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Abstract
The paper discusses very general extensions to existing inflation models for discrete
random variables, allowing an arbitrary set of points in the sample space to be either
inflated or deflated relative to a baseline distribution. The term flation is introduced
to cover either inflation or deflation of counts. Examples include one-inflated count
models where the baseline distribution is zero-truncated and count models for data
with a few unusual large values. The main result is that inference about the baseline
distribution can be based solely on the truncated distribution which arises when the
entire set of flation points is truncated. A major application of this result relates to
estimating the size of a hidden target population, and examples are provided to illustrate
our findings.

Keywords One-inflation · Multiple inflation · Zero-truncation with one-inflation ·
Multiple truncation

1 Introduction

Zero-inflation models, in particular zero-inflated Poisson models, are very popular in
many areas of science and applications that deal with count data modelling. Since the
original work of Lambert (1992), contributions have been manifold [see Wagh and
Kamalja (2018) for a recent review]. The central idea of a zero-inflated model is to
put an extra point-mass at zero, where the counts larger than zero are modelled by a
simple count distribution, called the baseline distribution. Most applications consider
the Poisson as baseline distribution, but more recently other baseline distributions
have been considered, including the negative-binomial and binomial distributions.
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Estimation of parameters is typically based upon the EM algorithm [see Meng (1997)
for an early work and McLachlan and Krishnan (2007) for the general concept]. Very
little consideration has been given to cases in which inflation occurs at count locations
other than zero. A rare exception is Godwin (2017), who considers inflation at counts
of one for zero-truncated count models that arise in the capture-recapture setting.
Furthermore, very little work has been done for cases where the weight attached to
a specific count is allowed to be negative. Dietz and Böhning (2000) consider such a
scenario for zero-modified Poisson models.

Here, we define a more general class of models for count data, where an arbitrary
set of counts are allowed to have either inflated or deflated probabilities relative to a
baseline model. We use the term “flation” to allow for either inflation or deflation of
values. This includes the cases of zero- and one-inflation as special cases. We derive
a simple closed-form expression for the maximum likelihood estimator of the flation
parameters, and show that the profile likelihood for the parameters of the underlying
count model is identical to the likelihood of the model after truncating the flated (i.e.
inflated or deflated) counts.

The paper is organised as follows. Section 2 introduces and discusses the model,
and Sect. 3 illustrates the problem in two substantially different examples. Section 4
contains the main results, and Sect. 5 describes how information criteria may be used
to choose between candidate models. Section 6 describes the use of our methods for
zero-truncated count modelling and Horvitz–Thompson estimation of population size.
Section 7 shows how our results can be applied in the examples. The paper ends with
a brief discussion.

2 A general flationmodel

Let Y be any discrete random variable, taking values in some setY . For count data, we
typically have Y = {0, 1, 2, . . .}, but the model may be defined in the more general
case.

We start with a baseline model for the probability mass function p(y; θ), for each
y ∈ Y , depending on unknown baseline parameters θ ∈ Θ ⊆ R

p.
To define a general flation model, suppose that there is specified subset of d values

Y+ = {y+
1 , . . . , y+

d } ⊆ Y which are allowed to have probabilities different from that
assumed under the baseline model. The flation model has probability mass function

p+(y; θ, π) =
{

πi + π0 p(y; θ) if y = y+
i

π0 p(y; θ) if y /∈ Y+,
(1)

where π = (π0, π1, . . . , πd), and
∑d

i=0 πi = 1. We must also restrict π to ensure that
p+(y; θ, π) ≥ 0 for all y ∈ Y , which means that π0 ≥ 0 and πi ≥ −π0 p(y

+
i ; θ). We

call π the flation parameters.
Since we do not insist that πi ≥ 0, as well as modelling inflation of certain values,

the model may also be used tomodel situations in which some values exhibit deflation,
in that the true probability for that value is lower than under the baseline model.
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Table 1 Frequencies of the number of times perpetrators of a domestic violence incident were identified in
the Netherlands in 2009 (van der Heijden et al. 2014)

Number of 0 1 2 3 4 5 6 7 8 9

Frequency – 15,169 1957 393 99 28 8 6 1 1

3 Examples

We illustrate the occurrence of inflation with two examples.

