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Abstract
We factorize probability mass functions of discrete distributions belonging to Panjer’s
family and to its certain extensions to define a stochastic order on the space of distri-
butions supported on N0. Main properties of this order are presented. Comparison of
some well-known distributions with respect to this order allows to generate new fam-
ilies of distributions that satisfy various recurrrence relations. The recursion formula
for the probabilities of corresponding compound distributions for one such family is
derived. Applications to various domains of reliability theory are provided.

Keywords Discrete distribution · Stochastic order · Recursion · Compound
distribution

1 Introduction andmotivation

Panjer (1981) considered the family of discrete random variables X satisfying the
relation

p(n) = an + b

n
p(n − 1), n ≥ 1, (1)

where p(n) = P(X = n), and derived a recursive formula for calculating compound
distributions for the case when the corresponding claim number distribution belongs
to that family. Being not only a quite important but also a relatively convenient class
of distributions to deal with for solving various problems in actuarial science and, in
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particular, risk theory, Panjer’s family and its certain extensions have subsequently
attracted the attention of many researchers. In particular, Sundt and Jewell (1981)
have shown that the above family consists of the collection of all (nondegenerate)
Binomial, Poisson and Negative Binomial distributions,Willmot (1988) characterized
the distributions with p(0) = 0 that satisfy relation (1) for n ≥ 2 andHess et al. (2002)
identified the distributions with p(n) = 0 for n ≤ k − 1 that satisfy relation (1) for
n ≥ k + 1 (the so called Panjer’s class of order k). Also Panjer and Willmot (1982)
considered the class of distributions satisfying the recursion

p(n) =
∑k

i=0 ain
i

∑k
i=0 bin

i
p(n − 1), n ≥ 1, (2)

for some k ∈ N, and derived recursions for the correponding compound distributions
when k = 1 and k = 2. A recursive algorithm for the compound distribution for
arbitrary k had been then derived by Hesselager (1994). Extesions of the Panjer’s
family to distributions that satisfy recurrence relation of higher orders have also been
studied in the literature. In particular, Kitano et al. (2005) considered the generalized
Charlier distribution, which satisfies second order recurrence relation

p(n) =
[

a + b

n

]

p(n − 1) +
[

c + d

n
+ e

n − 1

]

p(n − 2), n > 1.

A quite extensive collection of other generalizations of Panjer’s family as well as
their applications can be found in Sundt and Vernic (2009).

In this work we first consider the family of discrete distributions supported on
N0 = N∪{0} that satisfy (2). For the sake of simplicity,we assume that the denominator
is a monomial nm and show in the following section that the probability mass function
p(n) can be decomposed into a finite product

p(n) = c
∏

i

pi (n), n ≥ 0, (3)

where the constant c > 0 does not depend on n and each pi is a probability mass
function of one of four different types of distributions, including the Poisson and the
Negative Binomial distributions. Parameters of those distributions are determined by
the coefficients that appear in the right-hand side of (2). As the values of probabil-
ity mass functions are always in between 0 and 1, the above factorization implies
that p(n) is asymptotically smaller than each of pi (n). This observation leads to the
Definition 2.1 of a discrete stochastic order � over the set � of all discrete random
variables supported on N0 and our main goal is to study the properties of this order.

Stochastic orderings have a modest, yet somewhat punctuated, pedigree in the cor-
pus of statistical literature. A quite extensive collection of such orderings can be found
in Shaked and Shanthikumar (2007). Also in Artzner et al. (1999), Artzner et al intro-
duced their now famous four coherent risk measures. However, as stated in Giovagnoli
and Wynn (2010), most of the existing literature focuses on real (continuous) univari-
ate or multivariate random variables, and there is less work on stochastic orderings for
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discrete random variables. In terms of ordering functions in a discrete setting, Kitaev
(2005) considers partially ordered generalized patterns, and for discrete random vari-
ables, in Giovagnoli and Wynn (2010) use Möbius inversions in the theory as well as
the notion of dual cones.

The paper is structured as follows: in Sect. 2 we derive the factorization formula
(3) and describe the distributions that appear on the right-hand side of that formula.
Based on that decomposition we then define the order � on the whole space of dis-
crete distributions that are supported on N0. To make the definition of this order more
intuitive, in Sect. 3 we give two more definitions of � that are equivalent to Defini-
tion 2.1. In the following proofs we mainly use the condition given in Proposition 3.1
(i) (though from the statistical point of view the condition given in Proposition 3.1
(ii) may seem to be more interesting). We then show that {�,�} is a partially ordered
set and that � is uncorrelated with other well-known stochastic orders on �. One of
the main properties of ≺ that distinguishes it from other stochastic orders is its invari-
ance under the permutations of N0 (Proposition 3.6). In particular, this means that
X ≺ Y does necessarily imply neither E[X ] ≤ E[Y ] nor var [X ] ≤ var [Y ]. Instead,
as ≺ is determined by the tail behaviour of the distributions, the relation X ≺ Y
implies limn→+∞ RX (n)/RY (n) = 0,where RX (n) and RY (n) are survival functions
of X and Y (Theorem 3.1). However, the converse is not true, that is, the condition
limn→+∞ RX (n)/RY (n) = 0 is in general much weaker than X ≺ Y (Examples 3.1
and 3.2). Other characteristics of the partially ordered set {�,�}, such as the exis-
tence and the structure of minimal, maximal and covering elements, are also given
in Sect. 3. The relation with respect to ≺ of compound distributions for which the
corresponding counting distributions are from � is described in Sect. 4. In particular,
the conditions are presented under which a compound distribution S′ is ≺ than a com-
pound distribution S′′ if and only if either the claim size distribution of S′ is ≺ than
the claim size distribution of S′′ (Proposition 4.1) or the counting distribution of S′ is
≺ than the counting distribution of S′′ (Proposition 4.2). In Sect. 5 we consider some
common distributions that can be recursively generated and discuss their relation with
respect to ≺. This comparison allows to obtain new families of distributions that sat-
isfy various recurrence relations. We then provide a recursive formula for calculating
the probabilities of compound distributions whose counting distributions belong to
one of those families. Finally, in the last section we present some applications of the
obtained results to reliability theory and to Poisson shock models and show that the
relation ≺ is also applicable while conducting sampling with visibility bias.

2 Factorization of probability mass functions

Consider a family of discrete random variables X satisfying the relation

p(n) = Pk(n)

nm
p(n − 1), n ≥ 1, (4)

where p(n) = P(X = n) and Pk(x) = ∑k
i=0 ai x

i is a polynomial of degree k ≥ 0.
Note that when m = 1 and k ≤ 1 then (4) corresponds to the Panjer’s family of
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discrete distributions given by (1). We are mainly interested in distributions of the
above family that have infinite support N0, which implies that k ≤ m and Pk(n) > 0
for all n ∈ N.

