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Abstract The literature on neighbor designs as introduced by Rees (Biometrics
23:779–791, 1967) is mainly devoted to construction methods, providing few results
on their statistical properties, such as efficiency and optimality. A review of the avail-
able literature, with special emphasis on the optimality of neighbor designs under
various fixed effects interference models, is given in Filipiak and Markiewicz (Com-
mun Stat Theory Methods 46:1127–1143, 2017). The aim of this paper is to verify
whether the designs presented by Filipiak and Markiewicz (2017) as universally opti-
mal under fixed interference models are still universally optimal under models with
random interference effects. Moreover, it is shown that for a specified covariance
matrix of random interference effects, a universally optimal design under mixed inter-
ference models with block effects is universally optimal over a wider class of designs.
In this paper the method presented by Filipiak and Markiewicz (Metrika 65:369–386,
2007) is extended and then applied tomixed interferencemodels without or with block
effects.
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1 Introduction

Neighbor designs are widely used in many areas, such as serology, agriculture, horti-
culture, forestry, medicine, etc., for experiments in which the response to a treatment
may be affected by other treatments applied to neighboring experimental units. The
class of neighbor designs was defined by Rees (1967) as the class of balanced designs
in which every treatment applied to the unit affects equally the treatments on the left
or right neighbor units. Following Hwang (1973) a neighbor design can be defined as
a design in which treatments are arranged in blocks containing the same number of
experimental units in such a way that each treatment appears the same number of times
(but not necessarily on different blocks) and is a neighbor of every other treatment
equally often. Both authors recommended the use of neighbor designs for experiments
in which blocks do not have to be factors. Nevertheless, if blocks are also factors in
the design d, then the requirement that d be a balanced incomplete block design is
added.

Most papers about neighbor designs have been devoted to construction methods,
with only a few providing results concerning the statistical properties, such as effi-
ciency and optimality, of proposed neighbor designs. Filipiak and Markiewicz (2017)
gave a review of the available literature, with special emphasis on the optimality
of neighbor designs under various fixed effects interference models. Moreover, they
proved the universal optimality of specified circular neighbor designs under interfer-
ence models without block effects. Recently, the optimality of designs, circular or not,
under various fixed interference models, e.g. models with carry-over effect, models
with left- and right-neighbor effects (equal or not), with observations correlated or not,
has been widely studied in the literature; cf. e.g. Druilhet (1999), Kunert and Martin
(2000), Kunert et al. (2003), Filipiak and Markiewicz (2004, 2005, 2012), Filipiak
(2012), Sharma (2013),Wilk andKunert (2015) and Bailey et al. (2017). Nevertheless,
there are few results on the optimality of neighbor designs under interference models
with random neighbor effects; cf. Filipiak and Markiewicz (2003, 2007, 2014). In all
of those papers block effects are assumed to be a factor in the experiment. The pur-
pose of this paper is to verify which of the universally optimal designs presented by
Filipiak and Markiewicz (2017) are still optimal under models with random neighbor
effects. In this paper the method presented by Filipiak and Markiewicz (2007) will be
extended and then applied to mixed interference models without block effects.

Note also that Azaïs and Druilhet (1997) consider designs with random neighbor
effects but in a different way: the randomness comes from the randomization process.

We organize this paper as follows. First we give some preliminary results on uni-
versal optimality under a mixed linear model, and then, in Sect. 3, we specify the
models and the designs which are known to be universally optimal under fixed/mixed
interference models. In Sect. 4 we give an overview study of the universal optimality
of designs under mixed one-sided interference models with and without block effects,
two-sided interference models with equal neighbor effects with and without block
effects, and two-sided interference models with and without block effects. Possible
extensions of the classes under which the considered designs are universally optimal
under mixed interference models with specified covariance matrix are given in Sect. 5.
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2 Preliminaries

Consider the linear model associated with the design d ∈ D

y = X1,dϑ1 + X2,dϑ2 + X3ϑ3 + ε, (1)

where Xi,d ∈ R
n×pi , i = 1, 2, are known matrices which depend on d, X3 ∈ R

n×p3

is a known matrix which does not depend on d, and ε is a vector of random errors with
expectation zero. Further, ϑ1 is the vector of parameters of interest and ϑ i , i = 2, 3,
are vectors of nuisance parameters. All errors are assumed to be uncorrelated with a
common variance, say equal to 1. We will assume that ϑ2 is a vector of random effects
with covariance matrix V, and that it is uncorrelated with the random error ε.

