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Abstract

In the present note we consider general linear models where the covariates may be both
random and non-random, and where the only restrictions on the error terms are that they
are independent and have finite fourth moments. For this class of models we analyse
the variance parameter estimator. In particular we obtain finite sample size bounds for
the variance of the variance parameter estimator which are independent of covariate
information regardless of whether the covariates are random or not. For the case with
random covariates this immediately yields bounds on the unconditional variance of
the variance estimator—a situation which in general is analytically intractable. The
situation with random covariates is illustrated in an example where a certain vector
autoregressive model which appears naturally within the area of insurance mathematics
is analysed. Further, the obtained bounds are sharp in the sense that both the lower and
upper bound will converge to the same asymptotic limit when scaled with the sample
size. By using the derived bounds it is simple to show convergence in mean square of the
variance parameter estimator for both random and non-random covariates. Moreover,
the derivation of the bounds for the above general linear model is based on a lemma
which applies in greater generality. This is illustrated by applying the used techniques
to a class of mixed effects models.

Keywords General linear models - Non-Gaussian error terms - Moments of variance

parameter estimators - Finite sample size bounds - Random covariates -
Unconditional bounds

1 The general linear model

The primary model class that will be analysed is defined as follows: Let y be a random
n x 1 vector and let X be a random n x p, matrix of almost surely full column rank,
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rank(X) = p,, with n > py. Further, let ¥ be a symmetric almost surely strictly
positive definite 7 x n matrix. This ensures that we may define X '/2 in the standard
way using orthogonalization. The class of GLMs which will be studied in the present
note are of the form

y=XB+ax!?, (1)

where f isa p, x 1 vector, 0 > 01is a scalar and e is some random n x 1 vector whose
elements are independent. Moreover, we assume that e has, conditional on X and X,
mean 0 and covariance I, together with common central fourth moments @4 > 1
(since 4 := E[e?] > Var(e;)? = 1). Here I denotes the n x n identity matrix. The
standard generalized least squares estimator of §, conditional on X and X, is given
by:

B — (X/Z—lx)—lx/z—ly’

see for instance (Seber and Lee 2003, Sec. 3.10) for this and more on the general
linear model. Moreover, an unbiased estimator of o2 (conditional on X and X), and
the estimator we will focus on in the present note, is given by:

62:=62(X. %) = (y—X[})/):*l (y—X/}). )

Px

The results below will of course remain valid, with the obvious changes, if we
consider an estimator normalized with some other, non-degenerate, function of n and
Px, for instance simply n. It is important to note that when X is assumed to be random
it is assumed to be possible to observe perfectly. That is, we are not dealing with an
errors-in-variables model, which would lead to problems such as biased estimators. In
Example 3 we comment on the situation when the regression coefficients are allowed
to be random instead of the covariates, i.e. we consider mixed effects models.

For the results below it will be useful to define

P=XXz'x)'xz7!,

which corresponds to the projection matrix associated with the linear model (1), and
to also define the idempotent matrices

y.=x"12pxl/2

and
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In particular, using the above it is possible to rewrite 6% according to

2
62 =L ¢'Ke, 3)
P

where p; = rank(K) = n — py, see the proof of Proposition 1 for more details.

We will henceforth focus on properties of the variance of the variance parameter
estimator 62. One can note that the special case of a sample variance in the non-
Gaussian setting, i.e. an intercept only GLM, was treated already in e.g. Cramér (1946,
Eq. 27.4.2). Other similar results are obtained in the theory of minimum variance
component estimation, see e.g. Rao (1970, 1971) and the proof of Seber and Lee
(2003, Thm. 3.4). More general results can be found in for instance (Dette et al. 1998)
where estimation of the variance parameter in the case of nonparametric regression
is treated. Lemma 1 may be seen as a special case of the corresponding expression
for the mean squared error (MSE) from Dette et al. (1998, Eq. 6). In Example 3 we
discuss extensions to mixed effects models and comment on the results in Li (2012)
which extend the analysis in Dette et al. (1998) w.r.t. mixed effects. We will return to
these comparisons in more detail below.

The general problem formulation above, of course, relies on the theory of random
quadratic forms. For more on this topic, see e.g. Eaton (1983), Mathai et al. (2012)
and Seber and Lee (2003) and the references therein.

