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Abstract The aim of this paper is to establish recurrence relations satisfied by product
moments and covariances of kth records arising from discrete distributions. They will
be evaluated for geometric underlying distribution. Then we use these results to obtain
formulas for correlation coefficients of geometric kth records. We consider all three
known types of kth records: strong, ordinary, and weak.

Keywords Product moments · Covariances · Correlation coefficients · Strong,
ordinary and weak kth records · Geometric distribution

1 Introduction

Let X1, X2, . . . be a sequence of independent and identically distributed (iid) random
variables (rv’s) with cumulative distribution function (cdf) F . Let X1:n ≤ · · · ≤ Xn:n
stand for the respective order statistics of a random sample (X1, X2, . . . , Xn). For
positive integer k, we define occurrence times (T (k)

n , n ≥ 0) and values of kth records
(R(k)

n , n ≥ 0) as follows:

T (k)
0 = k, T (k)

n+1 = min
{
j > T (k)

n : X j > X
T (k)
n −k+1:T (k)

n

}
, n ≥ 0,

R(k)
n = X

T (k)
n −k+1:T (k)

n
, n ≥ 0.
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Note that for k = 1 the sequences of 1st record times (T (1)
n , n ≥ 0) and 1st records

(R(1)
n , n ≥ 0) reduce to the sequences of record times (Tn, n ≥ 0) and record values

(Rn, n≥0), respectively. For a deeper discussion of records and kth records we refer
the reader to the monographs of Arnold et al. (1998) and Nevzorov (2001).

If the underlying distribution is continuous, then the sequence of kth records from
a cdf F is distributed as the sequence of records from a cdf F1:k = 1 − (1 − F)k :

{
R(k)
n (F), n ≥ 0

}
d= {Rn(F1:k), n ≥ 0} , k = 1, 2, . . . , (1.1)

where
d= denotes equality in distribution; see Nevzorov (2001, Theorem 22.6). This

fact implies that in the continuous case distributional properties of kth records can
be derived in a direct manner from those of records. However, there are some results
concerning kth records which do not follow from the corresponding ones for records.
An example of such non-trivial results are various bounds on moments of kth records,
see for example Raqab and Rychlik (2002, 2004, 2011), Klimczak and Rychlik (2004,
2005), Charalambides and Rychlik (2008), Goroncy and Rychlik (2011), Jasiński
(2016), Kozyra and Rychlik (2017).

The situation becomesmore complicated for discrete distributions. López-Blázquez
et al. (2005) and Dembińska and López-Blázquez (2005b) showed that then (1.1) is
not valid. Moreover, in the last-mentioned paper definitions of strong and weak kth
records were introduced.

Definition 1 The sequences of strong kth record times (L(k)
n , n ≥ 0) and strong kth

records (S(k)
n , n ≥ 0) are given by:

L(k)
0 = 1, L(k)

n+1 = min
{
j > L(k)

n : X j : j+k−1 > X
L(k)
n :L(k)

n +k−1

}
, n ≥ 0,

S(k)
n = X

L(k)
n :L(k)

n +k−1
, n ≥ 0.

Definition 2 The sequences of weak kth record times (U (k)
n , n ≥ 0) and weak kth

records (W (k)
n , n ≥ 0) are given by:

U (k)
0 = k, U (k)

n+1 = min
{
j > U (k)

n : X j ≥ X
U (k)
n −k+1:U (k)

n

}
, n ≥ 0,

W (k)
n = X

U (k)
n −k+1:U (k)

n
, n ≥ 0.

When k = 1, the definition of 1st weak records amounts to the definition of
weak records (Wn, n ≥ 0), which were introduced by Vervaat (1973) and investi-
gated among others by Stepanov (1992, 1993), Wesołowski and Ahsanullah (2001),
Stepanov et al. (2003), Dembińska and Stepanov (2006), Danielak and Dembińska
(2007a, b), Ahsanullah and Aliev (2011), Karczewski and Wesołowski (2017).

Properties of weak kth records, (ordinary) kth records and strong kth records are
extensively studied in the literature. We refer to Dembińska and López-Blázquez
(2005a), Dembińska (2007a, b, 2008), Dembińska and Danielak (2008) and Oncel
and Aliev (2016). However, many problems concerning kth records from discrete
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distributions are still open. The aim of this paper is to fill this gap in the literature.
Precisely, we derive recurrence relations satisfied by product moments of kth records
arising from discrete distributions. These results together with the corresponding ones
for single moments obtained by Dembińska and Danielak (2008) allow us to establish
direct formulas for covariances and correlation coefficients between R(k)

m and R(k)
n ,

W (k)
m andW (k)

n or S(k)
m and S(k)

n , 0 ≤ m < n in some specific cases, when the underlying
distribution is geometric.