Let us first consider the case m = k. In this case we have by the ratio test that the
series

∑∞
n=0 p(n) converges if |ak | < 1 and it diverges if |ak | > 1. Let us therefore

assume that |ak | < 1. This also means that for each M ∈ N, the number of zeros of
the polynomial Pk(x) in the interval (M, M + 1) is even (possibly 0). Hence, we can
rewrite the polynomial Pk(x) in the form

Pk(x) =
[ k1∏

i1=1

(ax + bi1)

][ k2∏

i2=1

(a2x2 + ci2x + di2)

][ k3∏

i3=1

(a2x2 + ei3x + fi3)

]

,

(5)

where a = a1/kk , k1 + 2k2 + 2k3 = k, the root of each linear function ax + bi1 ,
i1 = 1, .., k1, is less than 1, the (possibly equal) roots of each quadratic function
a2x2 + ci2x + di2 lie in the interval (Mi2 , Mi2 + 1) for some Mi2 ∈ N, i2 = 1, .., k2,
and the functions a2x2 + ei3x + fi3 , i3 = 1, .., k3, have no real roots. We can then
rewrite (4) in the form

p(n) =
[ k1∏

i1=1

ax+bi1
x

][ k2∏

i2=1

a2x2+ci2x+di2
x2

][ k3∏

i3=1

a2x2+ei3x+ fi3
x2

]

p(n − 1),

n ≥ 1, (6)

Let us now describe the distributions which are recursively generated by each of those
three types of functions.

It has been shown in Sundt and Jewell (1981) that the only distribution satisfying

pi1(n) = an + bi1
n

pi1(n − 1), n ≥ 1, (7)

with 0 < a < 1 is the Negative Binomial distribution with parameters (a + bi1)/a
and a. More precisely, in this case we have that

pi1(n) = an + bi1
n

pi1(n − 1) = pi1(0)
n∏

j=1

aj + bi1
j

= pi1(0)a
n
( a+bi1

a + n − 1

n

)

, n ≥ 0, (8)

where the last equality above follows from the definition of binomial coefficients with
real arguments. Note that the condition that the root of ax + bi1 is less than 1 together
with a > 0 implies that a + bi1 > 0.
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Now consider the distribution satisfying

pi2(n) = a2n2 + ci2n + di2
n2

pi2(n − 1), n ≥ 1, (9)

where the function a2x2 + ci2x + di2 has two real roots, say xi2 and yi2 , both of which
belong to the interval (Mi2 , Mi2 + 1) for some Mi2 ∈ N. We then have that

pi2(n) = a2(xi2 − n)(yi2 − n)

n2
pi2(n − 1)

= p(0)
n∏

j=1

a2(xi2 − j)(yi2 − j)

j2
= p(0)a2n

(
xi2 − 1

n

)(
yi2 − 1

n

)

, (10)

where the last equality follows from �(x) = �(x − 1)(x − 1) = · · · = �(x −
n)

∏n
i=1(x − i), x /∈ Z, and from the definition of binomial coefficients with real

arguments.
Finally, let us suppose that

pi3(n) = a2n2 + ei3n + fi3
n2

pi3(n − 1), n ≥ 1, (11)

where a2x2 + ei3x + fi3 has no real roots. Then a2x2 + ei3x + fi3 has 2 complex
roots zi3 and zi3 for some zi3 ∈ C\R. Using the properties z�(z) = �(z + 1) and
�(z) = �(z) of the Gamma function �(z) we get that

pi3(n) = a2(zi3 − n)(zi3 − n)

n2
pi3(n − 1) = pi3(0)

n∏

j=1

a2(zi3 − j)(zi3 − j)

j2

= pi3(0)
a2n

(n!)2
|�(zi3)|2

|�(zi3 − n)|2 . (12)

Combining (5)–(12) for a given random variable X satisfying (4) with m = k we get

p(n) = Pk(n)

nk
p(n − 1) = c

[ k1∏

i1=1

pi1(n)

][ k2∏

i2=1

pi2(n)

][ k3∏

i3=1

pi3(n)

]

, n ≥ 0,

(13)

where c is some positive constant that does not depend on n, pi1 , pi2 and pi3 are
probability mass functions of distributions given, respectively, by (8), (10) and (12).
In case m > k we can rewrite (4) as

p(n) = 1

nm−k

Pk(n)

nk
p(n − 1), n ≥ 1.
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Noting that if p0(n) denotes the probability mass function of Poisson distribution with
parameter 1 then

p0(n) = p0(n − 1)

n
,

we get that in this case there is a constant number c > 0 such that

p(n) = Pk(n)

nm
p(n − 1) = cp0(n)m−k

[ k1∏

i1=1

pi1(n)

][ k2∏

i2=1

pi2(n)

][ k3∏

i3=1

pi3(n)

]

,

n ≥ 0. (14)

Let us now consider an example that illustrates the above factorization. Suppose X
follows Poisson distribution with parameter 1/2. Then

pX (n) = e−1/2

2nn! = 2e1/2
e−1

n!
1

2n+1 = 2e1/2 pY (n)pZ (n), n ≥ 0,

where Y ∼ Poisson(1) and Z ∼ Negative Binomial(1, 1/2). Note that the probability
mass functions of those variables satisfy recurrence relations pX (n) = 1

2n pX (n − 1),
pY (n) = 1

n pY (n − 1) and pZ (n) = 1
2 pZ (n − 1), and the factor 1

2n that appears in
the first recursion is a product of the corresponding factors appearing in the two other
recursions. Clearly, the values of pX (n) are then (asymptotically) smaller than the
values of pY (n) and pZ (n). In general, as the values of probability mass functions are
always in between 0 and 1, then given the decomposition (14) we have that p(n) is
asymptotically smaller than each of the probability mass functions that appear on the
right side of (14). Thus, the above decomposition leads to the following definition of
a binary relation � over the set � of all discrete random variables supported on N0.

Definition 2.1 Given X ,Y ∈ �, we say that X ≺ Y if there exist a constant number
c ∈ R+ and Z ∈ � such that

pX (n) = cpY (n)pZ (n), n ∈ N0, (15)

and we say that X � Y if either X ≺ Y or pX (n) = pY (n) for all n ∈ N0.

Note that given (15), X can also be considered as a weighted distribution (see, e.g.,
Patil and Rao (1978) for the definition and properties of weighted distributions). In the
following section we show that {�,�} is a partially ordered set and derive its main
properties.