The results that we obtain for the variance of the variance estimator are based on
that Var(6%| X, ) can be calculated explicitly. For the particular situation of interest
this variance is obtained using the following result from Plackett (1960, Eq. (2), p. 16)
which we state in the following lemma:

Lemma 1 (Plackett 1960) Let z be an n x 1 dimensional vector of independent random
variables with mean 0, and common variance o2, and common fourth central moment
Wa, and let W denote an arbitrary n x n matrix. It then holds that

Var(z' Wz) = o* (2 (W) + (s —3) ) W%) : 4)

i=1

N.B. The last sum in (4) corresponds to the sum of the squared diagonal elements
of W, which should not be confused with tr(W?). The proof of Lemma 1 is given in
Plackett (1960), and a more general version can be found, without proof, in Atiqullah
(1962a), whose proof can be found in Seber and Lee (2003, Thm. 1.6). See also the
derivation of the SE expressions given in Dette et al. (1998) and Li (2012, Lemma 3).

Further, the main objective of the current note is to obtain finite sample bounds for
the variance of the variance estimator of the general linear model defined by (1) when
the covariates may be both random and non-random. In order to prove such bounds
we will make use of the following lemma:

Lemma 2 Given that W from Lemma 1 is idempotent and symmetric it follows that
the variance expression (4) may be bounded according to
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Var(z Wz) € [V, — kn, Vu] i g > 3,
Var(z’Wz) € v, vy —kn]l if1 < g <3,

where v, == o*(q — 1)(n — p,) and

oot =3)p, if pu <n/2,
g o*(us —3)(n — py) if py > n/2,

and where U = I — W and p, = rank(U).

Note that Lemma 2 only relies on Lemma 1 in terms of the explicit form of the
variance given by (4), a fact which will be exploited further in Example 3 given below.
The usefulness of Lemma 2 becomes apparent when the decomposition of W is in
terms of a U with p, being a constant (much) smaller than n. This is what will be
exploited in Corollary 1 and 2 , and which is the motivation for why the bounds in
Lemma 2 are expressed in terms of p,, instead of p,, := n — p,. Further, note that the
split between p,, < n/2 and p, > n/2 ascertains that all bounds are positive.

ProofofLemma?2 Since W = I — U is idempotent it follows that W2 = W, that
tr(W) = rank(W) = p,, = n — py, and that (4) simplifies to

Var(z Wz) = o* (2(n = pu) + (4 —3) Z(l - Un)2> .
i=1

Further, expanding the square and noting that > ;_, U;; = p, yields

Var(z'Wz) = o* ((m — (= pu) + (s — 3) (Z Ui - p)) . 6)

i=1
Now, since U is idempotent and symmetric it follows that
Ui = Ujs + 3 _Upj.
J#

and in turn that

n n
0<> UL <Y Ui =pu (6)
i=1 i=1

Inserting the lower and upper bound into (5) finishes the proof of the lemma for
pu < n/2. The corresponding bounds for p, > n/2 are obtained by noting that
Y Wzo. 0

We may now state our main result:

Proposition 1 Consider the general linear model given by (1) and let
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(1) X be a random symmetric almost surely positive definite n x n matrix and X be
a random n X py matrix of almost surely full column rank,

(ii) the error term components defining the random n x 1 vector e be independent
with, conditional on X and X, mean 0, variance 1 and common fourth central
moments [L4.

It then holds that

Var(62|X, X) € [vy — kn, val  if pa > 3,
Var(62|X, X) € [Vn, vy — kn] if 1 < g <3,

and
Var(62) € [vy — kn, val if g > 3,
Var(62) € [V, vy — kn] if 1 < pug <3,
e Aug—l
where v, == o Zi_px and

(n—py)?
4 pa—3

ot S b i py < n/2,
Kp =
n—pyx

if py > n/2.

The proof of the conditional bounds in Proposition 1 is based on that 62 may
be expressed according to (3) together with an application of Lemmas 1 and 2. The
details are given in the appendix. Moreover, note that the conditional variance bounds
for 62 are deterministic regardless of whether the covariates X are random or not.
This fact combined with that 62 is unbiased conditional on X and ¥, together with
an application of variance decomposition proves the unconditional variance bounds
in Proposition 1. The full proof of Proposition 1 is given in the appendix.

We can also state a finite sample upper bound on the difference between the con-
ditional and unconditional variances together with convergence of these using the
bounds in Proposition 1.

Corollary 1 If the assumptions of Proposition 1 hold: Then
| Var(62|X, $) — Var(6?)| < |iy|, for all n,
and
nVvar(6?) —> v, n Var(&le, ¥) — v, uniformly asn — o0 7
where v = 04(u4 — 1) and g > 1.
Remark 1 1t is of course possible to state the rate of convergence in (7) by noting that

4

N o7 |ug —3

|(n — px) Var(6%|X, E) —v| < pr,
n — px
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and

4

. o*us =3

|(n — py) Var(6?) —v| < ————p,,
n— px

hold for all . Since, Corollary 1 is a convergence result in terms of n where p, is a
fixed quantity, the primary interest is on the situation where py < n/2.

By Corollary 1 it follows that Var(6%) — 0, uniformly as n — oo, and therefore
we can state the following result.

