
Metrika (2020) 83:597–615
https://doi.org/10.1007/s00184-019-00747-0

Minimax estimation of a bivariate cumulative distribution
function
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Abstract
The problem of estimating a bivariate cumulative distribution function F under the
weighted squared error loss and theweightedCramer–vonMises loss is considered.No
restrictions are imposed on the unknown function F . Estimators, which are minimax
among procedures being affine transformation of the bivariate empirical distribution
function, are found. Then it is proved that these procedures are minimax among all
decision rules. The result for the weighted squared error loss is generalized to the case
where F is assumed to be a continuous cumulative distribution function. Extensions
to higher dimensions are briefly discussed.

Keywords Minimax estimation · Cumulative distribution function · Loss function

1 Introduction

Minimax estimation of a one dimensional cumulative distribution function (c.d.f.) was
initiated in 1955 by Aggarwal (1955) and has been extensively studied since then (see
the references given in the next paragraph). To the best of our knowledge, extensions
of this approach to higher dimensions have not been investigated. In this paper we
therefore consider estimating a bivariate c.d.f. and we generalize to this case some
known results concerning minimax estimation of a univariate c.d.f. We also briefly
discuss a multivariate generalization of these results.

Minimax estimation of a univariate c.d.f. F was considered bymany authors. Using
an invariance structure relative to the group of continuous and strictly increasing trans-
formations, Aggarwal (1955) found the best invariant estimator of a continuous c.d.f.
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F under the invariant loss L(F, ̂F) = ∫
R

|F − ̂F |r dF , r ≥ 1. Here ̂F stands for an

estimate of F , based on a sample from F . Ferguson (1967, pages 191–197) generalized
this result to the case that L(F, ̂F) = ∫

R

(F − ̂F)2h(F) dF , where h(·) is a contin-

uous and positive function. He also asked whether the best invariant estimates are
minimax among the larger class of (not necessarily invariant) procedures. Yu (1992b)
established the minimaxity of the best invariant procedure in Ferguson’s setup. In
particular he found the minimax estimator of a continuous c.d.f. F under the loss of
the form L(F, ̂F) = ∫

R

(F − ̂F)2F−δ(1 − F)−γ dF , where δ, γ ∈ {0, 1} are fixed

numbers. Analog minimaxity findings were obtained by Mohammadi and van Zwet
(2002) (entropy loss), Ning and Xie (2007) (Linex loss), and Stȩpień–Baran Stepien
(2010) (strictly convex loss). Phadia and Yu (1992) proved minimaxity of the empir-
ical distribution function under the Kolmogorov–Smirnov loss supt∈R |F(t) − ̂F(t)|.
Jafari Jozani et al. (2014) considered the problem of estimating a continuous distri-
bution function F , as well as meaningful functions τ(F), under a large class of loss
functions. They obtained best invariant estimators and established their minimaxity for
Hölder continuous τ ’s and strict bowl-shaped losses with a bounded derivative. Phadia
(1973) considered a different model in which it is not assumed that F is continuous.
He found the minimax estimator of F under the noninvariant loss function L(F, ̂F) =
∫

R

(F − ̂F)2F−δ(1− F)−γ dw, where δ, γ ∈ {0, 1} are fixed numbers and w is a given

non-null finite measure on (R,BR), with BR denoting the σ -algebra of Borel sets on
R. Yu (1992a) considered minimax estimation of F with a more general loss function
L(F, ̂F) = ∫

R

G(F − ̂F)h(F) dw, where G(·) is quadratic and h(·) is continuous and
positive. He proved that this problem is equivalent to that of finding a minimax esti-
mator of a binomial proportion p under the loss LB(p, d) = G(p−d)h(p). His result
was generalized by Jokiel-Rokita andMagiera (2007) to the casewhereG(·) is convex.

In the first part of the paper we generalize the result of Phadia (1973) to the
two-dimensional case. Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be i.i.d. two-dimensional
randomvectors from an unknown bivariate (not necessarily continuous) c.d.f. F onR2.
On the basis of this sample we find a minimax estimator ̂F1 of F under the weighted
squared error loss

L1(̂F, F) =
∫∫

R2

(F̂(s, t) − F(s, t))2(F(s, t))−δ(1 − F(s, t))−γ dW (s, t). (1)

Here W is a given non-null finite measure on (R2,BR2) and δ, γ ∈ {0, 1} are fixed
numbers. In the case where δ �= 0 or γ �= 0, the loss functions L1 is more sensitive to
departures from F in the tails of the distribution.We also show that the decision rule ̂F1
remains minimax even if F is assumed to be absolutely continuous with respect to the
Lebesgue measure onR2. In the second part of the paper we find a minimax estimator
̂F2 of an arbitrary bivariate c.d.f. F under the invariant weighted Cramer–von Mises
loss

L2(̂F, F) =
∫∫

R2

(F̂(s, t) − F(s, t))2(F(s, t))−δ(1 − F(s, t))−γ dF(s, t). (2)
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The latter result cannot be viewed as a natural generalization of the above mentioned
result of Yu (1992b), because we derive ̂F2 not assuming that F must be continuous.
Since we use a much larger class of c.d.f.’s, the minimax inference for the loss L2
becomes easier, but is still nontrivial.

In the univariate case, the minimax estimators φ and d0 found by Phadia (1973)
andYu (1992b), respectively, are linear functions of the empirical distribution function
(e.d.f.). Therefore, it is not surprising that theminimax procedures ̂F1 and ̂F2 are linear
functions of the bivariate e.d.f. Moreover, for each δ, γ ∈ {0, 1}, ̂F1 = ̂F2 and ̂F1 has
the same form as φ except that the univariate e.d.f. is replaced by the bivariate e.d.f.
On the other hand, φ �= d0 and the relationship between ̂F2 and d0 is slightly different
than that between ̂F1 and φ. The reason for this difference is that the parameter space
considered by Yu (1992b) contains only continuous c.d.f.’s.