3 Partially ordered set {Ä,�} and properties of≺
Let us first present another 2 equivalent definitons of≺. The definition given in Propo-
sition 3.1 (i) below turns out to be the most convenient one for deriving the subsequent
results.
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Proposition 3.1 Given X ,Y ∈ � then X ≺ Y if and only if one of the following holds:

(i)
∞∑
n=0

pX (n)
pY (n)

< ∞;

(ii) there exists Z ∈ � independent of Y such that randomvariables X andY |(Y = Z)

are identically distributed.

Proof. (i) Suppose X ≺ Y . Then by Definition 2.1 there exist a constant number
c ∈ R+ and Z ∈ � such that

∑∞
n=0

pX (n)
pY (n)

= c
∑∞

n=0 pZ (n) = c < ∞. Now

assume that
∑∞

n=0
pX (n)
pY (n)

:= c < ∞. Then let Z be a random variable with

probability mass function pZ (n) = pX (n)
cpY (n)

, n ∈ N0. Then, obviously, Z ∈ � and
we have that pX (n) = cpY (n)pZ (n), n ∈ N0. Hence, X ≺ Y .

(ii) Assume that such Z ∈ � exists. Then for n ∈ N0

pX (n) = P(X = n) = P(Y = n|Y = Z) = pY (n)pZ (n)

P(Y = Z)
= cpY (n)pZ (n),

where c = 1
P(Y=Z)

. Hence, X ≺ Y . Conversely, if X ≺ Y , then there exists
Z ∈ � satisfying (15). Then taking Z to be independet of Y we get that

1 =
∞∑

n=0

pX (n) = c
∞∑

n=0

pY (n)pZ (n) = cP(Y = Z),

which means that c = 1
P(Y=Z)

. Hence, for n ∈ N0

P(X = n) = pX (n) = cpY (n)pZ (n) = pY (n)pZ (n)

P(Y = Z)
= P(Y = n|Y = Z)

which means that X and Y |(Y = Z) are identically distributed.

Proposition 3.2 {�,�} is a partially ordered set.

Proof Obviously X � X for any X ∈ �. Now suppose that X � Y and Y � X ,

for some X ,Y ∈ �. Then if X �= Y we should have that X ≺ Y and Y ≺ X which
implies that

∑∞
n=0

pX (n)
pY (n)

< ∞ and
∑∞

n=0
pY (n)
pX (n)

< ∞ which is not possible. Thus,
X = Y . Finally, assume that X � Y and Y � Z , for some X ,Y , Z ∈ �. Obviously, if
either X = Y or Y = Z then X � Z . So let us assume that X ≺ Y and Y ≺ Z . Then∑∞

n=0
pX (n)
pY (n)

< ∞ and
∑∞

n=0
pY (n)
pZ (n)

< ∞. Hence,
∑∞

n=0
pX (n)
pZ (n)

= ∑∞
n=0

pX (n)
pY (n)

pY (n)
pZ (n)

<

∞ which means that X ≺ Z and the transitivity is shown.

Let us now check that ≺ does not coincide with the restriction to � of any well
known stochastic order presented in Shaked and Shanthikumar (2007). First, as it is
shown in Shaked and Shanthikumar (2007) (formulas 1.A.7, 5.A.5, theorems 1.B.1,
1.B.42, 1.C.1, 3.B.13, 5.C.1 and pp. 71, 255), for the usual stochastic order, hazard
rate order, reversed hazard order, likelihood ratio order, convolution order, dispersive
order, Laplace transform order, factorial moments order and the moments order,
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the fact that X is smaller than Y with respect to any of these orders implies that
E[X ] ≤ E[Y ]. As for X ∼ Poisson(2) and Y ∼ NegativeBinomial(1, 1/2) we
have that X ≺ Y and E[X ] = 2 > 1 = E[Y ], then � is not correlated with any of
the above orders. Also, as it is shown in Shaked and Shanthikumar (2007) (formulas
2.B.7, 3.A.2, 3.A.4, 3.C.8 and p. 166) for themean residual life order, harmonic mean
residual life order, convex order and excess wealth order, the fact that X is smaller
than Y with respect to any of these orders together with the condition E[X ] = E[Y ]
implies that var [X ] ≤ var [Y ]. As for the random variables X ,Y ∈ �with probablity
mass functions defined as

pX (n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − ∑∞
n=1 pX (n), n = 0

3
∑∞

n=3
1
n3

+ 2
∑∞

n=3
1
n4

, n = 1
∑∞

n=3
1
n2

+ ∑∞
n=3

1
n5

, n = 2

1
n6

, n > 2

and

pY (n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − ∑∞
n=1 pY (n), n = 0

3
∑∞

n=3
1
n5

+ 2
∑∞

n=3
1
n2

, n = 1
∑∞

n=3
1
n3

+ ∑∞
n=3

1
n4

, n = 2

1
n4

n > 2.

we have that X ≺ Y , E[X ] = E[Y ] but var [X ] > var [Y ], then � is not cor-
related with any of those orders as well. Finally, as for X ∼ Poisson(1) and
Y ∼ NegativeBinomial(1, 1/3) we have that X ≺ Y but E[esX ] > E[esY ] at
s = ln 2, then � is also uncorrelated with the so called moment generating function
order (recall that given two nonnegative random variables X and Y withE[es0Y ] < ∞
for some s0 > 0, we say that X is smaller than Y in the moment generating function
order if E[esX ] ≤ E[esY ] for all s > 0). Thus, unlike the discrete stochastic orders
presented above, � does not guarantee any order-preserving property for the opera-
tions of taking expected values, variances or moment generating functions. The reason
for this is that ≺ compares whether the tails of the random variables are sufficiently
far from each other and is therefore not sensitive to the probabilities of smaller values.
We, therefore, offer the following proposition:

Proposition 3.3 Let X and Y be two elements of � with X ≺ Y . Then

(i) there exists k ∈ N such that E[Xm] ≤ E[Ym] for all m > k;
(ii) there exists s0 > 0 such that E[esX ] ≤ E[esY ] for all s > s0.

Let us recall some characteristics of partially ordered sets. Given a partially ordered
set {P,≤} an element x ∈ P is called minimal if there is no element y ∈ P such that
y ≤ x, y �= x . Similarly, an element x ∈ P is called maximal if there is no element
y ∈ P such that x ≤ y, x �= y. An element x ∈ P is said to be covered by an element
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y ∈ P if x ≤ y, x �= y, and for any z ∈ P with x ≤ z ≤ y we have that either z = x
or z = y. The next proposition deals with the above concepts for the set �.

Proposition 3.4 (i) There is no minimal element in �;
(ii) an element X ∈ � is maximal if and only if

∑∞
n=0

√
pX (n) = ∞;

(iii) an element X ∈ � is covered by Y ∈ � if and only if
∑∞

n=0
pX (n)
pY (n)

< ∞ and
∑∞

n=0

√
pX (n)
pY (n)

= ∞;

(iv) every non-maximal element X ∈ � is covered by some element Y ∈ �. If
additionally

∑∞
n=0

(
pX (n)

)1/4 = ∞, then X is coveredby somemaximal element
Y ∈ �;

(v) for every non-maximal element X ∈ � there is a maximal element Y ∈ � such
that X ≺ Y .

