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Abstract
For zero-truncated count data, as they typically arise in capture-recapture modelling,
the nonparametric lower bound estimator of Chao is a frequently used estimator of
population size. It is a simple, nonparametric estimator involving only counts of one
and counts of two. The estimator is asymptotically unbiased if the count distribution
is a member of the power series family and is providing a lower bound estimator
if the distribution is a mixture of a member of the power series family. However, if
there is one-inflation Chao’s estimator can severely overestimate as we show here.
This is also illustrated by routinely collected country-wide data on family violence
in the Netherlands. A new lower bound estimator is developed which involves only
counts of twos and threes, thus avoiding the overestimation caused by one-inflation.We
show that the new estimator is asymptotically unbiased for a power series distribution
with and without one-inflation and provides a lower bound estimator under a mixture
of power series distributions with and without one-inflation. For all estimators bias-
adjusted versions are developed that reduce the bias considerably when the sample
size is small. A simulation study compares the modified Chao estimator with the
conventional estimator as well as with an estimator suggested by Chiu and Chao more
recently.

Keywords Capture-recapture · Behavioral response · Power series distribution ·
Nonparametric estimator of population size · Mixture model · Bias reduction

1 Introduction

The size N of a target population needs to be determined. For this purpose a trapping
experiment or study is done where members of the target population are identified at
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T occasions where T might be known or not. For each member i the count of iden-
tifications Xi is returned where Xi takes values in {0, 1, 2, . . . , T } for i = 1, . . . , N .
However, zero-identifications are not observed, they remain hidden in the experiment.
Hence, a zero–truncated sample X1, . . . , Xn is observed, where we have assumed
without loss of generality that Xn+1 = · · · = XN = 0 (for a general introduction
into the topic see Borchers et al. 2004; Bunge and Fitzpatrick 1993; Bunge et al.
2014). One way to undertake capture-recapture modelling is on the basis of a zero-
truncated count distribution f1, f2, . . . , fT where fx is the frequency of count x with
T being the largest observed count and n = f1+· · ·+ fT is the observed sample size.
The frequency of zero-counts (of hidden members of the target population) remains
unobserved and needs to be estimated. For this purpose Chao’s (1987) conventional
estimator f 21 /(2 f2) for the unobserved frequency f0 of zero-counts is frequently used.
Chao’s estimator n + f 21 /(2 f2) of the population size N is asymptotically unbiased
if count X follows a Poisson distribution and represents a lower bound if X follows a
mixture of Poisson distributions. In fact, it is pointed out in Chao and Colwell (2017)
that the result of asymptotic unbiasedness of Chao’s estimator holds under the weaker
condition that only the rare counts need to follow a Poisson distribution, more pre-
cisely the counts of ones and twos, the singletons and doubletons, and the unseen units
need to follow a Poisson distribution. Chiu et al. (2014) present a bias-improved lower
bound but do not address the problem of one-inflation. The purpose of this note is
to present a modification of the Chao estimator in the case of one-inflation as it can
severely over-estimate in this case. This is in considerable contrast to the expectation
of users of the estimator as it is expected that it provides a meaningful lower bound ,
i.e. a lower bound that is relatively close to the true population size.
One-inflation can occur when the population under study has a subpopulation that
cannot be captured anymore after the first capture. Below we discuss an example
of police data on perpetrators of domestic violence. Here it is realistic to assume
that some individuals in the population refrain from domestic violence after their first
contact with the police, in other words their probability to have another capture is zero.
A second example is hospital admissions of drug users: the first hospital admission
may lead to a change in drug use. In animal studies the idea may be relevant in trap
avoidance, where an animal avoids the trap after being captured for the first time.
Recently, the problem of one-inflation has received some attention in the literature.
Chiu and Chao (2016) consider estimating microbial diversity in the presence of
sequencing errors. Bunge et al. (2012) consider estimating population diversity with
unreliable low frequency counts (see also Bunge et al. 2014; Willis 2016). All have in
common that the frequency f1 of observed singletons is inflated. Whereas in Bunge
et al. (2012) several approaches are suggested to deal with inflated singletons including
a mixture model and left-censoring, Chiu and Chao (2016) and Willis (2016) suggest
a sort of double estimation procedure. First, the observed frequency f1 is re-estimated
(Willis 2016) or bias-adjusted (Chiu and Chao 2016) and then incorporated in the
ratio-estimator of Willis and Bunge (2015) or the Chao estimator (Chiu and Chao
2016). In addition, Puig andKokonendji (2018) suggest several lower bound estimators
for count distributions with log-convex probability generating functions including
compound and mixed Poisson distributions. These, however, do not cover the case of
one-inflation. Here, we will develop a lower bound estimator generalizing the original
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Chao (1987) estimator without dealing with the frequency f1 of singletons measured
with error.
To layout the most general setting we consider discrete distributions of the power
series family with density