2 Basic properties of discrete kth records

In this section, we recall some results concerning the distribution of discrete kth
records, which can be found in Dembińska and López-Blázquez (2005b) and
Dembińska and Danielak (2008). They will be useful in Sect. 3.

From now on we assume that X1, X2, . . . are iid rv’s with support on non-negative
integers, probability mass function p j = P(X1 = j) and q j = P(X1 ≥ j), j ≥ 0.

The following lemma describes how the distributional properties of discrete strong
kth records can be derived from properties of records (Rn, n ≥ 0).

Lemma 1 For any k = 1, 2, . . . the sequence of strong kth records (S(k)
n , n ≥ 0)

from a cdf F is identical in distribution to a sequence of records (Rn, n ≥ 0) from a
cdf F1:k = 1 − (1 − F)k:

{
S(k)
n (F), n ≥ 0

}
d= {Rn(F1:k), n ≥ 0} . (2.1)

For ordinary andweak kth records the analogs of (2.1) are not valid. To analyze their
properties, it is convenient to define new rv’s η

(k)
m , ξ

(k)
m , m = 0, 1, . . . , k = 1, 2, . . .

as follows:

η(k)
m = s if there are exactly s kth records that are equal tom,

ξ (k)
m = s if there are exactly s weak kth records that are equal to m.

To pass from dependent ordinary kth records and weak kth records to independent
rv’s we use the lemma and representation given below.

Lemma 2 For any k = 1, 2, . . . and m = 0, 1, . . .:

(a) the rv’s η
(k)
0 , η

(k)
1 , . . . are independent and η

(k)
m has a binomial distribution

b(k, pm
qm

) with

P(η(k)
m = s) =

(
k

s

)(
pm
qm

)s (
1 − pm

qm

)k−s

, s = 0, 1, . . . , k,
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(b) the rv’s ξ
(k)
0 , ξ

(k)
1 , . . . are independent and ξ

(k)
m has a negative binomial distribu-

tion nb(k,1− pm
qm

) with

P(ξ (k)
m = s) =

(
s + k − 1

s

)(
pm
qm

)s (
1 − pm

qm

)k
, s = 0, 1, . . . .

Representation 1 For m = 1, 2, . . . , n = 0, 1, . . . , and k = 1, 2, . . .:

{
R(k)
n > m

}
=
{
η

(k)
0 + η

(k)
1 + · · · + η

(k)
m ≤ n

}
,

{
W (k)

n > m
}

=
{
ξ

(k)
0 + ξ

(k)
1 + · · · + ξ

(k)
m ≤ n

}
.

Now,we are in a position to derive formulas for productmoments and covariances of
kth records, weak kth records and strong kth records. All these results will be evaluated
for the geometric underlying distribution ge(p) with p j = pq j , j = 0, 1, . . . , where
q = 1 − p ∈ (0, 1). We will use the recurrence relations for the first moment of
any discrete ordinary and weak kth records established by Dembińska and Danielak
(2008). They showed that for k = 1, 2, . . .

E
(
R(k)
n

)
=

⎧⎪⎪⎨
⎪⎪⎩

∞∑
m1=0

qkm1+1, n = 0,

E
(
R(k)
n−1

)
+

∞∑
m1=0

P
(
N (k)
m1 = n

)
, n ≥ 1,

(2.2)

E
(
W (k)

n

)
=

⎧⎪⎪⎨
⎪⎪⎩

∞∑
m1=0

qkm1+1, n = 0,

E
(
W (k)

n−1

)
+

∞∑
m1=0

P
(
M (k)

m1 = n
)

, n ≥ 1,
(2.3)

with N (k)
m = η

(k)
0 + η

(k)
1 · · · + η

(k)
m and M (k)

m = ξ
(k)
0 + ξ

(k)
1 · · · + ξ

(k)
m respectively,

where the rv’s ξ
(k)
i and η

(k)
i are described in Lemma 2. Moreover, in the geometric

case, they obtained simple expressions for means and variances as follows

E
(
R(k)
n

)
=

n∑
j=0

p j

j !
(

1

1 − qk

)( j)

− 1, E
(
W (k)

n

)
= q

n∑
j=0

p j

j !
(
qk+ j−1

1 − qk

)( j)

,

(2.4)

