lyapunov’s theorem
given by Mertens (2003).
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3 A counterexample

Below we give an example of a stochastic ARAT game with finite state and action
spaces having no pure stationary almost Markov Nash equilibrium.

Let S = {1, 2}, A(1) = B(2) = {1, 2}, A(2) = B(1) = {1}. Assume that
r1(1, a, 1) = 0 for a ∈ A(1) and r1(2, 1, b) = 6 if b = 1, and r1(2, 1, b) = −6
if b = 2. Let

r2(1, a, 1) = u2(1, a) =
{
7 for a = 1
0 for a = 2

and

r2(2, 1, b) = w2(1, b) =
{
0 for b = 1
1 for b = 2.

We assume that the transition probability in state s = 1 is controlled by player 1 and
in state s = 2 is controlled by player 2. We define

q(1|1, a, 1) =
{ 2

3 if a = 1

1
3 if a = 2

and q(1|2, 1, b) =
{ 2

3 if b = 1

1
3 if b = 2

and q(2|s, a, b) = 1 − q(1|s, a, b) for each s ∈ S, a ∈ A(s), b ∈ B(s).
Let S̃ = {s1, s2, s3, s4} where s1 = (1, 1), s2 = (1, 2), s3 = (2, 1), s4 = (2, 2).

Note that any pure stationary almost Markov strategy for player 1 can be defined as
fi j (s1) = i, fi j (s2) = j, and fi j (s3) = fi j (s4) = 1. Thus, player 1 has four pure sta-
tionary almost Markov strategies. A pure stationary almost Markov strategy for player
2 is denoted by gi j , where gi j (s3) = i, gi j (s4) = j, and gi j (s1) = gi j (s2) = 1. In
order to compute the discounted expected rewards to the players for any pair ( fi j , gkl)
of strategies we consider an auxiliary game G̃ (defined in Sect. 2), in which fi j and gkl
are pure stationary strategies (or pure stationaryMarkov strategies). For computational
purposes, it is convenient to use the standardmatrix notation that is common in thefinite
state space case. By Q( fi j , gkl) we denote the transition probability matrix induced
by q̃ and strategies fi j , gkl . We assume that the rows and columns of Q( fi j , gkl) are
labeled by s1, s2, s3 and s4. Let

R̃n( fi j , gkl) := [
r̃n(s1, fi j , gkl) r̃n(s2, fi j , gkl) r̃n(s3, fi j , gkl) r̃n(s4, fi j , gkl)

]T
be the vector of rewards of player n = 1, 2 in the auxiliary game, induced by strategies
fi j and gkl . By J̃n(sm, fi j , gkl), we denote the discounted expected payoff to player
n in game Γ . Note that

J̃n(s1, fi j , gkl) = Jn(1, fi j , gkl) and J̃n(s4, fi j , gkl) = Jn(2, fi j , gkl)

for each strategy pair ( fi j , gkl). For any player n, define
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Pure equilibria in ARAT stochastic games 177

J̃n( fi j , gkl) := [
J̃n(s1, fi j , gkl) J̃n(s2, fi j , gkl) J̃n(s3, fi j , gkl) J̃n(s4, fi j , gkl)

]T
.

The standard formula yields that

J̃n( fi j , gkl) = [
I − βQ( fi j , gkl)

]−1
R̃n( fi j , gkl).

If [I − βQ( fi j , gkl)]−1
m is the m-th row of the matrix [I − βQ( fi j , gkl)]−1, then we

have
Jn(1, fi j , gkl) = [

I − βQ( fi j , gkl)
]−1
1 R̃n( fi j , gkl) (9)

and
Jn(2, fi j , gkl) = [

I − βQ( fi j , gkl)
]−1
4 R̃n( fi j , gkl). (10)

For an illustration assume that β = 3/4 and consider the pair ( f21, g12). Then

R̃1( f21, g12) = [
0 0 6 −6

]T
, R̃2( f21, g12) = [

0 7 0 1
]T

,

Q( f21, g12) = 1

3

⎡
⎢⎢⎣
1 0 2 0
2 0 1 0
0 2 0 1
0 1 0 2

⎤
⎥⎥⎦ , I − βQ( f21, g12) = 1

4

⎡
⎢⎢⎣

3 0 −2 0
−2 4 −1 0
0 −2 4 −1
0 −1 0 2

⎤
⎥⎥⎦ ,

and

[I − βQ( f21, g12)]
−1 = 4

61

⎡
⎢⎢⎣
27 10 16 8
16 24 14 7
10 15 24 12
8 12 7 34

⎤
⎥⎥⎦ .

Using these data and (9)–(10), we can easily obtain that

J1(1, f21, g12) = 192/61, J1(2, f21, g12) = −648/61

and

J2(1, f21, g12) = 312/61, J2(2, f21, g12) = 472/61.

We can similarly compute the discounted expected payoffs to the players for each
pair ( fi j , gkj ) of strategies and consider two bimatrix games corresponding to states
1 and 2, respectively. The rows (columns) of the matrices given below are labeled by
f11, f12, f21, f22 (g11, g12, g21, g22). The payoff matrices in state s = 1 are:

M1(1) =

⎡
⎢⎢⎢⎢⎣

6 24
11 − 24

17 −8
48
7

32
13 − 96

61 − 96
11

96
11

192
61 − 192

95 − 192
17

48
5

24
7 − 24

11 −12

⎤
⎥⎥⎥⎥⎦ and M2(1) =

⎡
⎢⎢⎢⎢⎣
21 228

11
348
17 20

16 632
39

1000
61

184
11

56
11

312
61

488
95

88
17

0 4
7

12
11 2

⎤
⎥⎥⎥⎥⎦ .
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Observe that this bimatrix game has no pure Nash equilibrium. In state s = 2, the
payoff matrices are:

M1(2) =

⎡
⎢⎢⎢⎢⎣

12 − 120
11

120
17 −16

96
7 − 136

13
408
61 − 192

11
144
11 − 648

61
648
95 − 288

17
72
5 − 72

7
72
11 −18

⎤
⎥⎥⎥⎥⎦ and M2(2) =

⎡
⎢⎢⎢⎢⎣
14 136

11
232
17 12

4 200
39

264
61

60
11

84
11

472
61

728
95

132
17

0 16
7

8
11 3

⎤
⎥⎥⎥⎥⎦ .

This bimatrix game has no pure Nash equilibrium either.
We conclude this section by pointing out that the above game has a randomised

stationary Markov Nash equilibrium ( f ∗, g∗) where f ∗(1) = ( 12 ,
1
2 ) is a mixed strat-

egy for player 1 in s = 1 and g∗(2) = ( 58 ,
3
8 ) is a mixed strategy for player 2 in state

s = 2.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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