px (θ) = axθ
x/η(θ), (1)

where ax is a known, nonnegative coefficient, θ a positive parameter and x = 0, 1, . . .
ranges over the set of nonnegative integers; η(θ) = ∑∞

x=0 axθ
x is the normalizing

constant. The power series distributional family contains the Poisson, the binomial,
the geometric, the negative-binomial with known shape parameter, the log-series and
others. The coefficient ax defines the specific member of the power series, for example
ax = 1/x ! defines the Poisson, ax = (T

x

)
for x = 0, . . . , T with positive integer T

defines the binomial (ax = 0 for x > T ) and ax = 1 gives the geometric. Assume
further that the target population of interest is not homogeneous so that amore adequate
modelling is achieved with the general mixture model for the power series family

mx =
∫

θ

px (θ) f (θ)dθ. (2)

whereas the modelling capacity of the power series distribution is limited, mixtures
of power series distributions experience enhanced flexibility in model fitting. The
mixture (2) has two parts, the mixture kernel px (θ) and the mixing distribution f (θ).
If we leave the mixing distribution unspecified, the nonparametric estimate is discrete
(Lindsay 1995) and connects to clustering.

However, when mixed power series distributions are used to model the zero-
truncated distribution, problems may arise due to the lack of identifiability of the
mixing distribution (see Link 2003); in addition, boundary problems in maximum
likelihood estimation may occur for finite mixture models as outlined by Wang and
Lindsay (2005). Hence a renewed interest in lower bound estimation has emerged
(Mao 2006; Mao and Lindsay 2007). The original idea of Chao (1987, 1989) was to
keep the mixing distribution unspecified and to apply nonparametric inference based
on the Cauchy-Schwarz inequality in the context of zero-truncated count mixture
modelling which arises naturally in capture-recapture experiments or studies. Here
we take up this idea again and develop it further for one-inflated count distributions.
The associated zero-truncated densitieswill be denoted as p+

x (θ) = px (θ)/[1− p0(θ)]
and m+

x (θ) = mx (θ)/[1 − m0(θ)] for the zero–truncated power series and the zero–
truncated mixture of power series distributions, respectively.

2 Mixtures of power series distributions and themonotonicity of the
probability ratio

The power series (1) has an important property. If we consider ratios of neighboring
probabilities multiplied by the inverse ratios of their coefficients then

rx = ax
ax+1

px+1

px
= θ, (3)
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Table 1 Frequencies of the number of times perpetrators have been identified in a domestic violence incident
in the Netherlands in the year 2009

Year f1 f2 f3 f4 f5 f6+ n

2009 15,169 1957 393 99 28 16 17,662

in other words, the ratio rx is constant over the range of x with value equal to the
unknown parameter θ . Note that rx is also identical to the zero-truncated quantities
ax

ax+1

p+
x+1

p+
x
. A nonparametric estimate of rx is readily available with r̂x = ax

ax+1

fx+1
fx

where fx is the frequency of observations with count value x . The graph x → r̂x is
called ratio plot and was developed in Böhning et al. (2013) as a diagnostic device
providing evidence for the aptness of a distribution. The coefficient ax determines the
type of ratio plot. For example, if ax = 1/x ! we investigate for a Poisson distribution
and we call the associated ratio plot Poisson ratio plot, or if ax = 1 we call it the
geometric ratio plot. The ratio plot might be used as guidance for choosing the com-
ponent density in the mixture. We follow the paradigm that the more horizontal the
ratio plot the more homogeneous is the population w.r.t. the component density, and
this would indicate a preference of the distribution with more horizontal pattern in the
associated ratio plot.

2.1 Example 1

We apply the ratio plot to family violence data for the Netherlands in the year 2009
provided by Van der Heijden et al. (2014). Here the perpetrator study is reported with
the data given in Table 1. There were 15,169 perpetrators identified being involved in
a domestic violence incident exactly once, 1957 exactly twice, and so forth. In total,
there were 17,662 different perpetrators identified in the Netherlands for 2009. The
data represent the Netherlands except the police region for The Hague. It is known that
domestic violence is largely a hidden activity and many incidents remain unreported
(Summers andHoffman 2002). In Fig. 1, we see the geometric ratio plot r̂x = fx+1/ fx
against x for the family violence data in the Netherlands. Clearly, the ratio plot shows
some monotone increasing trend. We will see in the following that this monotone
pattern can be associated with some form of population heterogeneity. In addition, it
is apparent that the first ratio f2/ f1 is too small to be in agreement with the line pattern
we see in the ratio plot. This indicates an inflation of ones or singletons in the data. In
conclusion, we observe two aspects in Fig. 1: the occurrence of heterogeneity and of
one-inflation.