3.1 Domestic violence in the Netherlands

It is known that domestic violence is largely a hidden activity and many incidents
remain unreported (Summers and Hoffman 2002) and it is of interest to estimate the
size of the hidden activity. We consider domestic violence data provided by van der
Heijden et al. (2014), which record the number of times perpetrators were identified
in a domestic violence incident in the Netherlands during the year 2009, excluding
the police region for The Hague. There were 15,169 perpetrators identified as being
involved in a domestic violence incident exactly once, 1957 exactly twice, and so
forth. In total, there were 17,662 different perpetrators identified.

Ifwe arewilling to assumeaPoissonmodel, p(y; θ) = exp(−θ)θ y/y!, then exploit-
ing the fact that p(0; θ) = 1

2 p(1; θ)2/p(2; θ) leads to the estimate f̂0 = 1
2 f 21 / f2

where fx denotes the frequency of perpetrators with x identifications. For the data of
Table 1, we find the value of 58,789 hidden perpetrators. This estimator was developed
for use in ecology (Chao 1984, 1987, 1989) and it is now one of the most popular
estimators in ecology. This is due to the fact it has a lower bound property which
means that under heterogeneity the estimator provides a lower bound (in expectation)
for the true size of the population of interest.

This estimator depends on the baseline distribution and will change with its form.
If the baseline distribution follows a geometric distribution p(y; θ) = θ(1 − θ)y , for
y = 0, 1, . . . then f̂0 = f 21 / f2, with a value of 117,577 for the data of Table 1.

Figure 1 shows a plot of the estimated CDF from a zero-truncated Poisson model,
including a 95% confidence interval for the CDF,with the empirical CDF overlaid. The
zero-truncatedPoisson distribution underestimates the number of ones, andfits the data
poorly, so an alternative model is required. One possible cause of this one-inflation is
that there may be a behavioural change as a result of identification: many perpetrators
may refrain from this activity after the first incidence. We will determine whether the
data are consistent with such a behavioural change, and study the implications for
estimation of the number of unobserved perpetrators in the population.

3.2 Studies using counts of falls as outcome

In fall prevention trials, in particularwith patientswith Parkinson’s disease, the number
of falls is typically zero, one, or two. In Table 2, a typical distributions of fall counts
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Fig. 1 The estimated CDF from a zero-truncated Poisson model for the domestic violence data, including
a 95% confidence interval for the CDF, with the empirical CDF overlaid. The y-axis is zoomed in to the
region (0.8, 1)

Table 2 The distribution of fall counts in a study on Parkinson’s disease (Ashburn et al. 2007)

Number of falls 0 1 2 3 4 5 6 7 8 9 11 15 19 499

Frequency 50 30 14 9 6 4 3 4 1 2 3 1 1 1

in a fall prevention study is presented (Ashburn et al. 2007). In this data set, 75% of
all patients fell at most 3 times, with the remainder of the patients falling at most 19
times—except one patient who had a very large number of falls, 499 in total. This
observation would be difficult to catch even for a long-tailed distribution. However,
it is also clear that it could have significant impact on the mean structure if ignored.
Here it seems more reasonable to consider a flated distribution which puts small mass
at the large fall.

4 Inference about themodel parameters

Suppose we have data y1, . . . , yn , assumed to be samples from model (1). The log-
likelihood for the baseline and flation parameters is

log L(θ, π) =
n∑

i=1

log p+(yi ; θ)

=
∑

yi /∈Y+
{logπ0 + log p(yi ; θ)} +

d∑
j=1

∑
yi=y+

j

log{π j + π0 p(y
+
j ; θ)}
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= f0 logπ0 +
∑

yi /∈Y+
log p(yi ; θ) +

d∑
j=1

f j log{π j + π0 p j (θ)},

where we write f j = |{i : yi = y+
j }| for the number of times y+

j appears in the

sample, p j (θ) = p(y+
j ; θ) for the probability of y+

j under the baseline model, and

f0 = n − ∑d
j=1 f j for the number of non-flated values in the sample.

Next, we aim to find the profile log-likelihood for θ . To do this, we first find π̂(θ) to
maximise the log-likelihood for each fixed θ , subject to the constraint

∑d
i=0 πi = 1.

Proposition 1 For each fixed θ

π̂0(θ) = f0
np0(θ)

, and π̂ j (θ) = f j p0(θ) − f0 p j (θ)

np0(θ)
, for j = 1, . . . , d,

where p0(θ) = 1 − ∑d
j=1 p j (θ) is the total probability assigned to all non-flated

values under the baseline model.