The following proposition presents the closure property of ≺ under the operations
of summation and multiplication of random variables from �.

Proposition 3.5 If X1, . . . , Xk and Y1, . . . ,Yk are two sets of independent random
variables from � with Xi ≺ Yi , i = 1, . . . , k, then

(i) X1 + · · · + Xk ≺ Y1 + · · · + Yk;
(ii) X1 · · · · · Xk ≺ Y1 · · · · · Yk .
Proof (i) It suffices to prove that X1 + X2 ≺ Y1 + Y2. As X1 ≺ Y1 and X2 ≺ Y2

then
∑∞

n=0
pX1 (n)

pY1 (n)
< ∞ and

∑∞
n=0

pX2 (n)

pY2 (n)
< ∞. Therefore,

∞∑

n=0

pX1+X2(n)

pY1+Y2(n)
=

∞∑

n=0

∑n
i=0 pX1(i)pX2(n − i)

∑n
j=0 pY1( j)pY2(n − j)

=
∞∑

n=0

n∑

i=0

pX1(i)pX2(n − i)
∑n

j=0 pY1( j)pY2(n − j)

≤
∞∑

n=0

n∑

i=0

pX1(i)pX2(n − i)

pY1(i)pY2(n − i)
=

∞∑

n=0

∑

0≤i, j≤n
i+ j=n

pX1(i)pX2( j)

pY1(i)pY2( j)

=
∞∑

i=0

pX1(i)

pY1(i)

∞∑

j=0

pX2( j)

pY2( j)
< ∞,

where the first inequality above holds as
∑n

j=0 pY1( j)pY2(n− j) ≥ pY1(i)pY2(n−
i) for each i = 0, 1, . . . n, and the last equality holds because for any i, j ∈ N0,

the summand
pX1 (i)pX2 ( j)
pY1 (i)pY2 ( j) appears exactly once on each side of that equality. Thus,

X1 + X2 ≺ Y1 + Y2.
(ii) Follows from
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∞∑

n=0

pX1·X2(n)

pY1·Y2(n)
=

∞∑

n=0

∑
k·m=n pX1(k)pX2(m)

∑
r ·t=n pY1(r)pY2(t)

=
∞∑

n=0

∑

k·m=n

pX1(k)pX2(m)
∑

r ·t=n pY1(r)pY2(t)

≤
∞∑

n=0

∑

k·m=n

pX1(k)pX2(m)

pY1(k)pY2(m)
=

∞∑

k=0

pX1(k)

pY1(k)

∞∑

m=0

pX2(m)

pY2(m)
< ∞.

Note that if X ∈ � then pX2(2) = 0 and if a �= 1 is some real number, then the
support of aX is the set aN0 �= N0. Hence, as the support of all elements of� isN0,we
get that neither X2 nor aX belong to �. However, ≺ is closed under the permutations
of the support set of elements of �. More precisely, let σ be any permutation of N0,
that is, a one-to-one mapping from N0 to N0. Then for X ∈ �, let Xσ be an element
of � with probability mass function pXσ (n) = pX (σ (n)), n ∈ N0.

Proposition 3.6 Let σ be any permutation ofN0. Then X ≺ Y if and only if Xσ ≺ Yσ .

Proof As convergent series with positive terms converge unconditionally, then∑∞
n=0 pX (n)/pY (n) < ∞ if and only if

∑∞
n=0 pX (σ (n))/pY (σ (n)) < ∞.

The survival function of a random variable X ∈ � is given by

RX (n) =
∑

k>n

pX (k), n ∈ N0.

As X ≺ Y indicates that the tail of Y is heavier than the tail of X , and the survival
function gives the probability of the right tail (n,∞), then X ≺ Y should imply that
RX (n) is smaller than RY (n). In fact we have the following:

Theorem 3.1 If X ,Y ∈ � and X ≺ Y then

lim
n→+∞

RX (n)

RY (n)
= 0. (16)

Proof As X ,Y ∈ � then pX (k) > 0 and pY (k) > 0 for all k ∈ N0. This means that
{RX (n)}n∈N and {RY (n)}n∈N are both strictly decreasing sequences converging to 0.
As X ≺ Y then

∑∞
n=0 pX (n)/pY (n) < ∞, and, therefore,

lim
n→∞

RX (n + 1) − RX (n)

RY (n + 1) − RY (n)
= lim

n→∞
pX (n + 1)

pY (n + 1)
= 0.

Hence, by the Stolz–Cesàro theorem (see, e.g., Choudary and Niculescu (2014), The-
orem 2.7.1) we get (16).

Note, however, that the converse is not necessarily true, that is, (16) does not
necessarily imply X ≺ Y . In fact, as the following example shows, even the condition
∑∞

n=0
RX (n)
RY (n)

< ∞, which is stronger than (16), does not necessarily imply that pX (n)
pY (n)

is bounded from above (which is much weaker than X ≺ Y ).
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Example 3.1 Consider X ,Y ∈ � with

pX (k) =
⎧
⎨

⎩

1 −
∞∑
k=1

pX (k), k = 0

5−k−1, k > 0

pY (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
∞∑
k=1

pY (k), k = 0

2−k−1, k is odd

6−k−1, k > 0, k is even.

Then, as

RX (n) =
∑

k>n

pX (k) =
∑

k>n

5−k−1 = 5−n

20

and

RY (n) =
∑

k>n

pX (k) >
∑

k>n
k is odd

pX (k) =
∑

k>n
k is odd

2−k−1 >
∑

k>n

4−k−1 = 4−n

12
,

we have that
∑∞

n=0
RX (n)
RY (n)

< ∞. However, pX (2n)
pY (2n)

= (6/5)2n+1 → ∞ as n → ∞.

Note also that in general (16) is the best that we can achieve in Theorem 3.1.
More precisely, as the following example shows, the condition X ≺ Y alone does not
necessarily imply

∞∑

n=0

RX (n)

RY (n)
< ∞. (17)

.

Example 3.2 Consider X ,Y ∈ � with

pX (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
∞∑
k=1

pX (k), k = 0

1
10

1
n2n! , k = n2, n > 0

1
10

1
4k(n+1)! , n2 < k < (n + 1)2, n > 0

pY (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 −
∞∑
k=1

pY (k), k = 0

1
10

1
n! , k = n2, n > 0

1
10

1
2k (n+1)! , n2 < k < (n + 1)2, n > 0.
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Then, clearly,
∑∞

k=0 pX (k)/pY (k) < ∞ and X ≺ Y . For n > 1 we have that

RY (n2) =
∑

k>n2

pY (k) =
∞∑

m=n

(m+1)2∑

k=m2+1

pY (k) ≤
∞∑

m=n

1

(m + 1)!