2 Formulation of the problem

In the problem of estimating a univariate distribution function, the action space is
restricted to the functions a(·) : R → [0, 1], which are nondecreasing. To define the
appropriate action space to estimate a bivariate distribution function we note, that a
two-dimensional analog of a nondecreasing function of one variable is a 2-increasing
function.

Definition 1 A function a : R2 → [0, 1] is 2-increasing if

a(s2, t2) − a(s2, t1) − a(s1, t2) + a(s1, t1) ≥ 0

for any rectangle [s1, t1] × [s2, t2] ∈ R
2.

Let ̂F(Z; s, t) be an estimator of a bivariate distribution function F(s, t), based on
the sample Z = ((X1,Y1), . . . , (Xn,Yn)). To simplify the notation we will also write
̂F(·, ·) and ̂F(s, t) for ̂F(Z, ·, ·) and ̂F(Z, s, t), respectively. We assume that for each
realization z of Z, the decision rule ̂F(z; ·, ·) is an element of the action space

A = {a : a = a(s, t) is a 2-increasing function on R
2 with values in [0, 1]}.

It is obvious that any bivariate c.d.f. F belongs to the class A. However, A contains
estimates a(·, ·) which are not c.d.f.’s, because they do not satisfy the conditions
a(−∞,−∞) = 0, a(−∞, y) = 0, a(x,−∞) = 0 and a(∞,∞) = 1. Such estimates
are often referred to as a defective distribution functions. We include these estimates
in the action space to obtain satisfactory results. The necessity of using defective
distribution functions to estimate a univariate distribution function was recognized by
Aggarwal (1955).

The family of all estimators ̂F , which satisfy the above condition we denote by D,
i.e. we put

D = {̂F(z; ·, ·) : R2n → A}.
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We use the symbol DA to denote the subclass of D, which consists of the following
affine estimators

DA =
{

̂F ∈ D : ̂F(s, t) = a
n
∑

i=1

1 (Xi ≤ s,Yi ≤ t) + b : a, b ∈ R

}

.

The estimates from DA are computationally tractable. The important member of DA

is the empirical bivariate c.d.f. defined by

̂Femp(s, t) =
∑n

i=1 1 (Xi ≤ s,Yi ≤ t)

n
, (s, t) ∈ R

2.

Let EF denote the expectation with respect to the c.d.f. F . Then, the risk function
of an estimate ̂F under the loss function Li i = 1, 2 [see (1) and (2)] is given by

Ri (F, ̂F) = EF (Li (F, ̂F)).

When the value of i is clear from the context, we write R instead of Ri . We are
interested in finding the minimax estimator of F , i.e. the estimator ̂FN ∈ D, for which
the following equation holds

sup
F∈F

R(̂FN , F) = inf
̂F∈D

sup
F∈F

R(̂F, F) := ρN .

Here F is the family of all bivariate distribution on R
2, i.e.

F = {F : F is a cumulative distribution function on R
2}.

Unfortunately, many estimators from the class D are not computationally tractable
and finding ̂FN may be a difficult task. Therefore, we first look for affine minimax
estimators. We say that a decision rule ̂FA ∈ DA is minimax affine estimator of F if

sup
F∈F

R(̂FA, F) = inf
̂F∈DA

sup
F∈F

R(̂F, F) := ρA.

The quantities ρN and ρA are called the minimax risk and minimax affine risk, respec-
tively. Clearly, ρN ≤ ρA. We prove that under both L1 and L2 these two risks are
equal, i.e. ρA = ρN . Hence ̂FA is minimax among all estimators from the class D.

We also discuss the minimax approach in the case where an unknown distribution
F is assumed to be absolutely continuous with respect to the Lebesgue measure.
Therefore, we denote

FAC = {F : F is an absolutely continuous distribution function on R
2}.

3 Auxiliary results

As we have mentioned above, Yu (1992a) proved that results on minimax estimation
of a binomial proportion p can help to find minimax estimators of a univariate c.d.f.. It

123
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is not surprising that these results also can be applied in the bivariate case. For the sake
of completeness we recall here the following well known facts concerning inference
on binomial proportion, that will be used in the next sections (see, e.g. Hodges and
Lehmann 1950, Olkin and Sobel 1979, Lehmann and Casella 1998, pages 311–312 or
Phadia 1973).

Suppose that on the basis of an observation X from the binomial distribution B(n, p)
we wish to estimate the unknown success probability p under the weighted squared

error loss LB(d, p) = (d−p)2

pδ(1−p)γ
, with δ, γ ∈ {0, 1}. Let the numbers a1 = a1(δ, γ ),

b1 = b1(δ, γ ) and r1 = r1(δ, γ ) satisfy the following equation

inf
a,b∈R sup

p∈[0,1]

[

a2np(1 − p) + (b + (an − 1)p)2

pδ(1 − p)γ

]

= sup
p∈[0,1]

[

a21np(1 − p) + (b1 + (a1n − 1)p)2

pδ(1 − p)γ

]

= r1 (3)

(the term inside the first brackets is the risk function of an affine estimator d(X) =
aX +b). Then d1(X) = a1X +b1 is the minimax estimator of p and r1 is the minimax
risk, i.e.

inf
d

sup
p∈[0,1]

Ep

[

(d(X) − p)2

pδ(1 − p)γ

]

= sup
p∈[0,1]

Ep

[

(a1X + b1 − p)2

pδ(1 − p)γ

]

= r1, (4)

where the infimum is over measurable functions d : R → R. The constants a1, b1, r1
are given by

δ = 0, γ = 0: a1 = 1

n + √
n
, b1 = 1

2

1√
n + 1

, r1 = 1

4(
√
n + 1)2

,

δ = 1, γ = 0: a1 = 1

n + √
n
, b1 = 0, r1 = 1

(
√
n + 1)2

,

δ = 0, γ = 1: a1 = 1

n + √
n
, b1 = 1√

n + 1
, r1 = 1

(
√
n + 1)2

,

δ = 1, γ = 1: a1 = 1

n
, b1 = 0, r1 = 1

n
.