Let Cd,V denote the information matrix of d for estimating ϑ1 in model (1) with
random effect ϑ2 under normality. Recall that for a given nonnegative-definite m ×m
partitioned matrix A = (Ai, j )1≤i, j≤2, the Schur complement of A22 in A is

[A/A22] = A11 − A12A
−
22A21,

where A−
22 is a g-inverse of A22. Markiewicz (1997) investigates the properties of an

informationmatrixCd for estimatingϑ1 inmodel (1) with fixed effectsϑ2 as functions
of the matrix

Wd = [
Md/X′

3X3
] = (

X1,d : X2,d
)′ QX3

(
X1,d : X2,d

)
,

whereMd = (
X1,d : X2,d : X3

)′ (X1,d : X2,d : X3
)
.Wd is the information matrix for

simultaneously estimating ϑ1 and ϑ2 in model (1) with fixed effects ϑ2. In particular
Cd can be expressed as

Cd = [
Wd/X′

2,dQX3X2,d
]
.

Moreover, the information matrix of d for estimating ϑ1 in model (1) with random
effects ϑ2 is

Cd,V =
[
Wd,V /V1/2X′

2,dQX3X2,dV1/2 + Ip2
]
,

where

Wd,V = ΛWdΛ + diag(0, Ip2)

with Λ = diag(It ,V1/2); cf. Markiewicz (1997).
We consider such designs that the n-dimensional vector of ones, 1n , belongs to the

column space of X1,d and X3. Thus, the space of all estimable functions of ϑ1 is the
same as in model (1) premultiplied by Q1n . Moreover, for any design d ∈ D, both
matrices Cd and Cd,V have row and column sums zero. Now assume that we have
a design d∗ ∈ D such that Cd∗ is completely symmetric and trCd∗ is maximal over
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792 K. Filipiak, A. Markiewicz

d ∈ D. Then design d∗ is universally optimal in Kiefer’s sense (Kiefer 1975). Recall
that a matrix is completely symmetric if all of its diagonal elements are equal and all
of its off-diagonal elements are equal. Since the information matrix Cd∗ is a function
of the block matrix Wd∗ , it is obvious that the complete symmetry of every block of
Wd∗ (complete symmetry of Wd∗ with respect to the group I2 ⊗ Pt , where Pt is the
set of t × t permutation matrices and ⊗ denotes the Kronecker product) implies the
complete symmetry of Cd∗ .

To determine a universally optimal design, we shall briefly describe a method
presented in Filipiak and Markiewicz (2007).

According to Filipiak and Markiewicz (2007), for a pr × pr block matrix A with
p × p blocks Ai j we use a partial trace matrix of A, originally defined by Bhatia
(2003) as

Tr pA = (trAi j )1≤i, j≤r ,

that is, the partial trace matrix is obtained by replacing every block of Ai j , i =
1, 2, . . . , r , by its trace. Moreover, by Ãwe denote the matrix (Ir ⊗Q1p )A(Ir ⊗Q1p ).

We now recall two corollaries from Filipiak andMarkiewicz (2007), presented here
as propositions.

LetX1,d ,X2,d ∈ R
n×t . ThenWd can be represented as a 2t×2t block matrix, with

blocks of order t . For a design d ∈ D we define TrtW̃d = (cdi j )1≤i, j≤2. Moreover,
let us assume that V is a fixed completely symmetric matrix.

Proposition 1 (Filipiak and Markiewicz 2007, Corollary 3) If there exists a design
d∗ ∈ D such that the matrix Wd∗ is completely symmetric with respect to the group
I2 ⊗ Pt and the matrix

TrtWd∗ − TrtWd

is nonnegative definite for every design d ∈ D or the matrix

(
1 0
1 x#

)
(TrtWd∗ − TrtWd)

(
1 1
0 x#

)
,

where x# = −cd∗12c
−1
d∗22, is nonnegative for every design d ∈ D, then d∗ is universally

optimal for estimating ϑ1 in model (1) with a fixed completely symmetric nonnegative
definite V.