We return to the question how unobserved heterogeneity is associated with the ratio
plot, or in other words, how unobserved heterogeneity can be identified in the ratio
plot. It was shown in (2) that the occurrence of unobserved heterogeneity leads to
the mixture of power series distributions. We can likewise consider the ratio plot for
mixtures

rx = ax
ax+1

mx+1

mx
, (4)
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Fig. 1 Geometric ratio plot for perpetrator domestic violence identifications in the Netherlands 2009

where we use the coefficients ax associated with the mixture kernel, for example, in
the case of a Poisson kernel ax = 1/x ! or the case of a geometric kernel ax = 1. The
estimate of rx will not change, however, the interpretation of the observed pattern in
the ratio plot will. This is mainly due to the following result (Chao 1987, and more
general Böhning and Del Rio Vilas 2008):

Theorem 1 Let mx = ∫
θ
px (θ) f (θ)dθ where px (θ) is a member of the power series

family and f (θ) an arbitrary density. Then, for rx = ax
ax+1

mx+1
mx

we have the following
monotonicity:

rx ≤ rx+1

for all x = 0, 1, . . ..

This result says that in the case of a mixture of power series distributions the ratio plot
will no longer show a horizontal line pattern but will be increasing monotonously.
Hence, if a monotone pattern occurs in the ratio plot this may be taken as indication
for presence of heterogeneity which can be captured by a nonparametric mixture (2).
For this general form of allowing population heterogeneity the estimator of Chao had
been developed. If on top of this general heterogeneity one-inflation occurs, Chao’s
estimator needs modification which we will discuss in the next section.

3 Modified Chao estimation

As a consequence of the result in Theorem 1 we have that a0
a1

m1
m0

≤ a1
a2

m2
m1

, or
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a0a2
a21

m2
1

m2
≤ m0. (5)

Replacing the theoretical quantitiesmx by their sample estimates fx/N leads toChao’s
estimate for f0 (Chao 1987, 1989)

f̂0 = a0a2
a21

f 21
f2

. (6)

By comparing (5) with (6) it can be seen that (6) provides a lower bound of the part
of the population that is missed. The estimate (6) is most popular and frequently used
in capture-recapture estimation, in particular in connection with the Poisson density
(ax = 1/x !) in the mixture (2). However, it should be noted that other bounds are
possible as well using the monotonicity result in Theorem 1. Note that also

a1
a2

m2

m1
≤ a2

a3

m3

m2
(7)

holds, or equivalently
a1a3
a22

m2
2

m3
≤ m1. (8)

This bound has never been used nor elaborated on, as it seems pointless since we have
observed counts of one, and no bounds seem to be required. If we replace m1 in (5)
with the bound given in (8) we yield

a0a2
a21

(
a1a3
a22

m2
2

m3

)2
1

m2
≤ m0. (9)

The bound can be simplified to

a0a23
a32

m3
2

m2
3

≤ m0. (10)

Plugging in frequencies leads to

f̂ new0 = a0a23
a32

f 32
f 23

. (11)

Note that we can expect f̂ new0 to be smaller than f̂0 in the mean as

a0a23
a32

m3
2

m2
3

≤ a0a2
a21

m2
1

m2
≤ m0. (12)
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Specific forms of the modified Chao estimator arise for mixtures of particular power
series members. We have

f̂ new0 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
9

f 32
f 23

, if mx is a Poisson mixture,

f 32
f 23

, if mx is a geometric mixture,

(T−2)2

T (T−3)
2
9

f 32
f 23

, if mx is a binomial mixture.

Note that for T becoming large the lower bound for the Poisson mixture and the
binomial mixture will agree. Furthermore, if the mixture reduces to a power series
distribution (i.e. there is nomixing involved), both estimators, f̂ new0 and f̂0, are asymp-
totically unbiased. Note that, similar to the original Chao estimator (Chao and Colwell
2017), for asymptotic unbiasedness the assumption of a power series distribution can
be relaxed to hold only for the rare counts, the doubletons and tripletons, i.e. counts
of twos and counts of threes, and the unseen units.

The question arises why the bound f̂ new0 could be of interest, as, according to (12),
it will typically provide an even lower bound than the conventional Chao lower bound
estimator f̂0. This question is the topic of the next section.