<
1

(n + 1)!
∞∑

m=0

1

nm
<

3

(n + 1)! .

Hence,

∞∑

n=0

RX (n)

RY (n)
=

∞∑

k=0

(k+1)2−1∑

n=k2

RX (n)

RY (n)
>

∞∑

k=2

(k+1)2−1∑

n=k2

pX ((k + 1)2)

RY (n)

>

∞∑

k=2

[
(k + 1)2 − k2

] pX ((k + 1)2)

RY (k2)
>

1

30

∞∑

k=2

2k + 1

(k + 1)2

and the last series diverges.

However, (17) holds under the additional assumption of the existence of a positive
constant c > 0 such that

pX (k)/pY (k) ≤ cpX (n)/pY (n) (18)

for all 0 ≤ n < k. In particular, if the sequence {pX (n)/pY (n)}∞n=0 is eventually
non-increasing then (18) is satisfied.

Proposition 3.7 If X ,Y ∈ � satisfy (18) and X ≺ Y then

∞∑

n=0

RX (n)

RY (n)
< ∞.

Proof. Follows from

∞∑

n=0

RX (n)

RY (n)
=

∞∑

n=0

∑

k>n
pX (k)

∑

k>n
pY (k)

=
∞∑

n=0

∑

k>n
pY (k)pX (k)/pY (k)

∑

k>n
pY (k)

≤
∞∑

n=0

cpX (n)/pY (n)
∑

k>n
pY (k)

∑

k>n
pY (k)

= c
∞∑

n=0

pX (n)

pY (n)
< ∞. (19)
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4 Compound distributions

Consider the compound distribution

S = M1 + · · · + MN ,

where the counting random variable N represents the number of claims and
M1, M2, . . . represent the claim size. It is assumed that M1, M2, . . . are indepen-
dent and identically distributed discrete random variables which do not depend on
N and that S = 0 if N = 0. Denoting p(n) = P(N = n), gn = P(S = n) and
hn = P(M = n) we have that

gk =
∞∑

n=1

p(n)h∗n
k ,

where h∗n
k = P(M1 + · · · + Mn = k) is the n-fold convolution of hk , k ∈ N,

and g0 = ∑∞
n=0 p(n)h∗n

0 = ∑∞
n=0 p(n)hn0 = GN (h0). The probability generating

function of S is given by

GS(z) = GN (GM (z)),

where GM (z) is the common probability generating function of M1, M2, . . . and
GN (z) is the probability generating function of N .

As we want to compare compound distributions with respect to ≺, then, in order
to guarantee that the resulting compound distributions are from �, i.e., that their sup-
port set is N0, we will assume that M1, M2 . . . are all from �. In order to compare
distributions with respect to ≺ we need to know the asymptotic behaviour of their
probability mass functions. In general, estimating the asymptotic behaviour of com-
pound distributions is not easy. However, under certain assumptions on claim number
and claim size distributions various asymptotic estimates for compound distributions
have been obtained (see, e.g., Embrechts et al. (1984) and its references). We first
apply the following theorem from Chover et al. (1973).

Theorem 4.1 Let M be the common distribution of M1, M2, . . . and assume that the
following conditions hold:

(i) lim
n→∞

h∗2
n
hn

= c < ∞;

(ii) lim
n→∞

hn+1
hn

= 1
r > 0;

(iii) GM (r) = d < ∞ and GN (z) is analytic in a region containing the range of
GM (z) for |z| ≤ r .

Then

lim
n→+∞

gn
hn

= G ′
N (d).
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As described in Chover et al. (1973), the above conditions are satisfied by many
examples. We then have the following proposition.

Proposition 4.1 Let S′ = M ′
1 + · · · + M ′

N ′ and S′′ = M ′′
1 + · · · + M ′′

N ′′ , where
M ′

1, M
′
2, . . . as well as M

′′
1 , M ′′

2 , . . . are independent and identically distributed ran-
dom variables from � following common distributions M ′ and M ′′ respectively.
Assume that the pairs {M ′, N ′} and {M ′′, N ′′} satisfy the conditions of above the-
orem. Then S′ ≺ S′′ if and only if M ′ ≺ M ′′.

Let us now consider mixed Poisson distributions. In this case

gn =
∞∫

0

(λx)ne−λx

n! f (x)dμ(x), n ∈ N0,

where μ is Lebesgue or counting measure with generalized density f (x). It is shown
in Willmot (1990) that if f (x) ∼ C(x)xαe−βx , as x → ∞, where C(x) is a locally
bounded function on (0,∞)which varies slowly at infinity,β ≥ 0 and−∞ < α < ∞,

then

gn ∼ C(n)

(λ + β)α+1

( λ

λ + β

)n
nα.

Clearly Poisson(λ1) ≺ Poisson(λ2) if and only if λ1 < λ2 in which case λ1
λ1+β

<
λ2

λ2+β
for all β > 0. Thus, if the densities f1 and f2 in both mixtures share the same

β > 0, then Poisson(λ1) ≺ Poisson(λ2) implies S1 ≺ S2, where S1 ∼ (λ1, f1)
and S2 ∼ (λ2, f2). However, if β = 0 (in which case we should have α < −1), then
the condition Poisson(λ1) ≺ Poisson(λ2) alone does not imply S1 ≺ S2. In order
to have S1 ≺ S2 in this case, we should instead assume that f1 and f2 are such that∑∞

n=0 f1(n)/ f2(n) < ∞ which, in case of f1, f2 ∈ �, means f1 ≺ f2.
Recall from the introductory section, that the recursive formulae and other prop-

erties of compound distributions are usually obtained under the assumption that the
corresponding claim number distribution belongs to Panjer’s family or to its certain
extensions. As the order ≺ is obtained by an extension of Panjer’s family of dis-
tributions, then, in some sense, ≺ is more naturally connected to the claim number
distribution N rather than to the claim size distribution M . It is therefore interesting
to see when the condition N ′ ≺ N ′′ alone implies S′ ≺ S′′ given that the claim size
distributions are same: M ′ = M ′′ := M . The following proposition shows that the
desired implication holds for a large class of claim number distributions.

Proposition 4.2 Suppose

pN ′(n) ∼ C1n
α1θn1

and

pN ′′(n) ∼ C2n
α2θn2 ,
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where C1 and C2 are some positive constants, α1, α2 ∈ R and θ1, θ2 ∈ (0, 1). Assume
also that the probability generating function GM (z) of M has radius of convergence
exceeding both τ1 and τ2, where GM (τ1) = θ−1

1 and GM (τ2) = θ−1
2 . Then S′ ≺ S′′

if and only if N ′ ≺ N ′′.