Let us now consider model (1) with X2,d = (X(1)
2,d ,X

(2)
2,d), where X(i)

2,d ∈ R
n×t ,

i = 1, 2. ThenWd can be represented as a 3t × 3t block matrix, with blocks of order
t , and we define TrtW̃d = (cdi j )1≤i, j≤3. Let us now denote the 2t × 2t block matrix
of Wd corresponding to X2,d by Zd . For a design d∗ let

(x∗, y∗)′ = −(Trt Z̃d∗)+(cd∗12, cd∗13)
′. (2)
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Let us assume that V is a fixed completely symmetric matrix with respect to the group
I2 ⊗ Pt . Let

�# =
⎛

⎝
1 1 1 1

−y∗/2 x∗ − y∗/2 x∗ + y∗/2 y∗/2
x∗/2 x∗/2 + y∗ −x∗/2 + y∗ −x∗/2

⎞

⎠ , (3)

where (x∗, y∗)′ is defined in (2).

Proposition 2 (Filipiak and Markiewicz 2007, Corollary 2) If there exists a design
d∗ ∈ D such thatWd∗ is completely symmetric with respect to the group I3 ⊗Pt , and
such that for every design d ∈ D the matrix

�′
#(TrtWd∗ − TrtWd)�#

is copositive, then d∗ is universally optimal for estimating ϑ1 in model (1) for any
fixed V completely symmetric with respect to the group I2 ⊗ Pt .

Recall that a real symmetric matrixA of order n is said to be copositive if x′Ax ≥ 0
for x = (x1, x2, . . . , xn)′ ∈ R

n such that xi ≥ 0 for every i = 1, 2, . . . , n. A sufficient
condition for a matrix to be copositive is its nonnegative-definiteness (cf. Andersson
et al. 1995). Hence, a sufficient condition for Proposition 2 is the nonnegative-
definiteness of the matrix TrtWd∗ − TrtWd or its respective principal submatrices
when x∗ = 0 or y∗ = 0. This problem was studied in a more general setting in
Markiewicz (1997), and for the case of a circular interference model in Filipiak and
Markiewicz (2003).

3 Interference models

Let Dt,b,k be the class of designs with t treatments and n experimental units, which
are grouped into b homogeneous blocks with k experimental units per block. If all of
the experimental units are homogeneous (block effects are not significant) then such
a set of designs is denoted by Dt,n with n = bk. For a design d ∈ Dt,b,k let d(i, j) be
the treatment assigned to plot j of block i ( j = 1, . . . , k, i = 1, . . . , b). The response
on plot j of block i can be written as follows:

yi, j = μ + τd(i, j) + λd(i, j−1) + ρd(i, j+1) + βi + εi, j , (4)

where μ is an overall mean, τd(i, j) is the effect of treatment d(i, j), λd(i, j−1) and
ρd(i, j+1) are the left- and right-neighbor effects of the treatment d(i, j), which in
particular may be equal, βi is the effect of block i , and εi, j is the random error.
All errors are assumed to be uncorrelated with common variance, say equal to 1.
We consider a circular interference model, that is, we assume that in a design every
treatment has a left and right neighbor, and d(i, 0) = d(i, k), d(i, k + 1) = d(i, 1).
This situation may occur if each block of the design has the form of a circle. If plots in
blocks are arranged in linear forms, we can obtain the effect of circularity by adding
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794 K. Filipiak, A. Markiewicz

border plots at the beginning of each block, where the treatment at the border plot
is the same as the treatment at the opposite end of the block (for more details see
e.g. Druilhet 1999). Border plots are not used for measuring the response variables.
Following Druilhet (1999) we assume t ≥ 3.

In particularwe considermodel (4)with orwithout block effects andwith orwithout
right-neighbor effects.

Let λ and ρ be t × 1 vectors of left- and right-neighbor effects. We will assume
that (λ′, ρ′)′ is a vector of random effects with covariance matrix V, and that it is
uncorrelated with a random error.