(5)

In each of the four cases, d1(X) has constant risk and is the Bayes estimator of p
when p has the beta prior B(α, β)with (α, β) equal to (

√
n/2,

√
n/2) in the first case,

(1,
√
n) in the second, (

√
n, 1) in the third and (1, 1) in the fourth. Therefore, d1(X)

is minimax (see Lehmann and Casella 1998, Corollary 1.5, page 311).

4 Minimax estimator under the loss L1

Since for each s, t ∈ R the randomvariables1 (X1 ≤ s,Y1 ≤ t) ,1 (X2 ≤ s,Y2 ≤ t) ,

. . . ,1 (Xn ≤ s,Yn ≤ t) are i.i.d. Bernoulli trials with probability of success F(s, t), it
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follows that the risk function of an affine estimator ̂Fab(s, t) = a
∑n

i=1 1 (Xi ≤ s,Yi ≤ t) + b has the form

R1(̂Fab, F) = EF

⎡

⎢

⎣

∫∫

R2

(

̂Fab(s, t) − F(s, t)
)2

h(F(s, t)) dW (s, t)

⎤

⎥

⎦ (6)

=
∫∫

R2

[a2nF(s, t)(1 − F(s, t)) + (b + (an − 1)F(s, t))2]
[F(s, t)]δ[1 − F(s, t)]γ dW (s, t),

where h(p) = p−δ(1 − p)−γ , p ∈ (0, 1). To find the minimax affine rule, we first
derive the lower bound for theminimax affine risk ρA. Themethod used here is closely
related to that of Phadia (1973). For any fixed integer k ≥ 1 and any p in (0, 1), let Fkp
be the bivariate c.d.f. defined by Fkp = pFk1 + (1− p)Fk2, where Fk1 and Fk2 are the
c.d.f.’s corresponding to uniform distibutions over the squares A1 = [−(k + 1),−k]2
and A2 = [k, k +1]2, respectively. Since the integrand in (6) is nonnegative and since
Fkp(s, t) = p on [−k, k]2, it follows that the risk of ̂Fab at the point Fkp satisfies the
following inequality

R1(̂Fab, Fkp) ≥
∫∫

[−k,k]2

[

a2nFkp(s, t)(1 − Fkp(s, t)) + (b

+(an − 1)Fkp(s, t))
2
]

h(Fk,p(s, t)) dW (s, t)

=
∫∫

[−k,k]2

[

a2np(1 − p) + (b + (an − 1)p)2
]

h(p) dW (s, t)

=
[

a2np(1 − p) + (b + (an − 1)p)2

pδ(1 − p)γ

] ∫∫

[−k,k]2
dW (s, t). (7)

We use this inequality to prove the following lemma.

Lemma 1 Let δ, γ ∈ {0, 1} be fixed and let a1, b1, r1 be the corresponding numbers
defined by (5). Then ̂FA = a1

∑n
i=1 1 (Xi ≤ s,Yi ≤ t)+b1 is the minimax affine rule

under the loss function L1 and the minimax affine risk is given by

ρA = inf
a,b∈R sup

F∈F
R1(̂Fab, F) = sup

F∈F
R1(̂FA, F) = r1

∫∫

R2

dW (s, t).

Proof Since (7) holds for any positive integer k, we conclude by (3) that

ρA = inf
a,b∈R sup

F∈F
R1(̂Fab, F) ≥ inf

a,b∈R sup
p∈[0,1]

sup
k≥1

R1(̂Fab, Fkp)
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≥ inf
a,b∈R sup

p∈[0,1]

[

a2np(1 − p) + (b + (an − 1)p)2

pδ(1 − p)γ

] ∫∫

R2

dW (s, t)

= r1

∫∫

R2

dW (s, t).

By straightforward calculations it is easy to verify that the integrand in the second line
of (6) does not depend of F and equals r1 when a = a1 and b = b1 (see again Phadia
1973). Therefore, the risk function of the estimator ̂FA = ̂Fa1b1 is constant and equal
to r1

∫∫

R2

dW (s, t). This completes the proof, because

inf
a,b∈R sup

F∈F
R1(̂Fab, F) = ρA ≥ r1

∫∫

R2

dW (s, t)

= sup
F∈F

R1(̂Fa1b1, F) ≥ inf
a,b∈R sup

F∈F
R1(̂Fab, F).

	

Remark 1 Note that the constants a1, b1 and r1, which define both the form of a
minimax affine rule and the corresponding minimax affine risk, depend on both δ and
γ . However, for simplicity of notation, this dependence is not shown throughout this
paper.

The next theorem, which is the main result of this section, states that the estimator
̂Fa1b1 is minimax inD. The proof is based on a method of Yu (1992a) (cf. also Jokiel-
Rokita and Magiera 2007).

Theorem 1 Let δ, γ ∈ {0, 1} be fixed and let a1, b1, r1 be the corresponding numbers
defined by (5). Then the estimator ̂FA = a1

∑n
i=1 1 (Xi ≤ s,Yi ≤ t) + b1 of an arbi-

trary bivariate c.d.f. F is minimax under the loss function L1 and the minimax risk is
given by

ρN = inf
̂F∈D

sup
F∈F

R1(̂F, F) = sup
F∈F

R1(̂FA, F) = r1

∫∫

R2

dW (s, t).