Var
(
R(k)
0

)
= Var

(
W (k)

0

)
= qk(

1 − qk
)2 , (2.5)

where ( f (q))( j) stands for the j th derivative of the function f (q). In the next section,
(2.4) and (2.5)will be used to get covariances and correlation coefficients for geometric
kth records.
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3 Product moments and covariances

To derive formulas expressing product moments of kth records arising from discrete
distributions we will use a multivariate extension of Hoeffding’s (1940) lemma. Block
and Fang (1988) showed that if Z1, . . . , Zd are non negative rv’s then

E (Z1 . . . Zd) =
∫ ∞

0
· · ·
∫ ∞

0
P(Z1 > x1, . . . , Zd > xd) dx1 . . . dxd .

If Z1, . . . , Zd take values in the set of non-negative integers, the above expression can
be written as

E (Z1 . . . Zd) =
∞∑

m1=0

· · ·
∞∑

md=0

P(Z1 > m1, . . . , Zd > md). (3.1)

In particular, we obtain well-known formulas for the first two moments of a single rv
Z1:

E Z1 =
∞∑

m=0

P(Z1 > m) and E Z2
1 =

∞∑
m=0

(2m + 1)P(Z1 > m).

3.1 kth records

We begin with a general result on ordinary kth records. We use the convention that
R(k)

−1 = 0 for k ≥ 1.

Theorem 1 For any k = 1, 2, . . . , and 0 ≤ m < n:

E
(
R(k)
m R(k)

n

)
= E

(
R(k)
m−1R

(k)
n

)
+

∞∑
m1=0

P
(
N (k)
m1

= m
)

×
∞∑

m2=m1

n−m∑
j=0

P
(
N (k)
m2

− N (k)
m1

= j
)

+
∞∑

m1=0

m1 P
(
N (k)
m1

= m
)

.

Proof Using (3.1) for d = 2 and Representation 1 we get

E
(
R(k)
m R(k)

n

)
=

∞∑
m1=0

∞∑
m2=0

P
(
R(k)
m > m1, R

(k)
n > m2

)

=
∞∑

m1=0

∞∑
m2=0

P
(
N (k)
m1

≤ m, N (k)
m2

≤ n
)

=
∞∑

m1=0

∞∑
m2=0

P
(
N (k)
m1

≤ m − 1, N (k)
m2

≤ n
)

+
∞∑

m1=0

∞∑
m2=0

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)
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130 K. Jasiński

=E
(
R(k)
m−1R

(k)
n

)
+

∞∑
m1=0

∞∑
m2=m1

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)

+
∞∑

m1=1

m1−1∑
m2=0

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)

. (3.2)

When m2 < m1, the inequality N (k)
m2 = η

(k)
0 + . . .+η

(k)
m2 ≤ m < n implies P(N (k)

m1 =
m,N (k)

m2 ≤n)= P(N (k)
m1 = m). Thus

∞∑
m1=1

m1−1∑
m2=0

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)

=
∞∑

m1=0

m1 P
(
N (k)
m1

= m
)

. (3.3)

By similar arguments, for m2 ≥ m1, we get

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)

=
n−m∑
j=0

P
(
N (k)
m1

= m, N (k)
m2

− N (k)
m1

= j
)

.

Hence, the independence of rv’s N (k)
m1 and N (k)

m2 − N (k)
m1 implies

P
(
N (k)
m1

= m, N (k)
m2

≤ n
)

= P
(
N (k)
m1

= m
) n−m∑

j=0

P
(
N (k)
m2

− N (k)
m1

= j
)

. (3.4)

Now, applying (3.3) and (3.4) to (3.2), we complete the proof. ��
Theorem1 and formula (2.2) give the following recurrence relations for covariances

between kth records.

Corollary 1 For any k = 1, 2, . . . , and 0 ≤ m < n:

Cov
(
R(k)
m , R(k)

n

)
= Cov

(
R(k)
m−1, R

(k)
n

)

+
∞∑

m1=0

P
(
N (k)
m1

= m
) ∞∑
m2=m1

n−m∑
j=0

P
(
N (k)
m2

− N (k)
m1

= j
)

+
∞∑

m1=0

(
m1 − E(R(k)

n )
)
P
(
N (k)
m1

= m
)

.

The geometric distribution seems to be the only one for which the recurrence
relations given in Theorem 1 and Corollary 1 lead to simple expressions.