Corollary 2 If the assumptions of Proposition 1 hold: Then

asn — Q.

Remark 2 Note that 62 from (2) is a special case of the variance parameter estimator
6(2)  defined for the nonparametric mixed effects models analysed in Li (2012), see
their Eq. (11). One can also note that the mixed effects models treated in Li (2012) is an
extension of the model class treated in Dette et al. (1998). An alternative proof of the
consistency of 62 stated in Corollary 2 in the case with fixed covariates, hence, follows
from Li (2012, Thm. 1) by neglecting the random effects part of their model. Further,
as already commented upon above, in Dette et al. (1998) and Li (2012) focus is on the
MSE of the variance parameter estimator. Moreover, their MSE expressions are stated
in terms of asymptotic equivalence, i.e. using “o(1/n)”. Thus, it is not straightforward
to use their expressions to obtain bounds similar to those provided by Proposition 1
(or Lemma 2) without carefully inspecting the o(1/n) terms.

2 Examples

Example 1 Consider the following vector autoregressive model:
1/2
X1 =XiB, +0. X, ey, 3)

where all dimensions are in accordance with the linear model given by (1). Model (8)
is closely connected to the distribution free Chain—Ladder model, which is a widely
used actuarial reserving model, where # denotes time and X, denotes the amount of
payments made in the time interval [0, ¢], see e.g. Mack (1993). More specifically, the
Chain-Ladder model assumes that X; isn x 1, (X;); > 0 and that X; := diag(X;).
In this situation we may analyse the variance of the variance parameter estimator, 6t2,
both conditional on X; as well as unconditionally using Proposition 1 and its corollar-
ies. In either situation the above results provide us with finite sample bounds as well as
ascertaining that 6,2 is a (mean square) consistent estimator of 0,2. A practical appli-
cation of the finite sample bounds is for the Chain—Ladder model w.r.t. the discussion
of the appropriateness of using conditional versus unconditional prediction error, see
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e.g. Buchwalder et al. (2006) and Lindholm et al. (2019). Moreover, the relevance of
using finite sample bounds is also apparent in many real-world insurance applications,
when highly aggregated data is used, where the sample size often is around n = 10
and p, = 1 K< n.

Further, the Chain—Ladder model assumes a diagonal structure of X, which, even
though making diag(V) = diag(P), does not make the variance bounds any more
explicit.

For more on other models than the distribution free Chain—Ladder model that are
used in an insurance context, see e.g. Kremer (1984) and Lindholm et al. (2017).

Example 2 One example of a more restricted sub-class of the GLMs from (1) is when
we assume that ¥ = I and explicitly include an intercept, i.e. X contains a column
of ones. In this situation it is shown in Seber and Lee (2003, Eq. 10.12) that

I/n<V; <1

which makes it is possible to tighten e.g. the lower bound in Lemma 2 when u4 > 3
and, hence, tighten the corresponding bound in Proposition 1 to v, —k,, + ﬁ, and
analogously for the upper bound when 4 < 3.

Example 3 In order to illustrate the usefulness of the techniques of the present paper
we will now exploit the essentially model-free aspects of Lemma 1 and, in particular,
Lemma 2. As already noted after stating Lemma 2, the results of Lemma 2 are purely
algebraic, given that you somehow have arrived at a variance expression of the form
(4). Purely as an illustration, consider the following special case of a mixed effects
model introduced in Atiqullah (1962b):

y=A0+ Bt +€, )]

where y is n x 1, and where 60 is p, x 1, and € is n x 1, are independent random
vectors whose components all have mean 0 and variances 092 and 03, respectively,
together with the kurtoses Mg (= y20+3) and ,uj (= y2¢ +3), and where T isa pp X 1
vector of fixed effects. Further, A and B are assumed to be of full column rank p,
and py, respectively. Note that compared with (1) the model given by (9) is defined in
terms of ¥ = I in accordance with Atiqullah (1962b). Further, the following unbiased
estimators of 002 and 062 are given in Atiqullah (1962b):

M, — M
52 = Pin(Mp, r)’ (10)
tr(U)
52 = M, (11)
where
'"H 'R
M), = yHy M. — y .)’7
Ph Pr
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and where

G=BB'B 'R,

L=1-G,
H=LAA'LA)'A'L,
R=1-G-H,

U=AHA=ALA,
and where pg, p, and p, denote the rank of G, H and R. Moreover, in Atiqullah

(1962b) itis stated that the introduced variance parameter estimators have the following
variances:

204((prpn + P2 + prEE (U?) +2(U)))