Proof As it is shown in Willmot (1989), in this case we have that

g′
n ∼ C1nα1τ−n

1
(
θ1τ1G ′

M (τ1)
)α1+1

and

g′′
n ∼ C2nα2τ−n

2
(
θ2τ2G ′

M (τ2)
)α2+1 ,

where g′
n = P(S′ = n) and g′′

n = P(S′′ = n). Note that N ′ ≺ N ′′ if and only if either
θ1 < θ2 or θ1 = θ2 and α2 −α1 > 1. As GM is increasing onR+, then in the first case
we have that τ1 > τ2 and, therefore, S′ ≺ S′′. Clearly in the second case we again
have that S′ ≺ S′′.

The above argument can also be applied to get the desired implication in the cases
when one of the claim number distributions is asymptotically smaller (e.g. Poisson
distribution) or larger (e.g. Waring distribution) than nαθn .

To conclude this section, we note that in general the conditions M ′ ≺ M ′′ and
N ′ ≺ N ′′ donot necessarily imply S′ ≺ S′′. To see this let pN ′(n) ∼ C14−n, pN ′′(n) ∼
C23−n , M ′ ∼ Poisson(ln 4) and M ′′ ∼ N B(1, 1/4). Then GM ′(2) = 4 and
GM ′′(3) = 3 and, therefore, g′

n ∼ C12−n and g′′
n ∼ C23−n . Hence, not only does

S′ ≺ S′′ not hold but in fact S′′ ≺ S′.

5 Generation of new families of distributions

In this section we will consider the following distributions from � :

Distribution p(n), n ∈ N0 Parameters

Poisson e−λλn

n! λ > 0

Hyper-Poisson �(η)μn

�(η+n)M(1,η,μ)
μ > 0, η > 0

Negative Binomial �(n+r)(1−p)r pn

n!�(r) r > 0, 0 < p < 1

Shifted Logarithmic θn+1

−(n+1) log(1−θ)
0 < θ < 1

Waring α�(p+n)�(α+p)
�(p)�(α+p+n+1) α > 0, p > 0

Poisson-Beta νn

n!
�(α+β)

�(α)

∞∑
j=0

�(α+n+ j)
�(α+β+n+ j)

(−ν) j

j ! ν > 0, α > 0, β > 0
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We will use the notations1 X p, Xhp, Xnb, Xsl , Xw and X pb to denote random
variables following Poisson, Hyper-Poisson, Negative Binomial, Shifted Logarithmic,
Waring and Poisson-Beta distributions respectively.

As was mentioned in the first section, the probability mass functions of the Poisson
and Negative Binomial distributions satisfy the recurrence relation

p(n) = a0n + b0
n

p(n − 1), n ∈ N. (20)

It is also known (see Willmot and Panjer 1987), that the probability mass functions
of the Hyper-Poisson, Shifted Logarithmic and Waring distributions satisfy the first
order linear recursion

p(n) = a1n + b1
c1n + 1

p(n − 1), n ∈ N, (21)

and the probability mass function of the Poisson-Beta distribution, together with some
other distributions, such as Poisson-Generalized Inverse Gaussian distribution, satis-
fies the second order quadratic recursion

p(n) = a2n + b2
n

p(n − 1) + c2n + d2
n(n − 1)

p(n − 2), n > 1, (22)

where the values of the coefficients are determined by the values of the parameters of
the corresponding distributions. As for any α > 0

lim
n→∞

�(n + α)

�(n)nα
= 1,

we have the following:

Proposition 5.1 (i) if ν < λ then X pb(ν, α, β) ≺ X p(λ);
(ii) if ν < μ then X pb(ν, α, β) ≺ Xhp(μ, η);
(iii) for any values of parameters of corresponding distributions, X pb is ≺ than each

of Xnb, Xsl and Xw.

Now let X be an element of � with probability mass function satisfying the first
order recursion

pX (n) = f (n)pX (n − 1), n ∈ N, (23)

and let Y be an element of � with probability mass function satisfying the second
order recursion

pY (n) = g(n)pY (n − 1) + h(n)pY (n − 2), n > 1, (24)

1 M(1, η, μ) = ∑∞
k=0

�(η)
�(η+k) μ

k is a confluent hypergeometric function.
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where f , g and h are some functions from N to R. Then, if Y ≺ X , then for the
random variable Z with

pY (n) = cpX (n)pZ (n), n ∈ N0,

we have that the probability mass function of Z satisfies the following second order
recursion:

pZ (n) = pY (n)

cpX (n)
= g(n)

f (n)
pZ (n − 1) + h(n)

f (n) f (n − 1)
pZ (n − 2), n > 1. (25)

Rewriting the probability mass function of the Poisson-Beta distribution in terms of
the confluent hypergeometric function M as

ppb(n) = νn

n!
�(α + β)

�(α)

�(α + n)

�(α + β + n)
M(α + n, α + β + n,−ν)

and using asymptotic properties ofM (see, e.g., NISTDigital Library ofMathematical
Functions, Ch. 13) we get that

ppb(n) = νn

n!
e−ν

nβ

�(α + β)

�(α)

(

1 + O

(
1

n

))

.

We therefore have the following:

Proposition 5.2 (i) if λ < ν then X p(λ) ≺ X pb(ν, α, β);
(ii) if μ < ν then Xhp(μ, η) ≺ X pb(ν, α, β).

Now assume that X is an element of � with probability mass function satisfying
(23), Y is an element of � with probability mass function satisfying (24), and X ≺ Y .
Then for the random variable Z with

pX (n) = cpY (n)pZ (n), n ∈ N0,

we have that the probability mass function of Z satisfies the following second order
inverse recursion:

1

pZ (n)
= cpY (n)

pX (n)
= g(n)

f (n)

1

pZ (n − 1)
+ h(n)

f (n) f (n − 1)

1

pZ (n − 2)
, n > 1. (26)

5.1 Recursion formula

Let X belong to the family of distributions satisfying (20) and let Y belong to the
family of distributions satisfying (22). Then X follows either Poisson or Negative
Binomial distribution. In the first case we have that in (20) a0 = 0 and applying (25)
we get that the probability mass function of Z satisfies the reccurence relation

p(n) = 1

b0
(a2n + b2)p(n − 1) + 1

b20
(c2n + d2)p(n − 2), n > 1. (27)

123



84 A. Beknazaryan, P. Adamic

Dividing both sides of the above expression by n + 1 we can rewrite (27) as

1

n + 1
p(n) =

[
a2
b0

+ b2 − a2
b0(n + 1)

]

p(n − 1) +
[
c2
b20

+ d2 − c2
b20(n + 1)

]

p(n − 2), n > 1.