Let Tdu be the design matrix of treatment effects in block u, 1 ≤ u ≤ b. Further,
define Td = (T′

d1 : · · · : T′
db)

′ as the design matrix of treatment effects. For each u
define the left- and right-neighbor incidence matrices as, respectively, Ldu = HkTdu

and Rdu = H′
kTdu , where Hk denotes the k × k permutation matrix with the element

hi, j equal to 1 if i − j = 1, h1,k = 1, and 0 otherwise. This form of the matrix Hk

follows from the assumption that each treatment has a left neighbor.
The design matrix of block effects, B, has the form Ib ⊗1k while Ld = (L′

d1 : · · · :
L′
db)

′ = (Ib ⊗ Hk)Td and Rd = (R′
d1 : · · · : R′

db)
′ = (Ib ⊗ H′

k)Td are, respectively,
the design matrices of left- and right-neighbor effects.

Now, in vector notation, model (4) can be written as

y = μ1n + Tdτ + Ldλ + Rdρ + Bβ + ε, (5)

where τ is a t × 1 vector of treatment effects, β is a b × 1 vector of block effects,
and ε is a bk × 1 vector of random errors with E(ε) = 0 and Cov(ε) = Ibk . The
covariance matrix of neighbor effects, V, is usually diag(σ 2

LIt , σ
2
RIt ). Observe, that

if V is completely symmetric with respect to the group I2 ⊗ Pt , the variances of
left-neighbor effects and right-neighbor effects are respectively σ 2

L and σ 2
R , and the

off-diagonal blocks ofV are proportional to 1t1′
t , then the estimator of treatment effects

and its information matrix are the same as in the model with V = diag(σ 2
LIt , σ

2
RIt ).

The optimality results presented by Filipiak and Markiewicz (2007) correspond to the
more general case whenV is completely symmetric with respect to the group I2 ⊗Pt .
Thus, we will retain this assumption.

Model (5) with random neighbor effects λ and ρ is called a mixed effects model.
Following Jones et al. (1992), a fixed interference model is a model (5) in which
variances tend to infinity (σ 2

L = ∞ and σ 2
R = ∞) in such a way that the difference

between the variances and the covariances goes to infinity. On the other hand, if
σ 2
L = σ 2

R = 0, model (5) is a model without nuisance parameters (other than block
effects). Also if σ 2

L 	= 0 (σ 2
L = ∞) and σ 2

R = 0, model (5) has random (fixed)
left-neighbor effects and has no right-neighbor effects.

Since 1n belongs to the column-space of Td , Ld , Rd , and B, we have Td1t =
Ld1t = Rd1t = B1t = 1n and R(1n,B) = R(B). Thus, we may consider the
universal optimality of d (with respect to the estimation of treatment effects) inKiefer’s
sense. Moreover, we consider the class of connected designs, i.e., designs for which
all treatment contrasts are estimable, which is equivalent to the condition that the rank
of the information matrix for τ be equal to t − 1. In such a case the spaces of all
estimable functions of τ in models with X3 = B and X3 = (1n,B) are equal.
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Based on (5) let us define the following interference models:

M1A : X1,d = Td , X2,d = Ld , X3 = B,

M1B : X1,d = Td , X2,d = Ld , X3 = 1n,
M2A : X1,d = Td , X2,d = Ld + Rd , X3 = B,

M2B : X1,d = Td , X2,d = Ld + Rd , X3 = 1n,
M3A : X1,d = Td , X2,d = (Ld : Rd), X3 = B,

M3B : X1,d = Td , X2,d = (Ld : Rd), X3 = 1n .

The (i, j)th entry of T′
dLd denotes the number of occurrences of treatment i with

treatment j as left neighbor in a design d, and is called a left-neighboring matrix
of design d; cf. Filipiak et al. (2008). We denote T′

dLd by Sd with elements sd,i j .
Similarly, the (i, j)th entry of L′

dRd denotes the number of occurrences of treatment i
with treatment j as left neighbor at distance 2 in a design d. We denote L′

dRd by Ud .
Note that for every Rees’ (1967) neighbor design Sd + S′

d is completely symmetric
with zero diagonal and Sd1t = S′

d1t = r1t , where r is the number of replications of
a treatment (the same for every treatment) in a design d.

Throughout this paper we use some properties of a balanced block design (BBD),
i.e. such a design d ∈ Dt,b,k for which (i) all nd,i j = 
k/t� or 
k/t� + 1, (ii) all
rd,i are equal, and (iii) every pair of distinct treatments occurs together in the same
number of blocks, where 
x� is the largest integer not exceeding x , rd,i is the number
of replications of the i th treatment in d, and Nd = T′

dB = (nd,i j ) (Kiefer 1958).
A BBD reduces to a balanced incomplete block design (BIBD) when k < t . All
designs satisfying (i) are called binary designs, while designs satisfying (ii) are called
equireplicated designs. The class of BIBDs in Dt,b,k will be denoted by Bt,b,k .