The proof is given in “Appendix 1”. By Proposition 1, the profile log-likelihood for
θ is

log L p(θ) = log L(θ, π̂(θ)) (2)

=
∑

yi /∈Y+

{
log

f0
np0(θ)

+ log p(yi ; θ)

}
+

d∑
j=1

f j log
f j
n

=
∑

yi /∈Y+
{log p(yi ; θ) − log p0(θ)} +

d∑
j=0

f j log
f j
n

. (3)

We may maximise this profile log-likelihood to estimate θ as θ̂

= argmax log L(θ, π̂(θ)). The maximum likelihood estimator for π is π̂ = π̂(θ̂ ).
We could also use this profile log-likelihood to test hypotheses or find confidence

intervals for θ .

Remark 1 As a consequence of Proposition 1, for each θ ∈ Θ , the fitted probability
of observing each y+

i ∈ Y+ is

p+(y+
i ; θ, π̂(θ)) = π̂i (θ) + π̂0(θ)p(y+

i , θ)

= fi p0(θ) − f0 pi (θ)

np0(θ)
+ f0

np0(θ)
pi (θ)

= fi
n

,

so the fitted probability for any point in the flation set is equal the corresponding
observed proportion.
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Remark 2 If Y follows (1), for each y /∈ Y+, we can find the flation-truncated distri-
bution

ptrunc(y; θ) = P(Y = y|Y /∈ Y+)

= p+(y; θ)∑
z /∈Y+ p+(z; θ)

= π0 p(y; θ)∑
z /∈Y+ π0 p(z; θ)

= p(y; θ)

p0(θ)
(4)

We could consider the log-likelihood based only those observations ytrunc not in
Y+, assumed to be samples from the flation-truncated distribution (4). This truncated
log-likelihood is

log L(θ; ytrunc) =
∑

yi /∈Y+
log ptrunc(yi ; θ) =

∑
yi /∈Y+

{log p(yi ; θ) − log p0(θ)} . (5)

The profile log-likelihood (3) for θ under the flation model is the truncated log-
likelihood plus a term not involving θ , so all inference on θ is equivalent to that
obtained by truncating Y+.

5 Model choice

In Sect. 4, we described how to conduct inference on the model parameters, assuming
a particular baseline model and that Y+ is a fixed set. In reality, we may want to
compare several candidate baseline models and choices of the flation set Y+.

We could use standard information criteria to do this. For a given candidate model,
consisting of a specified baseline model and flation set, suppose that the dimension
of the baseline parameter θ is p, and the dimension of the flation set is d. Suppose
that the profile log-likelihood for this model is log L p(θ), given by (3), and write
�̂ = log L p(θ̂) for the maximised log-likelihood under the model.

The Akaike information criterion (AIC) is

AIC = 2(p + d) − 2�̂,

and the Bayesian information criterion (BIC) is

BIC = (p + d) log(n) − 2�̂.

We will use these information criteria to compare various possible models for our
example data sets.

Here �̂ is the maximised log-likelihood under the flation model, which is different
from the maximised truncated log-likelihood (5). While for a fixed model, inference

123



General flation models for count data 251

about the model parameters may be conducted by truncating the flation set, we must
use the full flation likelihood, involving all observations, to choose between models.

We have focussed here on selection criteria such as AIC and BIC as these allow
a general approach to model assessment. However, other methods are also possible,
including likelihood ratio testing for specific models. For example, in investigating
inflationmodels (allπi s non-negative) it might be of interest to test the null-hypothesis
H0 : π0 = 1 (no inflation present) against the alternative H1 : π0 ∈ (0, 1). Particular
caution is required in this case, as the null hypothesis is part of the boundary of the
alternative and the likelihood ratio test has a non-standard distribution under H0. For
details see Self and Liang (1987).

6 Estimating the number of unobserved zeroes

6.1 Horvitz–Thompson estimation

We consider now the special case Y = {0, 1, 2, . . .}, with some appropriate count
distribution as the baseline model. We assume that, as a consequence of the sampling
model, zeros are not observed, so that the observational baseline model becomes
p(y; θ)/[1− p(y0; θ)] for y0 = 0 and y = 1, 2, . . .. This corresponds to the situation
of Example 3.1. In order to conduct inference on θ , we can simply consider the baseline
distribution truncated at both 0 and the flation set Y+, equivalent to including 0 in Y+
in (5).