4 One-inflation

In practice, counts of one, the singletons, occur often more frequently than compatible
with a nonparametric mixture model. For example, in the family violence study a
portion of the perpetrators having a contact with the police the first timemight take this
as a serious motivation for a change in behavior and it will never happen again. As Fig.
1 indicates, there appear to be two processes going on. The first process can be viewed
as a mixture of geometric distributions (as the linear trend in the ratios of frequencies
for counts larger than one indicates) . The second process is an inflation of ones (as the
much lower ratio f2/ f1 supports). In these instances, it is more appropriate to allocate
extra-mass at counts of one. Hence, we assume that the following one-inflation model
holds:

m′
x =

{
(1 − π) + πm1 for x = 1

πmx for x = 0, 2, 3, . . .
, (13)

where mx is the mixture of a power series member. Note that (13) can be written
as m′

x = (1 − π)δ1(x) + πmx for x = 0, 1, 2, . . . and δy(x) = 1 for x = y
and zero otherwise. For a one-inflation model, more singletons will occur than com-
patible with the nonparametric mixture model as the one-inflation model is outside
the class of nonparametric mixtures. Hence Chao’s estimator is no longer a lower
bound estimator as Theorem 1 no longer holds. In fact, Chao’s estimator can experi-
ence serious overestimation as also becomes clear when considering its form which
involves f 21 . Note that one-inflation models behave differently than zero-inflation
models as every zero-inflated power series distribution can be written as the mixture
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(1 − π)δ0(x) + πmx = (1 − π)ax0x/η(θ) + πm(x) which is within the class of
nonparametric mixtures of power series distributions.
Here comes now the advantage of the new lower bound estimator.

Theorem 2 Assume a one-inflation model m′
x as given in (13), where

mx = ∫
θ
px (θ) f (θ)dθ where px (θ) is a member of the power series family and

f (θ) an arbitrary density. Then

a0a23
a32

m′
2
3

m′
3
2 ≤ m′

0. (14)

Weprovide a short proof of the result in the appendix.As a consequence of this theorem
we can expect f̂ new0 to be a lower bound estimator in the mean under heterogeneity of
the parameter of the power series distribution and under one-inflation.
Consider the case of a power series distribution with one-inflation, in other words
m′

x = (1 − π)δ1(x) + π px . Then, the conventional Chao estimator has asymptotic
bias

a0a2
a21

[(1 − π) + π p1]2
π p2

N − a0/η(θ)N

whereas the newly suggested estimator is asymptotically unbiased, even if the power
series distribution is one-inflated.

Example 2

To illustrate the potential of large bias with the conventional Chao estimator consider
the following synthetic example. 500 counts were simulated from a Poisson with
parameter 1 andmergedwith 500 extra-ones so that in total N = 1000 is the population
size. The frequency distribution as follows: f0 = 186, f1 = 690, f2 = 95, f3 = 32,
f4+ = 7, so that the observed sample size is n = 814. The associated ratio plot is
presented in Fig. 2 and shows clear evidence of one-inflation. In this case, ignoring the
fact that f0 is known, f̂ new0 = 186, corresponding exactly to the observed f0, which
compares to the conventional Chao estimator f̂0 = 2,434, the latter giving a serious
overestimate of the true f0 = 186.

Example 3

Vergne et al. (2014) discuss count modelling of highly pathogenic avian influenza
H5N1 in Thailand. These outbreaks have enormous social and economic impact on the
society. Thefirst outbreaks of highly pathogenic avian influenzaH5N1were reported in
Thailand in January 2004. For around two years, a large epidemic occurred through-
out the country, causing massive mortality in chickens and ducks. The economic
consequences of these outbreaks were dramatic, as more than 65 million birds were
culled and over US$ 130 million was spent compensating farmers losses during 2004
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Fig. 2 Poisson ratio plot for the synthetic data of Example 2

Table 2 Frequency distribution of the count of reported outbreaks per subdistrict in Thailand from July 3rd
2004 to May 5th 2005

Count of reported outbreaks f0 f1 f2 f3 f4 f5 f6 f7 f8+ n

Frequency of subdistricts 6587 410 161 87 46 26 21 8 20 769

and 2005 (Vergne et al. 2014). Vergne et al. (2014) also provide the distribution of
the number of outbreaks per subdistrict in Thailand from July 3rd 2004 to May 5th
2005. See also Table 2. According to this table, there are 6587 subdistricts in Thailand
which reported nooutbreaks.However, it can be assumed that therewere a considerable
number of subdistricts affected by the pathogenic avian influenza H5N1 but reported
no outbreaks. Hence, it is of considerable interest to have an estimate of this number.
This can be accomplished by treating the distribution as zero-truncated. Fig. 3 shows
the associated geometric ratio plot based upon the first five frequencies (we restrict the
plotting on the larger frequencies), ignoring the zero-counts. The geometric ratio plot
shows evidence for a geometric distribution, except for x = 1 which is lower than the
other ratio indicating one-inflation. This becomes evenmore clear ifwe use the concept
of geometric ratio plot under the null, a diagnostic tool developed in Böhning and
Punyapornwithaya (2018). The idea is to plot the logarithm of r̂x = ax

ax+1

fx+1
fx

against
x as before but also include a pointwise 95% confidence band which is computed on
the basis of power series distribution which is assumed to be valid. If the distribution
is valid then the band should contain all empirical log-ratios. Figure 4 shows the
geometric ratio plot under the null for the H5N1 data set. Clearly, the first point is
below the confidence band indicating one-inflation.
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Fig. 3 Geometric ratio plot for the H5N1 outbreak data of Example 3