We also use the following designs.

Definition 1 (Druilhet 1999) A circular binary block design in Dt,b,k which is a
balanced block design in the usual sense, and is such that for each ordered pair of
distinct treatments there exist exactly l inner plots which receive the first chosen
treatment andwhich have the second one as right neighbor, is called a circular neighbor
balanced design (CNBD).

Definition 2 (Druilhet 1999) A circular neighbor balanced design such that for each
ordered pair of distinct treatments there exist exactly l inner plots that have the first
chosen treatment as left neighbor and the second one as right neighbor is called a
circular neighbor balanced design at distances 1 and 2 (CNBD2).

It is clear that a CNBD2 is a CNBD. A catalogue of CNBD2s is given in Azaïs
et al. (1993).

4 Universal optimality

Druilhet (1999) showed the universal optimality of CNBD and CNBD2 under fixed
interference modelsM1A andM3A over the classDt,b,k and over the classDt,b,k with
no treatment precededby itself, respectively.Theuniversal optimality ofCNBD2under

123



796 K. Filipiak, A. Markiewicz

a fixed interference modelM2A over the classDt,b,k and the classDt,b,k with no treat-
ment preceded by itself is proved in Filipiak (2012). Filipiak and Markiewicz (2017)
presented an overview study on the universal optimality of some circular neighbor
balanced designs under the fixed interference models M1B , M2B , and M3B . They
proved the universal optimality of some equireplicated circular neighbor balanced
designs over the class Dt,b,k with no treatment preceded by itself under M1B , and
over the class Dt,b,k with no treatment preceded by itself at distances 1 and 2 under
M2B and M3B .

The aim of this section is to give an overview study on the universal optimality
of some circular neighbor balanced BIB/equireplicated designs under mixed models
M1A–M3B .

4.1 Mixed interference models without block effects

It can be easy calculated that T′
dQ1nTd = L′

dQ1nLd = R′
dQ1nRd and T′

dQ1nLd =
(T′

dQ1nRd)
′ = Sd − 1

n rdr
′
d , L

′
dQ1nRd = Ud − 1

n rdr
′
d , where rd is a t × 1 vector of

replications of treatments in the design d. The components of rd are replications of
treatments, rd,i , i = 1, . . . , t . We obtain:

tr(T′
dQ1nTd) = tr(L′

dQ1nLd) = tr(R′
dQ1nRd) = n − 1

n

t∑

i=1
r2d,i ,

tr(T′
dQ1nLd) = tr(T′

dQ1nRd) = trSd − 1
n

t∑

i=1
r2d,i ,

tr(L′
dQ1nRd) = trUd − 1

n

t∑

i=1
r2d,i ,

and hence

tr(T′
dQ1n (Ld + Rd)) = 2

(
trSd − 1

n

t∑

i=1
r2d,i

)
,

tr((Ld + Rd)
′Q1n (Ld + Rd)) = 2

(
n − 2

n

t∑

i=1
r2d,i + trUd

)
.

Observe that if d∗ is an equireplicated design, then T′
dTd = n

t It = rIt . Moreover, if
a design d∗ does not have any selfneighbors, then

tr(T′
d∗Q1nTd∗) = tr(L′

d∗Q1nLd∗) = tr(R′
d∗Q1nRd∗) = n

(
1 − 1

t

)
,

tr(T′
d∗Q1nLd∗) = tr(T′

d∗Q1nRd∗) = − n
t .

and, if a design d∗ has no selfneighbors at distance 2, then

tr(L′
d∗Q1nRd∗) = − n

t .
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Hence,

tr(T′
d∗Q1n (Ld∗ + Rd∗)) = − 2n

t ,

tr((Ld∗ + Rd∗)′Q1n (Ld∗ + Rd∗)) = 2n
(
1 − 2

t

)
.

Observe that 1
n

∑t
i=1 r

2
d,i ≥ n

t , with equality for equireplicated designs. For conve-

nience we use the notation α = − n
t + 1

n

∑t
i=1 r

2
d,i .