Recall that p0(θ) denotes the probability assigned to all non-flated values under
the baseline model and f0 is the frequency of all non-flated values in Y . We are
interested in estimating the frequency fy0 associated with the truncated value y0 as
this is the hidden part of the target population. This can be simply achieved by a
Horvitz–Thompson-type estimator

f̂ y0(θ) = f0
p0(θ)

p(y0; θ). (6)

Assuming that the hidden counts belong to the baseline model, f̂ y0(θ) is an unbiased
estimator of the true frequency of hidden counts Np(y0; θ), where N is the size of the
target population. An unbiased estimator of the population size N itself is then

N̂ (θ) = n + f̂ y0(θ),

where n is the size of the entire observed sample. In practice, the unknown value of θ

needs to be replaced by its maximum likelihood estimate from the truncated sample
(which will exclude y0 and potentially other values in Y).

6.2 Standard errors

We are interested in providing a standard error for f̂ y0(θ̂) assuming that θ is estimated
(say by using maximum likelihood). We use the technique of conditional moments to
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find that

Var
(
f̂ y0(θ̂)

)
= E

[
Var

(
f0

p0(θ̂)
p(y0; θ̂ )| f0

)]
+ Var

[
E

(
f0

p0(θ̂)
p(y0; θ̂ )| f0

)]
. (7)

The first term in (7) can be estimated as

f 20 Var
[
p(y0; θ̂ )/p0(θ̂)

]
= f 20 Var

(
T (θ̂)

)
≈ f 20 T

′(θ̂)2Var(θ̂), (8)

where we have used the δ−method for the variance of the transformation T (θ) =
p(y0; θ)/p0(θ). This is the most general form and more concrete results will depend
on the structure of T (.). We assume here that an estimate of Var(θ̂) is readily avail-
able from standard results, e.g. by using the Fisher information if θ is estimated by
maximum likelihood.

The second term in (7) can be estimated as

p(y0; θ̂ )2

p0(θ̂)2
Var( f0) = p(y0; θ̂ )2

p0(θ̂)2
Np0(θ̂)(1 − p0(θ̂)) ≈ p(y0; θ̂ )2

p0(θ̂)2
f0(1 − p0(θ̂)).(9)

The second term allows a very general form of result and does not depend on the
specific form of T (.).

To illustrate these findings let us consider the geometric distributionwith probability
mass function p(y; θ) = θ(1− θ)y for y = 0, 1, . . . ,. First, we take the case of zero-
truncationwith one-flation. As the zero-one truncated is again a geometric distribution,
we can find the maximum likelihood estimator as θ̂ = f0/( f0 + S) where S =∑m−2

x=0 xgx where m is the largest observed count and gx−2 = fx for x = 2, . . . ,m,
f0 = f2 + · · · + fm . Furthermore, an estimate of Var(θ̂) can be found as the negative

inverse observed Fisher information as
(

f0
θ̂2

+ S
(1−θ̂ )2

)−1
.

Hence, we are ready to calculate (8) as

f 20
(1 + θ̂ )2

(1 − θ̂ )6
Var(θ̂)

and (9) as

θ̂2

[1 − θ̂ − θ̂ (1 − θ̂ )]2 [θ̂ + θ̂ (1 − θ̂ )] f0.

We now look at the zero-truncation case without one-flation. Again the zero-
truncated is a geometric distribution, so that we can find the maximum likelihood
estimator as θ̂ = f0/( f0 + S) where S = ∑m−1

x=0 xgx where m is the largest observed
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count and gx−1 = fx for x = 1, . . .m, f0 = f1 + · · · + fm . Furthermore, an esti-
mate of Var(θ̂) can be found as the negative inverse observed Fisher information as(

f0
θ̂2

+ S
(1−θ̂ )2

)−1
. We can calculate again (8) as

f 20
1

(1 − θ̂ )4
Var(θ̂)

and (9) as

θ̂3

[1 − θ̂ ]2 f0.

This completes the illustration. We will use the standard errors to provide confidence
intervals for the estimated frequency of hidden members of the target population,
under the assumption that these hidden members belong to the baseline model.