Proof To prove the theorem, it suffices to show that supF∈F R1(̂F, F) ≥ ρA for any
̂F ∈ D. Let k > 0 be a fixed integer and let (X1,Y1), . . . , (Xn,Yn) be i.i.d. random
vectors from the c.d.f. Fkp defined above. Since Fkp(s, t) = p on [−k, k]2, it follows
that for any ̂F ∈ D,

R1(̂F, Fkp) = EFkp

[

L1(̂F, Fkp)
]

≥ EFkp

⎡

⎢

⎣

∫∫

[−k,k]2
(̂F(s, t) − Fkp(s, t))

2h(Fk,p(s, t)) dW (s, t)

⎤

⎥

⎦
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= EFkp

⎡

⎢

⎣

∫∫

[−k,k]2

(̂F(s, t) − p)2

pδ(1 − p)γ
dW (s, t)

⎤

⎥

⎦ . (8)

Note first that the joint distribution of the vector Z = ((X1,Y1), . . . , (Xn,Yn)) is
given by

n
∏

i=1

[p1A1(xi , yi ) + (1 − p)1A2(xi , yi )]

=
∏

{i :(xi ,yi )∈A1}
p1A1(xi , yi ) ×

∏

{i :(xi ,yi )∈A2}
1A2(xi , yi )(1 − p) = pn1(1 − p)n−n1,

where n1 is the value of the random variable N1 which counts the number of observa-
tions (x j , y j ) that fall into the square A1. Since N1 is the sufficient statistic for p, we
may assume that ̂F depends on Z only through N1, i.e. ̂F(Z; s, t) = ˜F(N1; s, t) for
some Borel measurable function ˜F : R3 → R. Let the numbers δ(i), i = 1, . . . , n,
corresponding to ̂F , be defined by δ(i) · ∫∫

[−k,k]2
dW (s, t) = ∫∫

[−k,k]2
˜F(i; s, t) dW (s, t).

Then,

∫∫

[−k,k]2
(˜F(i; s, t) − p)2dW (s, t) =

∫∫

[−k,k]2

[

˜F(i; s, t) − δ(i) + δ(i) − p
]2

dW (s, t)

=
∫∫

[−k,k]2

[

˜F(i; s, t) − δ(i)
]2
dW (s, t) + 2[δ(i) − p]

∫∫

[−k,k]2

[

˜F(i; s, t) − δ(i)
]

dW (s, t)

+
∫∫

[−k,k]2
[δ(i) − p]2dW (s, t)

=
∫∫

[−k,k]2

[

˜F(i; s, t) − δ(i)
]2
dW (s, t) + 2[δ(i) − p] · 0 +

∫∫

[−k,k]2
[δ(i) − p]2dW (s, t)

≥
∫∫

[−k,k]2
[δ(i) − p]2dW (s, t).

This immediately shows that

EFkp

⎡

⎢

⎣

∫∫

[−k,k]2
(˜F(N1; s, t) − p)2dW (s, t)

⎤

⎥

⎦ ≥ EFkp

⎡

⎢

⎣

∫∫

[−k,k]2
(δ(N1) − p)2dW (s, t)

⎤

⎥

⎦ .
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Since N1 has the binomial distribution B(n, p), the last inequality implies by (8) and
(4) that

inf
̂F∈D

sup
p∈[0,1]

R1(̂F, Fkp) ≥ inf
δ

sup
p∈[0,1]

Ep

[

(δ(N1) − p)2

pδ(1 − p)γ

] ∫∫

[−k,k]2
dW (s, t)

= r1

∫∫

[−k,k]2
dW (s, t).

Here we use the fact that ̂F(Z; ·, ·) = ˜F(N1; ·, ·). Letting k → ∞we obtain the lower
bound

sup
F∈F

R1(̂F, F) ≥ lim
k→∞ inf

̂F∈D
sup

p∈[0,1]
R1(̂F, Fkp)

≥ lim
k→∞ r1

∫∫

[−k,k]2
dW (s, t) = r1

∫∫

R2

dW (s, t)

which proves that under the loss L1, te decision rule ̂FA := ̂Fa1b1 is minimax among
all estimators. 	

Remark 2 Since for any integer k ≥ 1 and any p ∈ (0, 1), the c.d.f. Fkp is absolutely
continuous (with respect to Lebesgue measure), it follows that we have proved a
stronger result than the statement of the last theorem. In fact, we have shown that
under the loss L1, ̂FA is the minimax estimator of an unknown absolutely continuous
bivariate c.d.f. F .Moreover, Theorem1 can be easily generalized to dimensions d > 2.
In a slight modification of the proof, Fkp is a d-variate c.d.f., which equals p over the
hypercube [−k, k]d .

5 Minimax estimation under the loss function L2

Under the loss L2 the risk of an affine decision rule ̂Fab is given by [cf. (6)]

R2(̂Fab, F) =
∫∫

R2

[a2nF(s, t)(1 − F(s, t)) + (b + (an − 1)F(s, t))2]
[F(s, t)]δ[1 − F(s, t)]γ dF(s, t).

(9)

To find the minimax affine estimator, we first derive the lower bound for the minimax
affine risk ρA. For this purpose, we choose a suitable family of the bivariate c.d.f.’s and
consider estimation of F in the resulting submodel. Let (x̃n)n≥1 be a given increasing
sequence of points from (0, 1) and let m ≥ 1 be a fixed integer. We put x̃0 = ỹ0 = 0
and ỹi = 1 − x̃i for i ≥ 1. Let the set Sm be defined by

Sm = {s = (s0, . . . , sm) ∈ [0, 1]m+1 : s0 + · · · + sm = 1}.
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For any probability vector p = (p0, . . . , pm) ∈ Sm , we denote by Fm,p the bivari-
ate c.d.f. which corresponds to a discrete random vector (X ,Y ) with the support
{(x̃0, ỹ0), . . . , (x̃m, ỹm)} and with the joint probability mass function given by

fm,p(x̃i , ỹi ) = Pr(X = x̃i ,Y = ỹi ) = pi , i = 0, . . . ,m.