We can now prove the following theorems.

Theorem 1 If there exists an equireplicated design with no treatment preceded by
itself, d∗ ∈ Dt,b,k , such thatSd∗ is completely symmetric, then d∗ is universally optimal
in the estimation of treatment effects under the mixed modelM1B with arbitrary, fixed
completely symmetric V, over the class Dt,b,k with no treatment preceded by itself.

Proof Assume that d∗ is an equireplicated designwith no treatment preceded by itself,
such that Sd∗ is completely symmetric. Due to Proposition 1 it is enough to show that
the difference TrtWd∗ − TrtWd is nonnegative definite for every d ∈ Dt,b,k with no
treatment preceded by itself. Observe that

cd,11 = cd,22 = n − 1

n

t∑

i=1

r2d,i , cd,12 = trSd − 1

n

t∑

i=1

r2d,i ,

and

cd∗,11 = cd∗,22 = n

(
1 − 1

t

)
, cd∗,12 = −n

t
.

Further, we can write

TrtWd∗ − TrtWd =
(

α α − trSd
α − trSd α

)
.

For every design d ∈ Dt,b,k with no treatment preceded by itself the diagonal entries of
Sd are equal to zero. Thus, TrtWd∗ − TrtWd = α121′

2 which is nonnegative definite.�

Theorem 2 If there exists an equireplicated design with no treatment preceded by
itself at distances 1 and 2, d∗ ∈ Dt,b,k , such that Sd∗ + S′

d∗ and Ud∗ + U′
d∗ are

completely symmetric, then d∗ is universally optimal in the estimation of treatment
effects under the mixed model M2B with arbitrary, fixed completely symmetric V,
over the class Dt,b,k with no treatment preceded by itself at distances 1 and 2.

Proof Assume that d∗ satisfies the conditions of the theorem. ThenWd∗ is completely
symmetric with respect to the group I2⊗Pt . Due to Proposition 1 it is enough to show
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798 K. Filipiak, A. Markiewicz

that the difference TrtWd∗ − TrtWd is nonnegative definite for every d ∈ Dt,b,k with
no treatment preceded by itself at distances 1 and 2. Observe that

cd,11 = n − 1
n

t∑

i=1
r2d,i , cd,12 = 2

(
trSd − 1

n

t∑

i=1
r2d,i

)
,

cd,22 = 2

(
trUd + n − 2

n

t∑

i=1
r2d,i

)
,

and

cd∗,11 = n

(
1 − 1

t

)
, cd∗,12 = −2n

t
, cd∗,22 = 2n

(
1 − 2

t

)
.

Further, we can write

TrtWd∗ − TrtWd =
(

α 2(α − trSd)
2(α − trSd) 2(2α − trUd)

)
.

For every design d ∈ Dt,b,k with no treatment preceded by itself at distances 1 and 2
the diagonal entries of Sd and Ud are equal to zero. Thus,

TrtWd∗ − TrtWd =
(

α 2α
2α 4α

)
,

which is nonnegative definite. �
Theorem 3 If there exists an equireplicated design with no treatment preceded by
itself at distances 1and2, d∗ ∈ Dt,b,k , such thatSd∗ andUd∗ are completely symmetric,
then d∗ is universally optimal in the estimation of treatment effects under the mixed
model M3B with arbitrary, fixed V, completely symmetric with respect to the group
I2 ⊗Pt , over the classDt,b,k with no treatment preceded by itself at distances 1 and 2.

Proof Assume that d∗ satisfies the conditions of the theorem. ThenWd∗ is completely
symmetric with respect to the group I3⊗Pt . Due to Proposition 2 we need to construct
thematrix	# and show that	#(TrtWd∗ −TrtWd)	# is copositive for every d ∈ Dt,b,k

with no treatment preceded by itself at distances 1 and 2. Observe that

cd,11 = cd,22 = cd,33 = n − 1
n

t∑

i=1
r2d,i , cd,12 = cd,13 = trSd − 1

n

t∑

i=1
r2d,i ,

cd,23 = trUd − 1
n

t∑

i=1
r2d,i ,

and

cd∗,11 = cd∗,22 = cd∗,33 = n

(
1 − 1

t

)
, cd∗,12 = cd∗,13 = cd∗,23 = −n

t
.
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According to (2) and (3)

(
x∗
y∗

)
= −

(
cd∗,22 cd∗,23
cd∗,23 cd∗,33

)−1 (
cd∗,12
cd∗,13

)
= 1

t − 2
12

and

�# = 1

2(t − 2)

⎛

⎝
2(t − 2) 2(t − 2) 2(t − 2) 2(t − 2)

−1 1 3 1
1 3 1 −1

⎞

⎠ .