Theorem 2 Assume that the parent distribution is geometric ge(p). Then for k =
1, 2, . . . and 0 ≤ m < n:
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Relations for product moments and covariances… 131

E
(
R(k)
m R(k)

n

)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

qk

1−qk

n∑
j=0

p j

j !
(

1
1−qk

)( j) + q2k

(1−qk )2
, m = 0,

E
(
R(k)
m−1R

(k)
n

)
+ pm

m!

[(
1

1−qk

)(m)
(
m
k −1+

n−m∑
j=0

p j

j !
(

1
1−qk

)( j)
)

+ q
k

(
1

1−qk

)(m+1)
]

, m≥1,

(3.5)
and

Cov
(
R(k)
m , R(k)

n

)
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Var
(
R(k)
0

)
, m=0,

Cov
(
R(k)
m−1, R

(k)
n

)
+ pm

m!

[(
1

1−qk

)(m)
(

m
k −

n∑
j=n−m+1

p j

j !
(

1
1−qk

)( j)
)

+ q
k

(
1

1−qk

)(m+1)
]

, m≥1,

(3.6)
and Var(R(k)

0 ) is given by (2.5).

Proof In the geometric case, the rv’s η
(k)
i , i = 0, 1, . . . are not only independent,

but also have the same binomial distribution b(k, p). Hence, N (k)
m1 has a binomial

distribution with parameters (m1 +1)k and p. With the convention
(a
b

) = 0 for a < b,
it follows that

∞∑
m1=0

m1 P
(
N (k)
m1

=m
)

=
(
p

q

)m ∞∑
m1=0

m1

(
(m1 + 1)k

m

)
q(m1+1)k

=
(
p

q

)m ⎡
⎣

∞∑
m1=1

m1

(
m1k

m

)
qm1k −

∞∑
m1=1

(
m1k

m

)
qm1k

⎤
⎦

=
(
p

q

)m ⎡
⎣q

k

∞∑
m1=1

m1k

(
m1k

m

)
qm1k−1

−
∞∑

m1=0

(
m1k

m

)
qm1k + I{m=0}

⎤
⎦ ,

where I{.} is the indicator function such as I{m=0} = 1 if m = 0 and I{m=0} = 0
otherwise. Using the formulas

∞∑
m1=0

(
m1k

m

)
qm1k = qm

m!
∞∑

m1=0

(m1k)(m1k − 1) . . . (m1k − m + 1)qm1k−m

= qm

m!

⎛
⎝

∞∑
m1=0

qm1k

⎞
⎠

(m)

= qm

m!
(

1

1 − qk

)(m)

(3.7)
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and

∞∑
m1=1

m1k

(
m1k

m

)
qm1k−1 =

(
qm

m!
(

1

1−qk

)(m)
)(1)

= qm−1

m!

[
m

(
1

1 − qk

)(m)

+q

(
1

1−qk

)(m+1)
]

,

for m ≥ 0, after some algebra, we obtain

∞∑
m1=1

m1 P
(
N (k)
m1

= m
)
= pm

k m!

[
(m − k)

(
1

1 − qk

)(m)

+q

(
1

1 − qk

)(m+1)

+k I{m=0}

]
.

(3.8)
Further, notice that N (k)

m2 −N (k)
m1 has a binomial distributionwith parameters (m2−m1)k

and p. Consequently, by (3.7) we have

∞∑
m2=m1

n−m∑
j=0

P
(
N (k)
m2

−N (k)
m1

= j
)

=
n−m∑
j=0

(
p

q

) j ∞∑
m2=0

(
m2k

j

)
qm2k =

n−m∑
j=0

p j

j !
(

1

1 − qk

)( j)

.

This implies

∞∑
m1=0

P
(
N (k)
m1

= m
) ∞∑
m2=m1

n−m∑
j=0

P
(
N (k)
m2

− N (k)
m1

= j
)

=
(
p

q

)m n−m∑
j=0

p j

j !
(

1

1 − qk

)( j) ∞∑
m1=1

(
m1k

m

)
qm1k .

Using again (3.7), we can rewrite the last series as

∞∑
m1=1

(
m1k

m

)
qm1k =

[
qm

m!
(

1

1 − qk

)(m)

− I{m=0}

]
.