The c.d.f. Fm,p satisfies

Fm,p(x̃i , ỹi ) = Pr(X ≤ x̃i ,Y ≤ ỹi ) =
{

p0, when i = 0,
p0 + pi , when i = 1, . . . ,m,

which implies that for any integer k ≥ 0,

∫∫

R2

[

Fm,p(s, t)
]k

[Fm,p(s, t)]δ[1 − Fm,p(s, t)]γ dFm,p(s, t)

= (p0)k

(p0)δ(1 − p0)γ
p0 +

m
∑

i=1

(p0 + pi )k

(p0 + pi )δ(1 − p0 − pi )γ
pi . (10)

We use the last equality to find the lower bound for the minimax affine risk ρA. For
each p0 ∈ [0, 1] and each integer m ≥ 1, let p(m)

0 denote the corresponding vector
from Sm given by

p(m)
0 =

(

p0,
1 − p0
m

, . . . ,
1 − p0
m

)

.

Then, for any integer k ≥ 0,

lim
m→∞

∫∫

R2

[

F
m,p(m)

0
(s, t)

]k

[

F
m,p(m)

0
(s, t)

]δ [

1 − F
m,p(m)

0
(s, t)

]γ
dF

m,p(m)
0

(s, t)

= lim
m→∞

[

(p0)k p0
(p0)δ(1 − p0)γ

+ [p0 + (1 − p0)/m]k(1 − p0)

[p0 + (1 − p0)/m]δ[1 − p0 − (1 − p0)/m]γ
]

= (p0)k

(p0)δ(1 − p0)γ
.

Using (9) and applying the last equality with k = 0, 1, 2, we therefore find that

lim
m→∞ R2

(

̂Fab, Fm,p(m)
0

)

=
[

a2np0(1 − p0) + [ b + (an − 1)p0 ]2
pδ
0(1 − p0)γ

]

.

123



Minimax estimation of a bivariate cumulative distribution… 607

Hence, by (3) and (5), we obtain the following lower bound for the risk of affine
estimators

ρA = inf
a,b

sup
F∈F

R2
(

̂Fa,b, F
) ≥ inf

a,b
sup

p0∈[0,1]
sup
m≥1

R2

(

̂Fab, Fm,p(m)
0

)

≥ inf
a,b

sup
p0∈[0,1]

lim
m→∞ R2

(

̂Fab, Fm,p(m)
0

)

= inf
a,b∈R sup

p0∈[0,1]

[

a2np0(1 − p0) + (b + (an − 1)p0)2

pδ
0(1 − p0)γ

]

= r1.

Lemma 2 Let δ, γ ∈ {0, 1} be fixed and let a1, b1, r1 be the corresponding constants
defined (5). Then ̂FA = a1

∑n
i=1 1 (Xi ≤ s,Yi ≤ t) + b1 is the minimax affine rule

under the loss L2 and the minimax affine risk is given by

ρA = inf
a,b∈R sup

F∈F
R2(̂Fab, F) = sup

F∈F
R2(̂FA, F) = r1.

Proof The risk function of ̂FA = ̂Fa1b1 is constant and equal to r1, because the
integrand in (9) does not depend of F and equals r1 when a = a1 and b = b1 (cf. the
proof of Lemma 1). This completes the proof, because r1 is the lower bound for ρA

and hence

inf
a,b∈R sup

F∈F
R2(̂Fab, F) = ρA ≥ r1 = sup

F∈F
R2(̂FA, F) ≥ inf

a,b∈R sup
F∈F

R2(̂Fab, F). 	

To prove that ̂FA is minimax among all estimators we use the Bayes approach.More

precisely, we take a specific sequence of priors on F such that the corresponding
sequence of Bayes risks converges to the supremum of the risk for ̂FA. Since the
corresponding limit ofBayes risks is the lower bound for theminimax risk,we conclude
that ̂FA is minimax.

Suppose that we know a priori that (X1,Y1), . . . , (Xn,Yn) are i.i.d. random vec-
tors from Fm,p, where m is a fixed positive integer and p = (p0, . . . , pm) ∈ Sm is an
uknownprobability vector. Then, the joint distributionof Z = ((X1,Y1), . . . , (Xn,Yn))
is given by

n
∏

i=1

fm,p(xi , yi ) =
m
∏

j=1

p
N j
j ,

where Nk = # {i : (xi , yi ) = (x̃k, ỹk)} for k = 0, . . . ,m. It is clear that N =
(N0, . . . , Nm) has the multinomial distribution on m + 1 categories with n draws
and probability vector p = (p0, . . . , pm). Note that for any estimator ̂F ∈ D, we
obtain

L2(̂F, Fm,p) = (̂F(x̃0, ỹ0) − p0)2

(p0)δ(1 − p0)γ
p0 +

m
∑

i=1

(̂F(x̃i , ỹi ) − p0 − pi )2

(p0 + pi )δ(1 − p0 − pi )γ
pi
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608 R. Połoczański, M. Wilczyński

Since N is the sufficient statistics for p, wemay assume that ̂F(x̃i , ỹi ), i = 0, . . . ,m,
depends on Z only through N i.e. ̂F(Z; x̃i , ỹi ) = di (N) for some real-valued Bore1
measurable function di . Therefore, the problem of estimating Fm,p with the loss L2
and the sample Z from Fm,p is equivalent to estimation of multinomial probabilities
p = (p0, . . . , pm) under the loss

L(d, p) = (d0 − p0)2

(p0)δ(1 − p0)γ
p0 +

m
∑

i=1

(di − p0 − pi )2

(p0 + pi )δ(1 − p0 − pi )γ
pi (11)

and the sample N . This means that the corresponding two minimax risks are equal,
i.e.

inf
̂F∈F

sup
p∈Sm

R2
(

̂F, Fm,p
) = inf

d∈Dm

sup
p∈Sm

R (d, p) ,

where R(d, p) = Ep
[

L(d(N), p)
]

and Dm is the set of all estimators of p =
(p0, . . . , pm) ∈ Sm .