If X follows a Negative Binomial distribution, then in (20) a0 �= 0 and applying (25)
we get

(a0n + b0)(a0n − a0 + b0)p(n) = (a2n + b2)(a0n − a0 + b0)p(n − 1)

+ (c2n + d2)p(n − 2), n > 1. (28)

As the coefficients of each of p(n), p(n−1) and p(n−2) in the above expression are
polynomials on n of degree at most 2, then each of them can be written in the form
d1(n + 1)(n + 2) + d2(n + 1) + d3, where for each case the values of the fixed terms
d1, d2 and d3 are determined by the values of corresponding fixed terms appearing in
(28). Using this decomposition and dividing both sides of (28) by (n+1)(n+2) (also
using 1

(n+1)(n+2) = 1
n+1 − 1

n+2 ), we get that (28) can be rewritten as

[

a20 + 2a20 + b20 − a0b0
n + 1

+ 3a0b0 − 6a20 − b20
n + 2

]

p(n)

=
[

a0a2 + 2a0a2 + b0b2 − 2a0b2 − a2b0
n + 1

+ 2a2b0 − 6a0a2 + 3a0b2 − b0b2
n + 2

]

p(n − 1)

+
[
d2 − c2
n + 1

+ 2c2 − d2
n + 2

]

p(n − 2), n > 1.

Thus, in both cases we get that the probability mass function of Z satisfies the
recurrence relation

[

A + B

n + 1
+ C

n + 2

]

p(n)

=
[

D + E

n + 1
+ F

n + 2

]

p(n − 1)

+
[

G + H

n + 1
+ J

n + 2

]

p(n − 2), n > 1. (29)

Now assume that the counting random variable N with p(n) = P(N = n) satisfies
(29) and consider the compound distribution

S = M1 + · · · + MN ,

where, as before, claim sizes M1, M2, . . . are independent and identically distributed
discrete random variables which are independent of N and follow a common distri-
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bution M , hk = P(M = k) and

gk = P(S = k) =
∞∑

n=1

p(n)h∗n
k ,

with g0 = GN (h0). If k > 0, then multiplying both sides of (29) by h∗n+2
k and

summing over n ≥ 2 yields

A
∞∑

n=0

p(n + 2)h∗n+4
k + B

∞∑

n=0

p(n + 2)
h∗n+4
k

n + 3
+ C

∞∑

n=0

p(n + 2)
h∗n+4
k

n + 4

= D
∞∑

n=0

p(n + 1)h∗n+4
k + E

∞∑

n=0

p(n + 1)
h∗n+4
k

n + 3
+ F

∞∑

n=0

p(n + 1)
h∗n+4
k

n + 4

+ G
∞∑

n=0

p(n)h∗n+4
k + H

∞∑

n=0

p(n)
h∗n+4
k

n + 3
+ J

∞∑

n=0

p(n)
h∗n+4
k

n + 4
.

(30)

Denoting

Pi (t) =
∞∑

n=0

p(n)
tn+i

n + i
, i = 1, 2, 3,

and applying formulae (29)–(31) from Kitano et al. (2005) together with

h∗n+i
k =

k∑

j=0

h∗i
j h

∗n
k− j

and

h∗n+i
k

n + i
= 1

ik

k∑

j=0

jh∗i
j h

∗n
k− j ,

0 < i ≤ 4, we get

∞∑

n=0

p(n + 2)h∗n+4
k =

∞∑

n=0

p(n)h∗n+2
k − p(0)h∗2

k − p(1)h∗3
k

=
k∑

j=0

h∗2
j gk− j − p(0)h∗2

k − p(1)h∗3
k , (31)

∞∑

n=0

p(n + 2)
h∗n+4
k

n + 3
=

∞∑

n=0

p(n)

n + 1
h∗n+2
k − p(0)h∗2

k − p(1)
h∗3
k

2
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=
k−1∑

j=0

k− j∑

i=1

i

k − j
h j hi gk− j−i + hk P1(h0) − p(0)h∗2

k − p(1)
h∗3
k

2
, (32)

∞∑

n=0

p(n + 2)
h∗n+4
k

n + 4
=

∞∑

n=0

p(n)

n + 2
h∗n+2
k − p(0)

h∗2
k

2
− p(1)

h∗3
k

3

= 1

2k

k∑

j=0

jh∗2
j gk− j − p(0)

h∗2
k

2
− p(1)

h∗3
k

3
, (33)

∞∑

n=0

p(n + 1)h∗n+4
k =

k∑

j=0

h∗3
j gk− j − p(0)h∗4

k , (34)

∞∑

n=0

p(n + 1)
h∗n+4
k

n + 3
=

k−1∑

j=0

k− j∑

i=1

i

2(k − j)
h j h

∗2
i gk− j−i

+hk P2(h0) − p(0)
h∗3
k

2
, (35)

∞∑

n=0

p(n + 1)
h∗n+4
k

n + 4
= 1

3k

k∑

j=0

jh∗3
j gk− j − p(0)

h∗3
k

3
, (36)

∞∑

n=0

p(n)h∗n+4
k =

k∑

j=0

h∗4
j gk− j , (37)

∞∑

n=0

p(n)
h∗n+4
k

n + 3
=

k−1∑

j=0

k− j∑

i=1

i

3(k − j)
h j h

∗3
i gk− j−i + hk P3(h0), (38)

∞∑

n=0

p(n)
h∗n+4
k

n + 4
= 1

4k

k∑

j=0

jh∗4
j gk− j . (39)

Substituting (31)–(39) into (30) and solving for gk yields

gk = 1

Dh30 + Hh40 − Ah20

{ k∑

j=1

gk− j

[
Ah∗2

j + C

2k
jh∗2

j − Dh∗3
j − G

3k
jh∗3

j

− Hh∗4
j − K

4k
jh∗4

j

]

+
k−1∑

j=0

k− j∑

i=1

i

k − j
gk− j−i

[
Bh jhi − Fhih

∗2
j − J

3
h j h

∗3
i

]

− p(0)
[
Ah∗2

k + Bh∗2
k + C

h∗2
k

2
− Dh∗4

k − Fh∗3
k − G

h∗3
k

3

]

− p(1)
[
Ah∗3

k + B
h∗3
k

2
+ C

h∗3
k

3

]
+ Bhk P1(h0) − Fh∗2

k P1(h0) − Jhk P3(h0)

}

.

(40)
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In conclusion of this section we note that while the recurrence formula for the com-
pound distributions with counting distrbution satisfying (26) cannot be obtained using
the very same technique as above, it may still be interesting to derive properties of
those distributions by employing different techniques.