Hence

∞∑
m1=0

P
(
N (k)
m1

= m
) ∞∑
m2=m1

n−m∑
j=0

P
(
N (k)
m2

−N (k)
m1

= j
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qk

1−qk

n∑
j=0

p j

j !
(

1
1−qk

)( j)
, m = 0,

pm

m!
(

1
1−qk

)(m) n−m∑
j=0

p j

j !
(

1
1−qk

)( j)
, m ≥ 1.
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Combining the above equality with (3.8) and Theorem 1, we get (3.5).
Now, (3.5) and (2.4) give immediately (3.6). Indeed, for m = 0 we obtain

Cov
(
R(k)
0 , R(k)

n

)
= E(R(k)

0 R(k)
n ) − E(R(k)

0 )E(R(k)
n )

= qk

1 − qk

n∑
j=0

p j

j !
(

1

1 − qk

)( j)

+ q2k(
1 − qk

)2

− qk

1 − qk

⎡
⎣

n∑
j=0

p j

j !
(

1

1 − qk

)( j)

− 1

⎤
⎦

= qk

(1 − qk)2
= Var

(
R(k)
0

)
.

The last equality is a consequence of (2.5). ��
Recurrence relations (3.5) and (3.6) can be further simplified for k = 1 and k = 2.

An easy computation shows that if k = 1 then we get

E (Rm Rn)= (n + q)(m + q) + (m + 1)q

p2
, Cov (Rm, Rn)= (m + 1)q

p2
, 0 ≤ m < n.

(3.9)
Note that the above conclusion can be also derived by use of the well-known represen-

tation Rn
d=∑n+1

j=1 X j + n, where X1, X2, . . . are original iid ge(p) rv’s; see Arnold
et al. (1998).

Setting k = 2 and m = 0 in (3.5) and (3.6) yields

E(R(2)
0 R(2)

n ) = q2

1 − q2

n∑
j=0

p j

j !
(

1

1 − q2

)( j)

+ q4

(1 − q2)2
,

Cov(R(2)
0 , R(2)

n ) = Var(R(2)
0 ) = q2

(1 − q2)2
.

By the identity (
1

1 − q2

)( j)

= j !
2

[
1

p j+1 + (−1) j

(q + 1) j+1

]
, (3.10)

after some algebra, we obtain

E
(
R(2)
0 R(2)

n

)
= q2

1 − q2

[
n + 1

2p
+ 1

4

(
1 −

(
q − 1

1 + q

)n+1
)

+ q2

1 − q2

]
.

Remark 1 Note that (3.6) implies that for the geometric distribution we have

ρ
(
R(k)
0 , R(k)

n

)
=
√
Var R(k)

0 /Var R(k)
n , n, k = 1, 2, . . . .
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134 K. Jasiński

3.2 Weak kth records

The following theorem is analogous to Theorem 1 and may be proved in much the
same way with the convention that W (k)

−1 = 0 for k ≥ 1, so its proof is omitted.

Theorem 3 For any k = 1, 2, . . . , and 0 ≤ m < n:

E
(
W (k)

m W (k)
n

)
=E

(
W (k)

m−1W
(k)
n

)

+
∞∑

m1=0

P
(
M (k)

m1
= m

) ∞∑
m2=m1

n−m∑
j=0

P
(
M (k)

m2
− M (k)

m1
= j
)

+
∞∑

m1=0

m1 P
(
M (k)

m1
= m

)
.

Theorem 3 and formula (2.3) yield the following recurrence relations for covariances
between weak kth records.

Corollary 2 For any k = 1, 2, . . . , and 0 ≤ m < n:

Cov
(
W (k)

m ,W (k)
n

)
= Cov

(
W (k)

m−1,W
(k)
n

)

+
∞∑

m1=0

P
(
M (k)

m1
= m

) ∞∑
m2=m1

n−m∑
j=0

P
(
M (k)

m2
− M (k)

m1
= j
)

+
∞∑

m1=0

(
m1 − E

(
W (k)

n

))
P
(
M (k)

m1
= m

)
.

The next result shows, that the conclusion of Theorem 3 and Corollary 2 can be
simplified in the geometric case.

Theorem 4 Assume that the parent distribution is geometric ge(p). Then for k =
1, 2, . . . and 0 ≤ m < n:

E
(
W (k)

m W (k)
n

)
= E

(
W (k)

m−1W
(k)
n

)
+ q

pm

m!
(
qk+m−1

1 − qk

)(m)

×
⎡
⎣q

n−m∑
j=1

p j

j !
(
qk+ j−1

1 − qk

)( j)

+ 1

1 − qk

⎤
⎦

+ q

k

pm

m!