For every design d ∈ Dt,b,k with no treatment preceded by itself at distances 1 and 2
we have trSd = trUd = 0 and

	#(TrtWd∗ − TrtWd)	# = α

(t − 2)2

⎛

⎜⎜
⎝

(t − 2)2 t (t − 2) t (t − 2) (t − 2)2

t (t − 2) t2 t2 t (t − 2)
t (t − 2) t2 t2 t (t − 2)
(t − 2)2 t (t − 2) t (t − 2) (t − 2)2

⎞

⎟⎟
⎠ .

The above matrix is nonnegative, which implies its copositivity. �
The conditions of Theorem 1 are satisfied by every CNBD, and every CNBD2

satisfies the conditions of Theorems 2 and 3. For a mixed interference modelM2B , in
some particular cases, for example if t is prime and k = t , the number of blocks can
be reduced to half of the blocks in a CNBD2 by choosing half arbitrary (but different)
blocks. For more details see Filipiak (2012). Moreover, if we arrange the blocks of
a CNBD2 with t = k or a design as described above in such a way that every block
starts with the same treatment, and then we stack all the blocks side by side, then the
obtained design also satisfies the conditions of Theorem 2. Formore detailed examples
see Filipiak and Markiewicz (2017).

4.2 Mixed interference models with block effects

Theorem 4 (Filipiak and Markiewicz 2007, Proposition 4) A BBD d∗ ∈ Dt,b,k such
that Sd∗ is completely symmetric is universally optimal in the estimation of treat-
ment effects under the mixed interference modelM1A with arbitrary, fixed completely
symmetric V over the class Dt,b,k .

Theorem 5 A BBD d∗ ∈ Dt,b,k such that Sd∗ + S′
d∗ and Ud∗ + U′

d∗ are completely
symmetric is universally optimal in the estimation of treatment effects under the mixed
interference model M2A with arbitrary, fixed completely symmetric V over the class
Dt,b,k with no treatment preceded by itself.

Proof From the equality QB = Ib ⊗ Q1k and, since Hk is orthogonal, it follows
that T′

dQBTd = L′
dQBLd = R′

dQBRd . Moreover, since the matrices Hk and Q1k

commute, T′
dQBLd = (T′

dQBRd)
′ = T′

dLd − 1
k

∑b
i=1 rd,ir′

d,i , L
′
dQBRd = L′

dRd −
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1
k

∑b
i=1 rd,ir′

d,i , where rd,i is a t × 1 vector of replications of treatments in the i th

block of a design d. Moreover, observe that for BIB designs T′
dTd = bk

t It = rIt .
Define Fu = TduT′

du − Ik for u = 1, . . . , b. Observe that the diagonal entries of
Fu are zero and the off-diagonal entries are

fi j =
{
0 if the treatments on units i and j are different;
1 otherwise.

Note that TduT′
du depends only on the arrangement of treatments on the ordered units

1 to k.
From the symmetry of Fu , u = 1, . . . , b, it follows that tr(H′

kFu) = tr(HkFu) and

tr(H′
k
2Fu) = tr(H2

kFu). Thus,

cd,11 = tr(T′
dQBTd) =

b∑

u=1

tr(Q1k (Fu + Ik))

= b(k − 1) − 1

k

b∑

u=1

tr(1k1′
kFu),

cd,12 = tr(T′
dQB(Ld + Rd)) =

b∑

u=1

tr
(
Q1k (Hk + H′

k)(Fu + Ik)
)

= −2

(

b −
b∑

u=1

tr(HkFu) + 1

k

b∑

u=1

tr(1k1′
kFu)

)

,

cd,22 = tr((Ld + Rd)
′QB(Ld + Rd))

=
b∑

u=1

tr((Hk + H′
k)Q1k (Hk + H′

k)(Fu + Ik))

= 2

(

b(k − 2) +
b∑

u=1

tr(H2
kFu) − 2

k

b∑

u=1

tr(1k1′
kFu)

)

.