To find the minimax risk in the latter problem we use the Bayes approach. Let
α0, . . . , αm be any given positive numbers and let α = ∑m

i=0 αi . Suppose that the
unknown vector p = (p0, . . . , pm) has the Dirichlet distribution π = D(α0, . . . , αm)

with the parameter vector(α0, . . . , αm). Then, the random vector (p0, . . . , pm−1) has
the Lebesgue p.d.f.

f (p0, . . . , pm−1) = Γ (α)
m
∏

i=0
Γ (αi )

m
∏

i=0

pαi−1
i × ISm ( p),

where pm = 1− (p0 + · · ·+ pm−1) and ISm (·) is the indicator function of the set Sm .
Since the Dirichlet prior is conjugate to the multinomial distribution it follows that the
posterior of p given N = n is D(α0 + n0, . . . , αm + nm), i.e.

f (p0, . . . , pm−1|n) = Γ (α + n)
m
∏

i=0
Γ (ni + αi )

m
∏

i=0

pni+αi−1
i × ISm ( p).

Let dπ = (dπ
1 , . . . , dπ

m) be the Bayes estimator of p = (p0, . . . , pm) under the
loss L(d, p), given by (11). Then

dπ
i (N) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

E
[

(p0)1−δ(1 − p0)−γ p0 | N ]

E
[

(p0)−δ(1 − p0)−γ p0 | N ] , i = 0,

E
[

(p0 + pi )1−δ(1 − p0 − pi )−γ pi | N
]

E
[

(p0 + pi )−δ(1 − p0 − pi )−γ pi | N
] , i = 1, . . . ,m,
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Minimax estimation of a bivariate cumulative distribution… 609

provided that these posterior moments are finite. If δ = γ = 0, then both integral
and the resulting Bayes risk can be easily calculated, because for each each k, l ∈
{0, 1, 2, 3},

Eπ

(

p k
i p

l
0

)

= αi (αi + 1) · · · (αi + k − 1)α0(α0 + 1) · · · (α0 + l − 1)

α(α + 1) · · · (α + k + l − 1)
. (12)

Tofind thesemoments in the casewhere δ = 1orγ = 1,we use the followingLiouville
formula (cf. Fichtenholz 1992). Let a function φ : [0, 1] → R be continuous and let

p and q be any positive real numbers. If the integral
1
∫

0
|φ(u)|u p+q−1du is finite, then

the following identity holds

∫∫

x≥0, y≥0
x+y≤1

φ(x + y)x p−1yq−1 dxdy = Γ (p)Γ (q)

Γ (p + q)

1
∫

0

φ(u)u p+q−1du. (13)

Let a, b be any real numbers such that α0+αi +a+1 > 0 and α−α0−αi +b > 0.
Since the vector (p0, pi , 1− p0− pi ) is distributed according toD(α0, αi , α−α0−αi ),
it follows from (13) that

Ci (a, b)

:= Eπ

[

(p0 + pi )
a(1 − p0 − pi )

b pi
]

= Γ (α)

Γ (α0)Γ (αi )Γ (α − α0 − αi )
(14)

×
∫∫

p0≥0,pi≥0
p0+pi≤1

(p0 + pi )
a(1 − p0 − pi )

b pi p
α0−1
0 pαi−1

i (1 − p0 − pi )
α−α0−αi−1 dp0dpi

= Γ (α)αi

Γ (α0 + αi + 1)Γ (α − α0 − αi )

Γ (α0 + αi + a + 1)Γ (α − α0 − αi + b)

Γ (α + a + b + 1)

Moreover, if α0 + a + 1 > 0 and α − α0 + b > 0, then we also get

C0(a, b) := Eπ

[

(p0)
a(1 − p0)

b p0
]

= Γ (α)

Γ (α0)Γ (α − α0)

Γ (α0 + a + 1)Γ (α − α0 + b)

Γ (α + a + b + 1)
, (15)

because (p0, 1 − p0) has the distribution D(α0, α − α0). In particular, since δ, γ ∈
{0, 1}, Ci (−δ,−γ ) and Ci (1 − δ,−γ ) are finite for all i = 0, . . . ,m if (α0, . . . , αm)

belongs to the set Aδ,γ
m defined by

Aδ,γ
m = {(α0, . . . , αm) ∈ R

m+1+ : α − α0 − αi − γ > 0, for all i = 1, . . . ,m}.
(16)
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610 R. Połoczański, M. Wilczyński

Let (α0, . . . , αm) ∈ Aδ,γ
m . Then, since the posterior of p given N = n is

D(α0 + n0, . . . , αm + nm), it follows by (14) and (15), that the Bayes estimator
dπ = (dπ

0 , . . . , dπ
m) of p = (p0, . . . , pm) is

dπ
i (N)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

E
[

(p0)1−δ(1 − p0)−γ p0 | N ]

E
[

(p0)−δ(1 − p0)−γ p0 | N ] = N0 + α0 + 1 − δ

n + α + 1 − δ − γ
, i = 0,

E
[

(p0 + pi )1−δ(1 − p0 − pi )−γ pi | N ]

E
[

(p0 + pi )−δ(1 − p0 − pi )−γ pi | N ] = N0 + Ni + α0 + αi + 1 − δ

n + α + 1 − δ − γ
, i = 1, . . . ,m,

Clearly, the finiteness of the above posterior means is implied by the fact that if
(α0, . . . , αm) ∈ Aδ,γ

m then (α0+n0, . . . , αm +nm) ∈ Aδ,γ
m , because αi +ni ≥ αi > 0

and α + n − (α0 + n0) − (αi + ni ) − γ = α − α0 − αi − γ + (n − n0 − ni ) ≥
α − α0 − αi − γ > 0 for each i = 1, . . . ,m.