[
(1 − k)

(
qk+m−1

1 − qk

)(m)

+ q

(
qk+m−1

1 − qk

)(m+1)]
(3.11)
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and

Cov
(
W (k)

m ,W (k)
n

)
= Cov

(
W (k)

m−1,W
(k)
n

)
+ q

pm

m!
(
qk+m−1

1 − qk

)(m)

×
⎡
⎣1 − q

n∑
j=n−m+1

p j

j !
(
qk+ j−1

1 − qk

)( j)
⎤
⎦

+ q

k

pm

m!

[
(1 − k)

(
qk+m−1

1 − qk

)(m)

+ q

(
qk+m−1

1 − qk

)(m+1)
]

(3.12)

Proof In the geometric case, the rv M (k)
m1 is a sum of iid rv’s ξ

(k)
i , i = 0, 1, . . . ,m1.

Notice that M (k)
m1 has a negative binomial distribution nb (k(m1 + 1), 1 − p), because

ξi has a negative binomial distribution nb(k, 1− p). With the convention
(a
b

) = 0 for
a < b, it follows that

∞∑
m1=0

m1P
(
M (k)

m1
= m

)
=

∞∑
m1=0

m1

(
(m1 + 1)k + m − 1

m

)
q(m1+1)k pm

= pm
q

k

⎡
⎣

∞∑
m1=1

m1k

(
m1k+m−1

m

)
qm1k−1

− k

q

∞∑
m1=1

(
m1k+m−1

m

)
qm1k

⎤
⎦ .

Using the formulas

∞∑
m1=1

(
m1k + m − 1

m

)
qm1k = q

m!

⎛
⎝

∞∑
m1=1

qm1k+m−1

⎞
⎠

(m)

= q

m!
(
qk+m−1

1 − qk

)(m)

(3.13)
and

∞∑
m1=1

m1k

(
m1k + m − 1

m

)
qm1k−1 =

(
q

m!
(
qk+m−1

1 − qk

)(m)
)(1)

= 1

m!
(
qk+m−1

1 − qk

)(m)

+ q

m!
(
qk+m−1

1 − qk

)(m+1)

,
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for m ≥ 0, we get

∞∑
m1=0

m1 P
(
M (k)

m1
= m

)
= q

k

pm

m!

[
(1 − k)

(
qk+m−1

1 − qk

)(m)

+ q

(
qk+m−1

1 − qk

)(m+1)
]

.

(3.14)
Further, sinceM (k)

m2 −M (k)
m1 has a negative binomial distributionnb ((m2 − m1)k, 1− p)

and by (3.13), we obtain

∞∑
m2=m1

n−m∑
j=0

P
(
M (k)

m2
−M (k)

m1
= j
)

=
n−m∑
j=1

p j
∞∑

m2=0

(
m2k + j − 1

j

)
qm2k+

∞∑
m2=0

qm2k

= q
n−m∑
j=1

p j

j !
(
qk+ j−1

1 − qk

)( j)

+ 1

1 − qk
.

Hence

∞∑
m1=0

P
(
M (k)

m1
=m

) ∞∑
m2=m1

n−m∑
j=0

P
(
M (k)

m2
−M (k)

m1
= j
)
= pm

∞∑
m1=1

(
m1k + m − 1

m

)
qm1k

×
∞∑

m2=m1

n−m∑
j=0

P
(
M (k)

m2
− M (k)

m1
= j
)

= q
pm

m!
(
qk+m−1

1 − qk

)(m)
⎡
⎣q

n−m∑
j=1

p j

j !
(
qk+ j−1

1 − qk

)( j)

+ 1

1 − qk

⎤
⎦ ,

where the last equality is a consequence of (3.13). Combining it with (3.14) and
Theorem 3 we obtain (3.11). Moreover, analogously to the proof of (3.6), formu-
las (3.11) and (2.4) imply immediately (3.12). In particular, for m = 0 we get
Cov(W (k)

0 ,W (k)
n ) = Var(W (k)

0 ). ��

We can simplify recurrence relations (3.11) and (3.12) for k = 1 and k = 2. When
k = 1, simple algebra yields

E (WmWn)= q(m + 1)[q(n + 1) + 1]
p2

, Cov (Wm,Wn) = (m + 1)q

p2
, 0≤m < n.

Note that the above expressions can be also derived by use of the well-known rep-

resentation Wn
d= ∑n+1

j=1 X j , where X1, X2, . . . are original iid ge(p) rv’s; see e.g.
Dembińska (2007b).
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Setting k = 2 and m = 0 in (3.11) and (3.12), we obtain

E
(
W (2)

0 W (2)
n

)
= q2

1 − q2

⎡
⎣q

n∑
j=1

p j

j !
(

q j+1

1 − q2

)( j)

+ 1

1 − q2

⎤
⎦+ q4(

1 − q2
)2 ,

Cov
(
W (2)

0 ,W (2)
n

)
= Var

(
W (k)

0

)
= q2

(1 − q2)2
.