Fig. 4 Geometric ratio plot under the null for the H5N1 outbreak data of Example 3

Again, we assume an arbitrarymixture of geometric distributions with one-inflation
as the analysis of the ratio plots suggests. We find f̂ new0 = 551 and f̂0 = 1044. We
note that the conventional Chao estimator is about twice as large as the modified Chao
estimator, an effect we would expect if there is one-inflation. We conclude that we
estimate at least 550 subdistricts of the 6587 subdistricts to be affected by the outbreak.
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Fig. 5 Geometric ratio plot under the null for the domestic violence data of Example 1

Example 1 (revisited)

We return to Example 1 of the domestic violence study of Sect. 2. A likelihood ratio
test, testing a simple geometric against a one-inflated geometric, leads to a value of
98.9 which is highly significant given that the null-distribution is a χ2-mixture 0.5χ2

0+ 0.5χ2
1 . We also include the geometric ratio plot under the null for the domestic vio-

lence data in Fig. 5. There is clear evidence that the first ratio is outside the confidence
band, indicating one-inflation.

To be more general, we assume an arbitrary mixture of geometric distributions with
one-inflation as the analysis of the ratio plots suggests (even though the remaining
points are inside the confidence band there is a clear monotone increasing pattern
visible). We find f̂ new0 = 48, 527 and f̂0 = 117, 577. Note that the conventional Chao
estimator is much larger than the modified Chao estimator, an effect we typically
expect if there is one-inflation. The size of the estimated hidden domestic violence is
as expected since dark number research estimates the number of reported domestic
crimes between 15% and 30% (Summers and Hoffman 2002). Our estimates given
here are likely on the conservative side.

5 Bias reduction

TheChao estimators can have severe bias when the sample size is small. To understand
the occurrence of bias we go back to the original Chao estimator as developed in (5).
As the arguments used in bias-reduction are not readily available in the published
literature we outline them here. We try to estimate Nm2

1/m2 = E( f1)2/E( f2) using
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f 21 / f2. However, the latter estimates E( f 21 / f2) which is not necessarily close to
E( f1)2/E( f2) unless f1/N and f2/N are close tom1 andm2, respectively. Hence the
idea of bias reduction is to express E( f1)2, which we cannot estimate directly, as f 21 ,
by means of E( f1) and E( f 21 ) which we can estimate directly as f1 and f 21 . Indeed,
we use that

Var( f1) = E( f 21 ) − E( f1)
2 = E( f1),

bymeans of a Poisson assumption. It follows that E( f1)2 = E( f 21 )−E( f1)which can
be estimated as f 21 − f1 leading to the numerator of the bias-corrected Chao estimator.
Turning to the denominator, we note that our interest is in 1/λ = 1/E( f2), but using
1/ f2 will estimate E(1/ f2) if the latter exists. Alternatively, 1/(1+ f2) will estimate
E[1/(1 + f2)] which can be evaluated using the Poisson assumption for f2 as

E

(
1

f2 + 1

)

=
∞∑

f2=0

1

( f2 + 1)
× exp(−λ)λ f2/ f2! = 1/λ + exp(−λ)/λ ≈ 1

E( f2)
,

with the approximation error less than 0.001 for λ > 5.
This leads to the bias-corrected Chao estimator

N̂Chao-C = n + a0a2
a21

f1( f1 − 1)

f2 + 1
. (15)

In a similar way, we derive the bias correction for the modified Chao estimator leading
to

N̂Chao-N = n + a0a23
a32

f 32 − 3 f 22 + 2 f2
( f3 + 1)( f3 + 2)

, (16)

but leave the details for Appendix 2.

6 Variance estimation

It is useful to put the proposed estimator into a likelihood framework. Evidently,
the estimator (11) uses only counts of ones and twos. Hence it seems reasonable to
consider a binomially truncated likelihood

log L = f2 log(p) + f3 log(1 − p), (17)

where p = P(X = 2|X = 2 or X = 3) = a2/(a2 + a3θ). The log-likelihood (17) is
maximized for p̂ = f2/( f2 + f3), or, θ̂ = a2(1− p̂)

a3 p̂
= a2 f3

a3 f2
. Furthermore, it is easy to

see that E( f0| f2, f3; p2) = a0
a2θ2+a3θ3

( f2 + f3). Replacing θ by its estimate θ̂ gives

f̂0 = a0

a2θ̂2 + a3θ̂3
( f2 + f3) = a0a23

a32

f 32
f 23

,

which corresponds to the proposed estimator (11).
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To continue developing a variance estimate we write (11) as T (θ̂)( f2 + f3) with
T (θ̂) = a0

a2 θ̂2+a3θ̂3
.Wewill use the fact thatVar(X) = E[Var(X |Y )]+Var [E(X |Y )]

for any two random variables X and Y . This conditioning technique is helpful in the
capture-recapture context (Böhning 2008; Van der Heijden et al. 2003). We apply this
here by using X = T (θ̂)( f2 + f3) and Y = f2 + f3. The first term E[Var(X |Y )] can
be approximated as