Since the random variables N0 and N0 + Ni , i = 1, . . . ,m have the binomial
distributions B(n, p0) and B(n, p0 + pi ), respectively, the risk of dπ is given by

R(dπ , p) = Ep
[

L(dπ (N), p)
] = np0(1 − p0) + ( u0 − up0 )2

(n + u)2

p0
(p0)δ(1 − p0)γ

+
m
∑

i=1

n(p0 + pi )(1 − p0 − pi ) + [ ui − u(p0 + pi ) ]2
(n + u)2

pi
(p0 + pi )δ(1 − p0 − pi )γ

,

where for simplicity of notation we write

ui =
{

α0 + 1 − δ when i = 0,

α0 + αi + 1 − δ, when i = 1, . . . ,m,
and u = α + 1 − δ − γ. (17)

Then, by (14) and (15), the Bayes risk r(π) = Eπ

[

R(dπ , p)
]

can be written as

r(π)

=
m
∑

i=0

[

nCi (1 − δ, 1 − γ ) + u2i Ci (−δ, −γ ) − 2ui u Ci (1 − δ, −γ ) + u2Ci (2 − δ, −γ )

(n + u)2

]

.

To simplify the last formula, we note that by (14) and (15)

Ci (1 − δ,−γ ) = ui
u
Ci (−δ,−γ ), Ci (2 − δ,−γ ) = ui (ui + 1)

u(u + 1)
Ci (−δ,−γ ).

Moreover, we also have Ci (1 − δ, 1 − γ ) = ui (u − ui )

u(u + 1)
Ci (−δ,−γ ), which implies

that
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r(π)

=
m
∑

i=0

[

nCi (1 − δ, 1 − γ ) + Ci (−δ,−γ )
(

u2i − 2u2i + uui (ui + 1)/(u + 1)
)

(n + u)2

]

=
m
∑

i=0

nCi (1 − δ, 1 − γ ) + uCi (1 − δ, 1 − γ )

(n + u)2
=

m
∑

i=0

Ci (1 − δ, 1 − γ )

n + u
.

Finally, by (14), (15) and (17), we obtain the following formula for the Bayes risk of
dπ

r(π)

= 1

n + α + 1 − δ − γ

[

Γ (α)

Γ (α0)Γ (α − α0)

Γ (α0 + 2 − δ)Γ (α − α0 + 1 − γ )

Γ (α + 3 − δ − γ )

+
m
∑

i=1

Γ (α)αi

Γ (α0 + αi + 1)Γ (α − α0 − αi )

Γ (α0 + αi + 2 − δ)Γ (α − α0 − αi + 1 − γ )

Γ (α + 3 − δ − γ )

]

.

(18)

Before stating themain result of this section, we introduce some notation. If δ = γ = 0
we put n0 = 4 and when δ = 1 or γ = 1 we set n0 = 1.

Theorem 2 Let δ, γ ∈ {0, 1} be fixed and let a1, b1, r1 be the corresponding constants
defined by (5). If n ≥ n0 then the estimator ̂FA = a1

∑n
i=1 1 (Xi ≤ s,Yi ≤ t) + b1 of

F is minimax under the weighted Cramer–von Mises loss function L2(F̂, F) and the
minimax risk is given by

ρN = inf
̂F∈D

sup
F∈F

R2(̂F, F) = sup
F∈F

R2(̂FA, F) = r1.

Proof Lemma 2 implies that for any integer m > 1 and any (α0, . . . , αm) ∈ Aδ,γ
m , we

have

r1 = sup
F∈F

R2(̂FA, F) ≥ inf
d∈Dm

sup
p∈Sm

R(d, p) ≥ inf
d∈Dm

Eπ

[

R(d, p)
]

= Eπ

[

R(dπ , p)
] = r(α0, . . . , αm),

where r(α0, . . . , αm) stands for the Bayes risk given by the right-hand side of (18).
It is clear that to prove minimaxity of ̂FA it suffices to find a sequence of points
((α

(m)
0 , . . . , α

(m)
m )) such that

(

α
(m)
0 , . . . , α(m)

m

)

∈ Aδ,γ
m for each m > 1 and lim

m→∞ r
(

α
(m)
0 , . . . , α(m)

m

)

= r1(δ, γ ) (19)

(see, e.g. Lehmann and Casella 1998, Theorem 1.12, page 316).
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Suppose first that δ = 1 and γ = 0. Then, for any integer m > 1 and any
(α0, . . . , αm) ∈ Aδ,γ

m ,

r(α0, . . . , αm) = α0(α − α0) +∑m
i=1 αi (α − α0 − αi )

α(α + 1)(n + α)

= α(α − α0) −∑m
i=1 α2

i

α(α + 1)(n + α)

[cf. (18)]. Now, let (α
(m)
0 , . . . , α

(m)
m ) = 1

m+1

(√
n, . . . ,

√
n
)

. Then, by (16),

(α
(m)
0 , . . . , α

(m)
m ) ∈ Aδ,γ

m , because α
(m)
0 , . . . , α

(m)
m are positive numbers that satisfy

α(m) − α
(m)
0 − α

(m)
i − γ = α(m) − α

(m)
0 − α

(m)
i = √

n − 2
√
n

m + 1
> 0, i = 1, . . .m.

To complete the proof of the theorem for the case δ = 1 and γ = 0, we conclude that

r(α(m)
0 , . . . , α(m)

m ) =
√
n
(√

n −
√
n

m+1

)

− m
( √

n
m+1

)2

√
n(

√
n + 1)(n + √

n)
−−−−→
m→∞

1

(
√
n + 1)2

= r1(1, 0).