Observe that for odd j :

(
q j+1

1 − q2

)( j)

= (q j+1 + q j+3 + · · · )( j) = (1 + q2 + q4 + · · · )( j) =
(

1

1 − q2

)( j)

while for even j :

(
q j+1

1 − q2

)( j)

= (q + q3 + q5 + · · · )( j) =
(

q

1 − q2

)( j)

.

Combining the above relations with (3.10) and

(
q

1 − q2

)( j)

= j !
2

[
(−1) j+1

(q + 1) j+1 + 1

(1 − q) j+1

]
,

we get for j ≥ 0:

p j

j !
(

q j+1

1 − q2

)( j)

= 1

2p

[
1 −

(
p

2 − p

) j+1
]

,

which, after some algebra, gives

E
(
W (2)

0 W (2)
n

)
= q2

1 − q2

[
nq + 1

2p
+ 1

4

(
1 +

(
p

2 − p

)n+1
)]

+ q4

(1 − q2)2
.

Remark 2 Note that (3.12) implies that for the geometric distribution we have

ρ
(
W (k)

0 ,W (k)
n

)
=
√
VarW (k)

0 /VarW (k)
n , n, k = 1, 2 . . . .

3.3 Strong kth records

By Lemma 1, to derive expressions for the product moments of strong kth records
from cdf F , it suffices to find the corresponding ones of records from cdf F1:k :

E
(
S(k)
m (F)S(k)

n (F)
)

= E (Rm(F1:k)Rn(F1:k)) .
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This relation enables us to obtain easily the desired formulas for geometric strong
kth records. Formulas given in (3.9) with the fact that F1:k is geometric ge(1 − qk)
provided that F is geometric ge(p), imply the following theorem.

Theorem 5 For any 0 ≤ m < n and k = 1, 2, . . .:

E
(
S(k)
m S(k)

n

)
= (n + qk)(m + qk) + (m + 1)qk

(1 − qk)2
, Cov

(
S(k)
m , S(k)

n

)
= (m + 1)qk

(1 − qk)2
.

Moreover, it is known that the correlation coefficient between geometric records
Rm and Rn is equal to

√
(m + 1)/(n + 1), m < n (see, for example, Arnold et al.

1998, p. 40). This immediately implies that in the geometric case we get

ρ
(
S(k)
m , S(k)

n

)
=
√
m + 1

n + 1
, 0 ≤ m < n. (3.15)

Table 1 Correlation coefficients between geometric ge(p = 0.25) strong 2nd records S(2)
m and S(2)

n , 2nd

records R(2)
m and R(2)

n (in brackets) and weak 2nd records W (2)
m and W (2)

n (in square brackets)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 0.707107 1.000000 – – – –

(0.694239) (1.000000) – – – –

[0.698257] [1.000000] – – – –

n = 2 0.577350 0.816497 1.000000 – – –

(0.569690) (0.808298) (1.000000) – – –

[0.569690] [0.810657] [1.000000] – – –

n = 3 0.500000 0.707107 0.866025 1.000000 – –

(0.493559) (0.701801) (0.859939) (1.000000) – –

[0.493617] [0.701760] [0.861647] [1.000000] – –

n = 4 0.447213 0.632456 0.774597 0.894427 1.000000 –

(0.441711) (0.627884) (0.770425) (0.889592) (1.000000) –

[0.441711] [0.627884] [0.770425] [0.890916] [1.000000] –

n = 5 0.408248 0.573504 0.707107 0.816497 0.912871 1.000000

(0.403360) (0.573395) (0.703428) (0.813055) (0.908856) (1.000000)

[0.403361] [0.573360] [0.703456] [0.813054] [0.909939] [1.000000]

n = 6 0.377964 0.534522 0.654654 0.755929 0.845154 0.925820

(0.373532) (0.530989) (0.651423) (0.752837) (0.842218) (0.922387)

[0.373532] [0.530958] [0.651423] [0.752860] [0.842218] [0.923302]

n = 7 0.353553 0.500000 0.612372 0.707107 0.790569 0.866025

(0.349472) (0.496788) (0.609462) (0.704358) (0.787893) (0.863463)