( f2 + f3)
2Var [T (θ̂)] ≈ ( f2 + f3)

2Var(θ̂)T ′(θ̂)2.

As T ′(θ̂)2 = a20a
6
3

a82

f 82
f 63

(2 f2+3 f3)2

( f2+ f3)4
and Var(θ̂) ≈ a22

a23

( f2+ f3) f3
f 22

we yield for the first term

a20a
4
3

a62

f 52
f 53

(2 f2 + 3 f3)2

( f2 + f3)
.

The second term Var [E(X |Y )] can be approximated by T (θ̂)2( f2 + f3) since
E[T (θ̂)2( f2 + f3)|( f2 + f3)] ≈ T (θ)( f2 + f3), so that the result follows from
Var( f2 + f3) = E( f2 + f3) under the conventional Poisson assumption. The latter
is then estimated by the moment estimate f2 + f3. In total we yield

a20a
4
3

a62

f 52
f 53

(2 f2 + 3 f3)2

( f2 + f3)
+ a20a

4
3

a62

f 62
f 43 ( f2 + f3

. (18)

Note that (18) can be written in a simple form as

f̂ 20

(

1 + (2 f2 + 3 f3)2

f2 f3

)

/( f2 + f3), (19)

where f̂0 is given by (11). As we have seen in the previous section, it is necessary to
stabilize the estimator (11), it is also necessary to use a bias-corrected version of the
variance estimator. We suggest to use

f̂ 20,b

(

1 + (2 f2 + 3 f3)2

( f2 + 1)( f3 + 1)

)

/( f2 + f3) (20)

as a variance estimator for f̂0, where f̂0,b = a0a23
a32

f 32 −3 f 22 +2 f2
( f3+1)( f3+2) is the bias-corrected

estimator of f0 developed in the previous section in (16).
To investigate the performance of our variance estimator (20) we provide a small

simulation study comparing the estimated standard error according to (20) with the
true standard error estimated from the simulation. The results are provided in Table 3. It
can be seen that the approximation is excellent for the larger population size N = 1000
and reasonable for the small population size N = 50 where it provides a conservative
estimate. A more detailed investigation of the proposed variance estimator is given in
Kaskasamkul (2018).
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Table 3 Ratio of estimated
standard error using (20) to the
true, simulated standard error for
various geometric distributions
with and without one-inflation

N θ Ratio E(
̂s.e.( f̂0)/s.e.( f̂0)

No one-inflation 20% 50%

50 0.1 1.547 1.561 1.597

0.2 1.505 1.582 1.593

0.3 1.525 1.563 1.668

0.4 1.580 1.634 1.559

1000 0.1 1.044 1.061 1.071

0.2 1.000 0.967 1.027

0.3 1.000 1.011 1.037

0.4 1.050 1.021 1.018

Table 4 Estimates of the frequency of hidden units with standard error and approximative normal 95%
confidence interval; all examples use a geometric mixture kernel in the mixture (2) except the synthetic
example which uses a Poisson

Example f̂0,b
§ SE 95% CI

Family violence 48,085 (48,202) 5837 36,646–59,525

Synthetic 165 (169) 76 16–313

H5N1 523 (527) 166 199–847

§Numbers in brackets refer to the Chiu–Chao estimator of section 7.1

We are now able to give a more realistic estimation of the hidden frequency f0
for our examples. This is done in Table 4. All estimates appear to be realistic. In
the synthetic examples the standard error is relatively large, likely due to the small
frequencies in the upper counts.

7 Simulation

In the first part, we concentrate on the comparison of the the bias-adjusted conventional
Chao estimator (15) and the bias-adjusted modified Chao estimator (16). In the second
part, we compare the bias-adjusted modified Chao estimator (16) with a previously
suggested estimator by Chiu and Chao (2016).

7.1 Comparison of themodified Chao estimator with the conventional Chao
estimator

In the following we will focus on the bias-adjusted conventional Chao estimator (15)
and the bias-adjustedmodified Chao estimator (16). Bias will occur for anymember of
the power series family as sampling distribution for X . However, the bias-reduction has
been developed under a Poisson assumption for the frequency fx . To demonstrate how
well the bias reductionworks (outside the Poisson sampling for X )we consider as basic
sampling the geometric. The latter, as mixture of a Poisson with an exponential, seems
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to be an attractive distribution as it can incorporate some basic form of heterogeneity
(the one that can bemodelled by an exponential).We look at two population sizes N =
50 and 1000 and consider five different scenes with different parameter constellations
for each of them.