6 Applications

(i)Applications to reliability theory.Recall, that thehazard function (also called instan-
taneous failure rate) of a continuous random variable X with density function f (x)
is defined as

h(t) = f (t)

R(t)
= − d

dt
ln R(t),

where R(t) = P(X > t) is the survival function. The cumulative hazard function of
X can then be written as

H(x) :=
∫ x

0
h(t)dt = − ln R(x). (41)

The cumulative hazard function measures the risk of failure by time x . For discrete
random variables the hazard function is usually defined as

rX (k) = pX (k)

RX (k − 1)
,

and, in order to preserve the relation (41) between the cumulative hazard function and
the survival function for the discrete case, some authors (see, e.g., Cox and Oakes
1984) define the discrete cumulative hazard function as

HX (n) := −
∑

k≤n

ln[1 − rX (k)] = − ln RX (n).

Alternatively, the relation (41) can be preserved in the discrete case by (re)defining
the hazard function of a discrete random variable X as

r∗
X (k) = −[

ln RX (k) − ln RX (k − 1)
] = ln

RX (k − 1)

RX (k)
,

as it is done in Xie et al. (2002). The discrete cumulative hazard function is then given
by

HX (n) :=
n∑

k=0

r∗
X (k) = ln RX (−1) − ln RX (n) = − ln RX (n),
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as RX (−1) = 1. Clearly, limn→∞ HX (n) = ∞. Let us now check that if X ,Y ∈
� and X ≺ Y then HX (n) is asymptotically much bigger than HY (n). Indeed, by
Theorem 3.1,

HX (n) − HY (n) = − ln RX (n) + ln RY (n) = ln
RY (n)

RX (n)
→ ∞,

as n → ∞.
The reverse hazard function of X ∈ � is defined as (see Chechile 2011)

λX (n) =
{
1, n = 0
pX (n)
FX (n)

, n > 0,

and it gives the conditional probability of the failure at the n-th event given that failure
occurs at k ≤ n. As pX (0) ≤ FX (n) ≤ 1 and pY (0) ≤ FY (n) ≤ 1, n ∈ N0, we have
that X ≺ Y if and only if

∑∞
n=0

λX (n)
λY (n)

< ∞. In particular, if X ≺ Y , then

lim
n→∞

λX (n)

λY (n)
= 0.

For X ∈ �, the odds for surviving age n is given by the odds function for survival

OX (n) = P(X > n)

P(X ≤ n)
= RX (n)

FX (n)
, n ∈ N0.

From Theorem 3.1 it follows that if X ≺ Y then

lim
n→∞

OX (n)

OY (n)
= 0.

(ii) Poisson shock model. Consider two devices that are subject to shocks occuring
randomly in time as events in a Poisson process with constant intensity λ. Let the
probabilities of failure of the devices on the n-th shock be respectively pX (n) and
pY (n). Then, if RX (n) = ∑

k≥n pX (k) and RY (n) = ∑
k≥n pY (k), the probability

that the devices survive until time t are given respectively by the formulae (see, e.g.,
Esary et al. 1973)

HX (t) =
∞∑

n=0

RX (n)
(λt)n

n! e−t and HY (t) =
∞∑

n=0

RY (n)
(λt)n

n! e−t .

Below we show that if X ≺ Y then limt→∞ HX (t)/HY (t) = 0. By Theorem 3.1,
limn→∞ RX (n)/RY (n) = 0, and, therefore, for any ε > 0 there exists N ∈ N such
that RX (n)/RY (n) < ε for n > N . We then have that

HX (t)

HY (t)
=

∑N
n=0 RX (n)(λt)n/n! + ∑∞

n=N+1 RX (n)(λt)n/n!
∑N

n=0 RY (n)(λt)n/n! + ∑∞
n=N+1 RY (n)(λt)n/n!
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<

∑N
n=0 RX (n)(λt)n/n! + ∑∞

n=N+1 εRY (n)(λt)n/n!
∑N

n=0 RY (n)(λt)n/n! + ∑∞
n=N+1 RY (n)(λt)n/n!

<

∑N
n=0 RX (n)(λt)n/n!

∑∞
n=N+1 RY (n)(λt)n/n! + ε.

As t → ∞, the first summand of the last expression goes to 0. Hence, there
exists T > 0 such that HX (t)/HY (t) < 2ε for t > T , which means that
limt→∞ HX (t)/HY (t) = 0.

(iii) Sampling with visibility bias. Recall that formula (15), which defines the order
≺, was initially motivated by the factorization of rational functions that generate
discrete distributions. In the following example we show how the same structural
connection between discrete distributions can arise in practice in a completely different
setting such as sampling with visibility bias to estimate wildlife abundance.

One of the most practical ways of estimating wildlife abundance are aerial surveys.
However, when conducting such surveys, the visibility bias caused by various fac-
tors, such as snow cover, dense vegetation and observer fatigue, need to be taken into
account. There are various techniques proposed in the literature that tackle the prob-
lem of population estimation in the face of visibility bias. For example, the quadrat
sampling method proposed in Cook andMartin (1974) is based on the exploration of a
collection of quadrats within the area of interest. It is then assumed that the number of
groups within those quadrats and the size of each group are independently distributed
and that each animal is observed with probability p. We say that the group of n ani-
mals is observed if all its members are observed. Then a group of size n is observed
with probability pn . Now let the random variables X and Y represent, respectively,
the established and the true number of animals in a group. Then we have that

pX (n) = cpY (n)pn = c

1 − p
pY (n)pn(1 − p),

where c = (
∑∞

k=1 pY (k)pk)−1. Thus, the above formula is identical to (15) with Z
following a Geometric distribution with parameter 1 − p.

Conclusion

We factorize rational functions that recursively generate probability mass functions to
obtain a factorization of those probability mass functions. In case the denominator of
the generating rational function is amonomial, we show that the probabilitymass func-
tion can be factorized into a product of 4 different types of mass functions, 2 of which
correspond to the Poisson and the Negative Binomial distrbutions. This factorization
leads to a definition of a stochastic order � on the space � of discrete distributions
that are supported onN0. We show that {�,�} is a partially ordered set and present its
main properties. Remarkably,≺ is not only closed under the operations of addition and
multiplication, but is also invariant under relabelings of discrete distributions. In many
setups,≺ is also closed under the operation of compounding distributions. The relation
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X ≺ Y also implies a strong relation limn→+∞ RX (n)/RY (n) = 0 between the sur-
vival functions of X and Y . Comparison of some common distributions with respect
to ≺ allows to generate new families of distributions that satisfy various recurrence
relations. For some of those families, when their members play the role of counting
distributions, recursive formulae for the probabilities of corresponding compound dis-
tributions are derived. Obtained results have various applications in survival analysis
and in aerial census with visibility bias.
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