[0.349472] [0.496758] [0.609463] [0.704357] [0.787912] [0.863463]
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Table 2 Correlation coefficients between geometric ge(p = 0.5) strong 2nd records S(2)
m and S(2)

n , 2nd

records R(2)
m and R(2)

n (in brackets) and weak 2nd records W (2)
m and W (2)

n (in square brackets)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 0.707107 1.000000 – – – –

(0.625543) (1.000000) – – – –

[0.670820] [1.000000] – – – –

n = 2 0.577350 0.816497 1.000000 – – –

(0.539784) (0.762858) (1.000000) – – –

[0.539784] [0.791252] [1.000000] – – –

n = 3 0.500000 0.707107 0.866025 1.000000 – –

(0.462367) (0.682012) (0.823711) (1.000000) – –

[0.466072] [0.679339] [0.846876] [1.000000] – –

n = 4 0.447214 0.632456 0.774597 0.894427 1.000000 –

(0.417022) (0.606539) (0.752810) (0.861020) (1.000000) –

[0.417022] [0.606694] [0.752810] [0.878940] [1.000000] –

n = 5 0.408248 0.573504 0.707107 0.816497 0.912871 1.000000

(0.380782) (0.577350) (0.684382) (0.798647) (0.884958) (1.000000)

[0.381123] [0.554117] [0.686500] [0.798458] [0.899834] [1.000000]

n = 6 0.377964 0.534522 0.654654 0.755929 0.845154 0.925820

(0.353262) (0.515419) (0.635849) (0.737076) (0.829701) (0.901952)

[0.353262] [0.513500] [0.635849] [0.738599] [0.829701] [0.914551]

n = 7 0.353553 0.500000 0.612372 0.707107 0.790569 0.866025

(0.330743) (0.482815) (0.595026) (0.691292) (0.774096) (0.852500)

[0.330776] [0.480781] [0.595231] [0.691121] [0.775532] [0.852485]

4 Tables

In this section, we present Tables 1, 2, 3 with numerical values of correlation coef-
ficients between strong 2nd records S(2)

m and S(2)
n , 2nd records R(2)

m and R(2)
n and

weak 2nd records W (2)
m and W (2)

n for the geometric parent ge(p), where m < n and
m = 0, 1, . . . , 5, n = 1, . . . , 7 and p = 0.25, 0.5, 0.75. They provide us some insight
into their magnitude of change. It is worth pointing out that in all the presented cases
the correlation coefficients between 2nd records R(2)

m and R(2)
n as well as between

weak 2nd records W (2)
m and W (2)

n do not exceed the correlation coefficients of 2nd
strong records S(2)

m and S(2)
n given in (3.15), which is also the maximum correlation

possible between any continuous square-integrable kth records (see, Nevzorov 1992).
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Table 3 Correlation coefficients between geometric ge(p = 0.75) strong 2nd records S(2)
m and S(2)

n , 2nd

records R(2)
m and R(2)

n (in brackets) and weak 2nd records W (2)
m and W (2)

n (in square brackets)

m = 0 m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 0.707107 1.000000 – – – –

(0.436852) (1.000000) – – – –

[0.627456] [1.000000] – – – –

n = 2 0.577350 0.816497 1.000000 – – –

(0.481660) (0.617777) (1.000000) – – –

[0.481660] [0.756760] [1.000000] – – –

n = 3 0.500000 0.707107 0.866025 1.000000 – –

(0.351665) (0.663417) (0.667668) (1.000000) – –

[0.403497] [0.628485] [0.819809] [1.000000] – –

n = 4 0.447213 0.632456 0.774597 0.894427 1.000000 –

(0.354505) (0.540323) (0.710828) (0.738767) (1.000000) –

[0.354505] [0.549293] [0.710828] [0.856947] [1.000000] –

n = 5 0.408248 0.573504 0.707107 0.816497 0.912871 1.000000

(0.304617) (0.530510) (0.591323) (0.773648) (0.771311) (1.000000)

[0.320632] [0.495245] [0.637786] [0.763325] [0.881305] [1.000000]

n = 6 0.377964 0.534522 0.654653 0.755929 0.845154 0.925820

(0.295549) (0.476165) (0.585056) (0.669791) (0.799557) (0.806101)

[0.295549] [0.455635] [0.585056] [0.697115] [0.799557] [0.898473]

n = 7 0.353553 0.500000 0.612372 0.707107 0.790569 0.866025

(0.270859) (0.457585) (0.529947) (0.658281) (0.7046041) (0.829010)

[0.276009] [0.425025] [0.544786] [0.647385] [0.739519] [0.826016]
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