1. Scene 1 is the homogeneous geometric distribution with four parameters θ =
0.1, 0.2, 0.3, 0.4 denoted as populations 1–4.

2. Scene 2 is as scene 1 but with 20% one-inflation. More precisely this means that
with probability π = 0.8 the count is taken from a homogeneous geometric and
with probability 1 − π = 0.2 it is taken as a count of one.

3. Scene 3 is as scene 1 but with 50% one-inflation.
4. Scene 4 allows heterogeneity in the parameter of the geometric in addition

to 20% one-inflation. The count is taken with probability π = 0.8 from an
equally weighted mixture of two geometric distributions. The following six two-
componentmixture populationswere considered: θ2 = 0.2, 0.3, 0.4with θ1 = 0.1,
θ2 = 0.3, 0.4 with θ1 = 0.2 and θ2 = 0.4 with θ1 = 0.3 and denoted as popula-
tions 1 to 6. Here θ1 is parameter of the geometric from the first component and
θ2 is the parameter of the geometric from the second component.

5. Scene 5 is as in scene 4 but with 50% one-inflation.

The results of the simulation study are presented in Fig. 6. For a generic estimator
N̂ of population size we define relative bias as

1

B

B∑

i=1

(
N̂i − N

)
/N =

( ¯̂N − N
)

/N

and relative standard deviation as

√
√
√
√ 1

B

B∑

i=1

(N̂i − ¯̂N )2/N

to allow for comparisons across different sized populations. It is clear that themodified
Chao estimator N̂Chao-N with bias-reduction avoids the overestimation bias of the
conventional Chao estimator N̂Chao-C that clearly occurs for all populations with
one-inflation as the left panels in Fig. 6 indicate. It becomes also transparent that the
larger the one-inflation the higher the overestimation bias of N̂Chao-C. Furthermore,
in a way surprisingly, also the relative standard deviation is smaller for N̂Chao-N in
comparison to N̂Chao-C, most significantly for the one-inflation scenes, as the right
panels in Fig. 6 show.

In Fig. 7 we provide a comparison of the modified Chao estimator n + a0a23
a32

f 32
f 23

with its bias-corrected version N̂Chao-N = n + a0a23
a32

f 32 −3 f 22 +2 f2
( f3+1)( f3+2) (given in (16)) on

the basis of a geometric distribution. Clearly, the bias-corrected version is performing
well.
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Fig. 7 Comparison of the modified Chao estimator n + f 32 / f 22 with its bias-corrected version (16) for a
geometric distribution with parameters θ = 0.1, 0.2, 0.3, 0.4 (upper panels) and with 20% one-inflation
(lower panels)

7.2 Comparison to previously suggested estimators

Chiu andChao (2016) also discusses the case of spurious singletons.Using theCauchy-
Schwarz inequality they derived the inequality E( f1) ≥ (2E( f2)2)/ (3E( f3)), for
large observed sample size (Chiu and Chao 2016; eq. (4a)). They propose further to
estimate this quantity by f̂1 = 2 f 22 /(3 f3) and use this estimate in the conventional
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Chao estimator f̂0,CC* = f̂ 21 /(2 f2) = (2 f 32 )/(9 f 23 ) which corresponds exactly to
our proposed estimator in the Poisson case. In Eq. (6b) Chiu and Chao (2016) suggest
to use the bias-corrected version f̂1( f̂1 − 1)/(2 f2 + 2) and we also suggest here
to use the bias-corrected estimate of f̂1 = f2( f2 − 1)/(2 f3 + 2) with the same
line of argument as for the bias-correction for f̂0. These bias corrections are utmost
important, in particular, when working with higher moment estimates as could be seen
in the previous section.

In our general power series framework, the bias-corrected Chiu–Chao estimator
takes the form

N̂CC = n + a0a2
a21

f̂1,CC( f̂1,CC − 1)

f2 + 1
, (21)

where

f̂1,CC = a1a3
a22

f2( f2 − 1)

f3 + 1
.

Chiu and Chao suggested also a different bias-correction in eq. (5) which we did
not consider as it is undefined if f3 or f4 is zero. Also, they suggest a population size
estimator which replaces n by n − f1 + f̂1 which we did not consider here, mainly to
achieve a fair comparison. In our context, we consider the singletons as true counts of
ones. There are just more than compatible with any Power series mixture which is the
source of a potential severe bias. We will take up this point again in the discussion.
In this context it is important to see the difference of one-inflation models to zero-
inflation models. Whereas the latter is also a Power series mixture, and hence, Chao’s
conventional estimator is also a lower bound for zero-inflation models, one-inflation
models are not in the family of the Power series mixture and hence Chao’s estimator
is no longer a lower bound, as we have seen in the examples.