AN
e = pr (U2
(1 W=Dk - pur) (prh — ppr) + (1§ — 3)U'U p2&?
2p-((prpn + P3) + prEE w(U?) +2tr(V)))
(12)
"o 2064 1 r'r
Var(67) = 14+ =(ug — 3)—) , (13)
Pr 2 Pr

where § = 002 /062 and where h and r corresponds to the vectors of the diagonal
elements of H and R. Regarding 862 we may start off by noting that (13) may be
re-written according to

n
Var(p,67) = o} <2pr +(n§—3)) R?,-)

i=1

which is on the same form as (4) from Lemma 1, since R is idempotent, and Lemma 2
applies. Moreover, by using the same arguments as those used in the proof of Propo-
sition 1, it follows that p, = n — p, — pp, where both p, and p; are constants, thus
ascertaining L2-consistency and that the corollaries of Proposition 1 hold as well.
Concerning the variance of 892, the expression of (12) can not be approached using
Lemma 2. It is, however, possible to make use of trace inequalities to show that when

e.g. ,ug, ng >3

“2 20’5"
Var(oy) > >0 (14)
Pu

where p, := rank(U) is a constant, see the appendix. That is, Var(&&) is bounded
from below by a positive constant for all n, and 692 is, hence, not L2-consistent. It is,
however, possible to obtain sharper finite sample bounds on Var(692) by using other
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trace inequalities—a matter not pursued further in the present note. For other exam-
ples and a deeper discussion concerning the performance of estimators of variance
components, see e.g. Christensen (2019, Ex. 5.1.1 and Sec. 5.4).

Even though the above mixed effects example is only intended for illustration
purposes, without any claim of practical relevance, it is still worth commenting on
the relation to the results in Li (2012). In Li (2012) mixed effects nonparametric
regression is considered w.r.t. the MSE of the total variance parameter estimator. That
is, the situation with o = oy is considered. Consequently, the decomposition from
Atiqullah (1962b) is not covered as a special case. Moreover, by setting o = 0y
above, the resulting estimator is neither contained in the estimators covered in Li
(2012, Thm. 1). For more on differences compared with Li (2012) (and Dette et al.
1998), see Remark 2 above.
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Appendix A. Proofs

Proof of Proposition 1 We start by reformulating the linear model of (1) as follows:
¥=XB+oe,

where 5 := £ /2y and X := £~ 1/2X. Now lete :=§ — )Nfﬁ, it then follows that

. 1
6% =

_n_px

8y
b

which may be expressed in terms of e by noting that

¢=(XB+oe)—Vy
=)~(ﬂ+ae—V(X’ﬁ+ae)
=0l —-V)e=0Ke.
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Hence, we have

Further, since V is idempotent and symmetric it follows that K will inherit these
properties as well and we arrive at

N o
0'2_

= eKe.
n — px

Finally, since V is idempotent we know that rank(V) = p, = tr(V), where

(V) =tw(z~2pxl/?)
=t (PT'?x7/?)
= tr(P),

and by repeating this argument if follows that tr(P) = tr(I ,,) = px, that is,

2
62 = ¢'Ke.
Dk

This ascertains that the conditions of Lemmas 1 and 2 are fulfilled, which proves
the unconditional part of Proposition 1.

The unconditional variance bounds are obtained by first noting that 62 is unbiased
and then applying a variance decomposition. This argument of course holds also for
biased estimators as long as E[82|X , X] is nonrandom, e.g. when the normalization
constant is n and not n — py. O

Proof of Corollary 1 The first part follows trivially from Proposition 1, but we also get
that

nVar(62|X, X) € [nv, — nkp, nv,] if ug > 3,
nVar(62|X, X) € [nv,, nv, —nk,]  if pa < 3,

and, since lim, nv,, = v and lim,, nk, = 0, it follows that

lim n Var(62|X, X) = v,

n—o00

due to the assumptions on X and X. That is, n Var(6%| X, ) — v uniformly. By the
same argument it follows that n Var(6%) — v uniformly in n. O
Proof of (14) We will now show that 892 is not in general L? consistent. If we restrict
our attention to i, /LZ > 3 it follows that (12) may be bounded according to

202((prpin + ) + prEE (U + 2t ()))

Var(67) > O
i

’
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since the second factor consists of quadratic forms and non-negative functions/
constants. Further, note that by construction it is assumed that (A’LA)~" exists, i.e.
A’ L A is positive definite and of full column rank p, = rank(A), from which it follows
that 0 < py = p, = ps = O(1). Moreover, an application of the inequality

tr(U)?
tr(U?)

= Du,
see e.g. Wolkowicz and Styan (1980, Eq. 2.35), yields

pron+py £ 28

Var(62) > 204 2
¢ ‘\pue@? " p w@)

Furthermore, since p, > 0 it follows that

20082 _ 20,

Var(67) > >0,
Pu Pu
ie. Var(692) is bounded from below by a constant value greater than 0. O
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