7 Application to the examples

7.1 Domestic violence in the Netherlands

It is reasonable to assume that among theunobservedperpetrators of domestic violence,
there is a sub-population who would exhibit a behavioural change if they were caught,
and refrain from further violence. Under this assumption, it is not possible to estimate
the size of this sub-population from the data, as they would never be observed more
than once. Instead, wemay use themethods described in Sect. 6 to estimate the number
of unobserved perpetrators who would not change their behaviour after being caught.
The size of this second sub-population of offenders can also be used as a lower bound
for the size of the entire unobserved population of perpetrators.We investigate how this
lower bound compares with an estimate of the size of the unobserved population made
under the assumption that identification of perpetrators does not lead to a behavioural
change.

We consider the geometric distribution p(y; θ) = (1 − θ)yθ with θ ∈ (0, 1) as
baseline model. The log-likelihood for the zero-one truncated model is

log L(y; θ) =
m∑
y=2

fy log[(1 − θ)y−2θ ].

Here m is the largest observed count (m = 9). The maximum likelihood estimate is
given as θ̂ = ∑

y≥2 fy/[∑y≥2 y fy − ∑
y≥2 fy] which we use as a plug-in estimate

in (6). Fitting a zero-one-truncated model leads to a maximum likelihood estimate
of θ̂ = 0.77 with an associated Horvitz–Thompson-type estimate of the number of
hidden perpetrators in the second sub-population of f̂ y0(θ̂) = 35,832. This seems like
a large number but is considerably lower than Chao’s ‘lower’ bound estimate (using
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Table 3 AIC and BIC for various models for the domestic violence data with estimates of the hidden
population size

Base Flation AIC BIC f̂ y0 (θ̂ ) (95%CI)

Poisson None 18,445.78 18,453.56 42,539 (40,771–44,307)

Geometric None 18,043.26 18,051.04 96,191 (92,360–100,021)

Poisson 1 17,955.37 17,970.93 5979 (5027–6930)

Geometric 1 17,890.16 17,905.72 35,832 (30,481–41,183)

the geometric as baseline) of 117,577. The estimate f̂ y0(θ̂) = 96,191 under the zero-
truncated geometric model is similar to Chao’s estimate as it also uses the frequency
of ones.

Table 3 compares Poisson and geometric models for this data, with either no fla-
tion or one-flation. Both AIC and BIC lead us to prefer the geometric model with
one-flation. The last column of Table 3 provides an estimate of the size of the sec-
ond hidden sub-population of perpetrators, including a 95% confidence interval. The
lower end of this confidence interval may be viewed as a lower bound for the entire
hidden population of perpetrators. This lower bound is substantially smaller than both
Chao’s lower bound and the Horvitz–Thompson estimate under the geometric model
without flation. This demonstrates that ignoring the possible impact of the observation
mechanism on future incidents may lead to an over-estimation of the size of a hidden
population.

Figure 2a shows a plot of the estimated CDF assuming a zero-truncated geometric
model, including a 95% confidence interval for the CDF, with the empirical CDF
overlaid. The zero-truncated geometric distribution provides a better fit to the data
than the zero-truncated Poisson distribution from Fig. 1, but still underestimates the
number of ones. Figure 2b shows a similar plot but with the a one-flated zero-truncated
geometricmodel. This provides a good fit to the data, with the empirical CDFmatching
the estimated CDF closely, and contained within the limits of the confidence bands.
The data are consistent with the theory that a sub-population of perpetrators refrain
from domestic violence after first identification.

7.2 Studies using counts of falls as outcome

In this case we find for the ordinary Poisson model a maximum likelihood estimate
of 5.95 with 95% confidence interval of 5.54–6.38 whereas the flated Poisson model
with flation parameter y0 = 499 has a maximum likelihood estimate of 2.09 with 95%
confidence interval of 1.86–2.36. This shows the large impact of high fallers in this
study and the potential for flated effect estimates if large observations are ignored.

Table 4 compares Poisson, geometric and negative Binomial models for this data,
with either no flation, flation at 499. Both AIC and BIC lead us to prefer the negative
Binomial with flation at 499. We can conclude that the fit of the model can be largely
improved here by using a simple one-flation model for the large observation and
potential biasing effects can thus be avoided.
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(a) Zero-truncated geometric
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(b) One-flated zero-truncated geometric

Fig. 2 The estimated CDF from two models for the domestic violence data, including a 95% confidence
interval for the CDF, with the empirical CDF overlaid. The y-axis is zoomed in to the region (0.8, 1)