Now we consider the case δ = 0 and γ = 1. Then, for any integer m > 1 and any
(α0, . . . , αm) ∈ Aδ,γ

m ,

r(α0, . . . , αm) = α0(α0 + 1) +∑m
i=1 αi (α0 + αi + 1)

α(α + 1)(n + α)

= α(α0 + 1) +∑m
i=1 α2

i

α(α + 1)(n + α)
,

[again cf. (18)]. Let (εm) be any sequence of real numbers converging to zero such
that εm > 2/(m−1)whenm > 2. Let (α(m)

0 , . . . , α
(m)
m ) = (√n−1, (1+εm)/m, . . . ,

(1+εm)/m
)

. If n > 1 then, by (16), (α(m)
0 , . . . , α

(m)
m ) ∈ Aδ,γ

m , because α
(m)
0 , . . . , α

(m)
m

are positive numbers that satisfy

α(m) − α
(m)
0 − α

(m)
i − γ = (√n + εm

)− (√n − 1
)− (1 + εm) /m − 1

= εm − (1 + εm)/m > 0

for each i = 1, . . . ,m. Simple calculation yields

r
(

α
(m)
0 , . . . , α(m)

m

)

=
(√

n + εm
)√

n + m [(1 + εm)/m]2
(√

n + εm
) (√

n + εm + 1
) (

n + √
n + εm

) −−−−→
m→∞

1

(
√
n + 1)2

= r1(0, 1),
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which proves minimaxity of ̂FA when δ = 0 and γ = 1.
Suppose now that δ = 1 and γ = 1. Then , for any integer m > 1 any

(α0, . . . , αm) ∈ Aδ,γ
m , we have

r(α0, . . . , αm) = α0 +∑m
i=1 αi

α(n + α − 1)
= α

α(n + α − 1)
= 1

n + α − 1
.

Define (α
(m)
0 , . . . , α(m)

m ) = 1

m + 1
(1 + εm, . . . , 1 + εm), where (εm) is the sequence

given above. Then, by (16), (α
(m)
0 , . . . , α

(m)
m ) ∈ Aδ,γ

m , because α
(m)
0 , . . . , α

(m)
m are

positive numbers and

α(m) − α
(m)
0 − α

(m)
i − γ = (1 + εm) − 2(1 + εm)

(m + 1)
− 1 > 0 i = 1, . . . ,m.

To prove minimaxity of ̂FA in the case, where δ = 1, γ = 1, we note that

r
(

α
(m)
0 , . . . , α(m)

m

)

= 1

n + 1 + εm − 1
−−−−→
m→∞

1

n
= r1(1, 1).

Consider now the last case where δ = 0 and γ = 0 and assume that n ≥ 4. Then,
for any integer m > 1 and any point (α0, . . . , αm) ∈ Aδ,γ

m , the Bayes risk (18) can be
rewritten as

r(α0, . . . , αm) = α0(α0 + 1)(α − α0) +∑m
i=1 αi (α0 + αi + 1)(α − α0 − αi )

(n + α + 1)α(α + 1)(α + 2)

= α(α0 + 1)(α − α0) + (α − 1 − 2α0)
∑m

i=1 α2
i −∑m

i=1 α3
i

(n + α + 1)α(α + 1)(α + 2)

Define (α
(m)
0 , . . . , α(m)

m ) =
(√

n + εm

2
− 1,

√
n + εm

2m
, . . . ,

√
n + εm

2m

)

, where (εm)

is the sequence given above. Then, by (16), (α
(m)
0 , . . . , α

(m)
m ) ∈ Aδ,γ

m , because, for

n ≥ n0 = 4, α
(m)
0 , . . . , α

(m)
m are positive numbers and for each i = 1, . . . ,m the

following condition holds

α(m) − α
(m)
0 − α

(m)
i − γ = (√n + εm − 1

)−
(√

n + εm

2
− 1

)

−
√
n + εm

2m
− 0

=
√
n + εm

2
−

√
n + εm

2m
> 0.

Since α(m) = √
n+εm −1 and hence α(m)−1−2α(m)

0 = 0, α(m)
0 +1 = α(m)−α

(m)
0 =

(
√
n + εm)/2, it follows that
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r
(

α
(m)
0 , . . . , α(m)

m

)

=
(√

n + εm − 1
) [ (√

n + εm
)

/2
]2 − m

[ (√
n + εm

)

/(2m)
]3

(

n + √
n + εm

) (√
n + εm − 1

) (√
n + εm

) (√
n + εm + 1

) −−−−→
m→∞

1

4
(√

n + 1
)2

= r1(0, 0).

This proves minimaxity of ̂FA in the case, where δ = 0, γ = 0. 	

Remark 3 Theorem 2 can be generalized to higher dimensions. In order to do this, we
must modify the c.d.f.’s Fm,p defined at the beginning of this section. For simplicity of
notation, we consider only the three-dimensional case. Let (x̃n)n≥1 be an increasing
sequence of points from (0, 1), and let x̃0 = ỹ0 = z̃0 = 0 and ỹi = z̃i = 1 −
x̃i for i ≥ 1. For any m ≥ 1 and any probability vector p = (p0, . . . , pm) ∈
Sm , let Fm,p be the c.d.f. of a discrete random vector (X ,Y , Z) with the support
{(x̃0, ỹ0, z̃0), . . . , (x̃m, ỹm, z̃m)} and with the joint probability mass function given by

fm,p (x̃i , ỹi , z̃i ) = Pr (X = x̃i ,Y = ỹi , Z = z̃i ) = pi , i = 0, . . . ,m.

Then analogously to the bivariate case, the c.d.f. Fm,p satisfies

Fm,p (x̃i , ỹi , z̃i ) = Pr (X ≤ x̃i ,Y ≤ ỹi , Z ≤ z̃i ) =
{

p0, when i = 0,
p0 + pi , when i = 1, . . . ,m,

which implies that the 3-variate analog of the equality (10) holds. The rest of the
generalization is straightforward.
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