We expect that N̂Chao-N and N̂CC behave quite similarly. Indeed, there are only
small differences in their values for all examples (see column 2 in Table 4). Neverthe-
less, we compared N̂Chao-N and N̂CC in a simulation study for a variety of scenarios.
We look here at the setting of geometrically distributed counts with and without 20%
one-inflation. The results are presented in Fig. 8. Both estimators behave very similar
and identical for larger population sizes above 1000. For the smaller population sizes
N̂Chao-N seems to show benefits, in particular with respect to relative standard error.
The graphs for Poisson counts with and without one-inflation look similar and are not
presented here.

8 Discussion

We have focussed here on one-inflation as this appears to be the most relevant case in
practice. Often in the application the occurrence of one-inflation can be well explained
and interpreted. For example, in the case of family violence in the Netherlands, one-
inflation might occur because many perpetrators might change their behavior after
their first identification by the police. However, in principle, it is also possible to
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extend the approach to higher inflated counts such as two -inflation. To demonstrate
this, it follows from Theorem 1 that a0

a1
m1
m0

≤ a3
a4

m4
m3

, or m0 ≥ a0a4
a1a3

m1m3
m4

. Replacing the
theoretical probabilities by their associated frequencies gives the lower bound. Also,
a bound can be developed for the situation there is inflation for both, ones and twos.
The ratio plot may be helpful again to gain insights on the form of inflation. However,
the most practical case occurs with the inflation of counts of ones. In addition, these
zero-truncated count distributions as they arise in capture-recapture settings have often
very little information in the upper tail, so that there comes in a natural restriction in
considering types of higher inflated counts.

One-inflation can occur in several ways. Here, we view the occurrence of ones
as true ones, whether they arise from the Power series mixture or as extra-ones. For
example, we imagine in the case of family violence that some of the perpetrators
change their behavior after they have been identified by the police the very first time,
and then never re-occur in the police database. This might lead to extra-ones in the
sample. In any case, here is no doubt about the observed sample size n. Another
scenario is the case where we think of the singletons as being misclassified, so that
some of these might be truly doubletons or tripletons etc. In this case, the observed
sample size of different units is overestimated and needs to be corrected, for example,
using n− f1 + f̂1 as suggested in Chiu and Chao (2016). Which estimator to use, will
depend on the application at hand.
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Appendix 1

We now give a proof of Theorem 2.

Proof For the non-inflated component we have that

a0a23
a32

m2
3

m3
2 ≤ m0,
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and multiplying both sides with π gives

a0a23
a32

(πm2)
3

(πm3)
2 ≤ πm0,

which is the result as m′
x = πmx for x �= 1. 	


Appendix 2

Here we give some details on the bias-reduction for the modified Chao estimator. We
note that

E[ f2 − E( f2)]3 = E( f 32 ) − 3E( f 22 )E( f2) + 2E( f2)
2.

Using a Poisson assumption for f2, E[ f2 − E( f2)]3 = E( f2), we yield

E( f2) = E( f 32 ) − 3E( f 22 )E( f2) + 2E( f2)
2.

Using the Poisson assumption once more, we have that E( f2)2 = E( f 22 ) − E( f2) so
that

2E( f2)
3 = E( f2) − E( f 32 ) + 3[E( f2) + E( f2)

2]E( f2).

It follows that

E( f2)
3 = E( f 32 ) − E( f2) − 3E( f2)

2,

using the Poisson assumption again for E( f2)2

E( f2)
3 = E( f 32 ) − E( f2) − 3E( f 22 ) + 3E( f2)

= E( f 32 ) + 2E( f2) − 3E( f 22 ),

which can be validly estimated by f 32 − 3 f 22 + 2 f2.
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Fig. 9 E[1/( f + 1)( f + 2)]2 and 1/E( f )2 as a function of E( f )

For the denominator we note that E[1/( f3 + 1)( f3 + 2)]2 can be evaluated using
the Poisson assumption as (with the abbreviations f = f3 and λ = E( f ))

E

(
1

( f + 1)( f + 2)

)

=
∞∑

f=0

1

( f + 1)( f + 2)
× exp(−λ)λ f / f !

= exp(−λ)
1

λ2

∞∑

f =0

λ f +2/( f + 2)!

= exp(−λ)
1

λ2
[exp(λ) − 1 − λ)]

= 1

λ2
− exp(−λ)

λ2
− exp(−λ)

λ
,

which is an excellent approximation of 1
λ2

if λ ≥ 5 (see also Fig. 9).
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