Table 4 AIC and BIC for
various models for the falls data

Base Flation AIC BIC

Poisson None 4559.29 4562.15

Geometric None 740.50 743.36

Neg. Bin. None 595.56 601.28

Poisson 499 703.32 709.03

Geometric 499 514.10 519.82

Neg. Bin. 499 509.11 517.69
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(a) Negative binomial
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(b) Negative binomial with 499-flation

Fig. 3 The estimated CDF from two models for the falls data, including a 95% confidence interval for the
CDF, with the empirical CDF overlaid

Figure 3a shows a plot of the estimated CDF assuming a negative binomial model,
including a 95% confidence interval for the CDF, with the empirical CDF overlaid.
The negative binomial is a more flexible distribution than the Poisson, but fails to fit
the data well. Figure 3b shows a similar plot but with the 499-flated negative binomial
model. We observe that this provides a good fit to the data, with the empirical CDF
matching the estimated CDF closely, and contained within the limits of the confidence
bands.

Instead of allowing the count of 499 to be flated, it is also possible to consider
flation for a large range of counts in this example, for instance all counts from 20 to
1000. In this case, the fitted models under 20–1000 flation are very close to those with
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Table 5 The distributions used to generate data for the simulation study

Model Baseline distribution Flation Flation parameters N

P Poisson (0.347) None N/A 60,201

G geometric (0.845) None N/A 113,819

P1 Poisson (0.793) 1 π1 = 0.780 19,616

G1 geometric (0.769) 1 π1 = 0.828 20,347

N samples were simulated from each of these distributions, then the zeroes were removed

499 flation, both in terms of the estimates of the baseline parameters and of the fitted
model probabilities.

8 Simulation study

To validate our approach, we conduct a simulation study based on the application
to the domestic violence data from Sect. 7.1. We simulate data from each of the
four models considered there: a Poisson model (which we refer to as model P), a
geometric model (G) a Poisson model with one-flation (P1), and a geometric model
with one-flation (G1). In each case, we use themaximum likelihood estimates from the
domestic violence data as parameter values in our simulation. Each simulated dataset is
constructed by taking N samples from the distribution, then removing all zero counts.
For each model, we choose this total population size N so that the expected number
of non-zero counts is 17,662, to match the number of perpetrators identified at least
once in the domestic violence data. To do this, we choose N to be the closest integer to
17,662/ [1 − P(Y = 0)] , where Y represents the distribution being simulated from,
before zero-truncation occurs. For example, for model P1, with probability π1 =
0.780, we take Y = 1, andwith probability 1−π1 we take Y ∼ Poisson(0.793). In this
case, P(Y = 0) = (1−0.780) exp(−0.793) = 0.100, sowe choose N ≈ 17,662/0.9.
Table 5 gives the parameters used to generate data from each of the four models.

We simulate 10,000 datasets from each model. We fit each of the four candidate
models to each simulated dataset, and compute the AIC and BIC for each model.
Table 6 shows the proportion of times each model was selected by AIC and by BIC.
In this example, BIC outperforms AIC. When we simulate from either model without
one-flation, BIC nearly always chooses the correct model. When we simulate from
either model with one-flation, AIC and BIC choose the same model as one another.
Both criteria always reject the models without one-flation, but are not always able to
distinguish between models P1 and G1, which are both subject to one-flation.

We also consider the quality of our estimates of the total population size, N . Recall
that we fix N to the values given in Table 5. For each simulated dataset and model, we
get an estimate of N . N is estimated either assuming that the form of the true model
is known, or that the form of the model must first be selected by AIC or BIC. For the
i th simulated dataset, we calculate an estimate of N for each of the four candidate
models, then let N̂i be the estimate of N from the selected model. We compute the
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Table 6 The proportion of times each model was selected in the simulation study, using either AIC or BIC

(a) AIC (b) BIC
True model Selected model True model Selected model

P G P1 G1 P G P1 G1

P 0.766 0.000 0.133 0.101 P 0.997 0.000 0.001 0.002

G 0.000 0.795 0.067 0.137 G 0.000 0.994 0.004 0.002

P1 0.000 0.000 0.889 0.111 P1 0.000 0.000 0.889 0.111

G1 0.000 0.000 0.338 0.662 G1 0.000 0.000 0.338 0.662

Table 7 The relative bias and relative RMSE of estimates of the total population size, N

(a) Relative bias (b) Relative RMSE
True model Model selection method True model Model selection method

True model AIC BIC True model AIC BIC

P 0.001 0.304 0.006 P 0.016 0.961 0.143

G 0.001 −0.045 −0.002 G 0.018 0.187 0.049

P1 0.001 0.058 0.058 P1 0.015 0.173 0.173

G1 0.008 −0.033 −0.033 G1 0.042 0.071 0.071

bias and root mean squared error as

bias = 1

nsim

nsim∑
i=1

N̂i − N , RMSE =
[

1

nsim

nsim∑
i=1

(N̂i − N )2

]1/2

,

where nsim = 10,000 is the number of simulated datasets. To make results more
comparable across scenarios, we standardise by finding the relative bias and relative
RMSE, as

relative bias = bias

N
, relative RMSE = RMSE

N
.

Table 7 gives the relative bias and relative RMSE of N̂ for each case.
Assuming the model is known, we also calculated standard errors for the estimates

of N for each of themodels, using the process described in Sect. 6.2. For each simulated
dataset, we used these standard errors to find a 95% confidence interval for N . In our
10,000 simulations, the empirical coverage of the confidence interval for N was 94%
for all models, very close to the nominal 95% level.

9 Discussion

Our paper contains the striking result that inflation models (and flation models more
generally) can be fitted simply by truncating the respective flation points. The estimates
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for the flation weights can then be found in closed form. We allow the flation weights
to be positive or negative, allowing either inflation or deflation. In practice, we see
usually that flation weights are positive.

An open question remains of how to generalise the result for available covariate
information. Of course, the result can be generalised in a stratified way, but the chal-
lenge is to develop a full modelling approach that incorporates the covariates.
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Proof of results

Proof of Proposition 1 To find π̂(θ), we define the Lagrangian

g(θ;π, λ) = log L(θ, π) − λ
( d∑

j=0

π j − 1
)

= f0 logπ0 +
∑

yi /∈Y+
log p(yi ; θ)

+
d∑
j=1

f j log{π j + π0 p j (θ)} − λ
( d∑

j=0

π j − 1
)

Then

∂g

∂π0
= f0

π0
+

d∑
j=1

f j p j (θ)

π j + π0 p j (θ)
− λ,

∂g

∂π j
= f j

π j + π0 p j (θ)
− λ
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for j = 1, . . . , d, and

∂g

∂λ
=

d∑
j=0

π j − 1.

Choosing π̂(θ) to solve ∂g
∂π j

|π̂(θ) = 0 and ∂g
∂λ

|π̂(θ) = 0 gives

π̂0(θ) = f0
λp0(θ)

and

π̂ j (θ) = 1

λ

(
f j − f0 p j (θ)

p0(θ)

)
.

Using the constraint
∑d

j=0 π̂ j (θ) = 1 we find λ = n, and the result follows.
As π needs to meet the restriction that p+(y; θ, π) ≥ 0 for all y ∈ Y , which is

equivalent to π0 ≥ 0 and πi ≥ −π0 p(y
+
i ; θ) for i = 1, . . . , d. So, let us define

Π = {π = (π0, π1, . . . , πd |π0 ≥ 0 and πi ≥ −π0 p(y
+
i ; θ) for i = 1, . . . , d} and

show that Π is convex. We consider π(1), π(2) ∈ Π and α ∈ (0, 1). We need to show
that

απ(1) + (1 − α)π(2) ∈ Π.

Clearly, if π
(1)
0 π

(2)
0 are both non-negative, so is απ

(1)
0 + (1 − α)π

(2)
0 . Next, we need

to show that

απ
(1)
i + (1 − α)π

(2)
i ≥ −[απ

(1)
0 + (1 − α)π

(2)
0 ]p(y+

i ; θ)

for i = 1, . . . , d. This follows from the fact that απ
(1)
i ≥ −απ

(1)
0 p(y+

i ; θ) and

(1 − α)π
(2)
i ≥ −(1 − α)π

(2)
0 p(y+

i ; θ), as π ∈ Π .
Furthermore, a direct argument, using that log(.) is strictly concave, shows that

log L(θ, π) is strictly concave inπ for fixed θ . Indeed, ifπ(1), π(2) > 0with 1Tπ(i) =
1 for i = 1, 2, 1 the vector of ones and α ∈ (0, 1), then

log L(θ, (1 − α)π(1) + απ(1)) ≥ (1 − α) log L(θ, π(1)) + α log L(θ, π(2))

with equality only if π(1) = π(2). Hence π̂ is indeed the unique profile maximum
likelihood estimate. This ends the proof. �	
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