Since for binary designs Fu is a zero matrix,

cd∗,11 = b(k − 1), cd∗12 = −2b, cd∗,22 = 2b(k − 2).

Due to Proposition 1 we calculate

TrtWd∗ − TrtWd

=

⎛

⎜⎜⎜
⎜
⎝

1

k

b∑

i=1

tr(1k1′
kFu)

1

k

b∑

u=1

tr(1k1′
kFu) −

b∑

u=1

tr(HkFu)

1

k

b∑

u=1

tr(1k1′
kFu) −

b∑

u=1

tr(HkFu)
2

k

b∑

u=1

tr(1k1′
kFu) − 2

b∑

u=1

tr(H2
kFu)

⎞

⎟⎟⎟
⎟
⎠

.
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For every design d ∈ Dt,b,k with no treatment preceded by itself at distances 1 and 2
tr(HkFu) = tr(H2

kFu) = 0 and

TrtWd∗ − TrtWd = 1

k

b∑

i=1

tr(1k1′
kFu)

(
1 1
1 2

)
,

which is nonnegative definite. Assuming that d∗ satisfies the conditions concerning
the complete symmetry of Sd∗ + S′

d∗ and Ud∗ + U′
d∗ , we obtain the theorem. �

Theorem 6 (Filipiak and Markiewicz 2007, Proposition 5) A BBD d∗ ∈ Dt,b,k such
that Sd∗ and Ud∗ are completely symmetric is universally optimal in the estimation
of treatment effects under the mixed interference model M3A with arbitrary, fixed V
completely symmetric with respect to the group I2 ⊗Pt , over the class Dt,b,k with no
treatment preceded by itself.

The conditions of Theorem 4 are satisfied by every CNBD, and every CNBD2
satisfies the conditions of Theorems 5 and 6. For a mixed interference modelM2A, in
some particular cases, for example if t is prime and k = t , the number of blocks can
be reduced to half of the blocks in a CNBD2 by choosing half arbitrary (but different)
blocks.

Another design for which optimality is frequently considered in the literature is
an orthogonal array of type I and strength 2. Such designs are universally optimal under
interference models with correlated observations. Filipiak and Markiewicz (2004)
showed that orthogonal arrays can be universally optimal under a general interference
model with fixed interference effects among the class of binary designs. These designs
also fulfill the conditions of Propositions 1 and 2. The complete symmetry of the
information matrix of such designs follows from Martin and Eccleston (1998). This
implies that orthogonal arrays of type I and strength 2 are universally optimal under
mixed interference modelsM1A,M2A andM3A, over respective classes of designs.

5 Possible extensions for specific V = diag(σ 2
LIt, σ 2

RIt)

We will consider left- and right-neighbor effects such that var(λd(i, j)) = σ 2
L and

var(ρd(i, j)) = σ 2
R , for d(i, j) ∈ {1, 2, . . . , t}, where σ 2

L and σ 2
R are known, and λ and

ρ are uncorrelated.
Let us define circular weakly neighbor balanced designs as follows.

Definition 3 (Filipiak and Markiewicz 2012) Let b 	= x(t − 1), x ∈ N. A circular
binary design d ∈ Dt,b,t with sd,i j ∈ {x − 1, x}, i 	= j , and completely symmetric
matrix SdS′

d is called a circular weakly neighbor balanced design (CWNBD).

Note that for b = x(t − 1) we obtain the definition of a CNBD, i.e. a design with
Sd = x(1t1′

t − It ); cf. Druilhet (1999).
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From Filipiak and Markiewicz (2012) it follows that a necessary condition for the
existence of a CWNBD with (x − 1)(t − 1) < b ≤ x(t − 1), x ∈ N is

b(b − 2x + 1)

t − 1
∈ N.

Filipiak andMarkiewicz (2012) proved the universal optimality of CWNBDs under
the fixed interference model M1A among designs from Dt,b,t if b ≤ t − 1, and from
Rt,b,t if b > t − 1, where Rt,b,k ⊂ Dt,b,k is the class of equireplicated designs with
no treatment preceded by itself.

Let Rt,b,k ⊂ Dt,b,k be the class of equireplicated designs.

Theorem 7 (Filipiak and Markiewicz 2014) For every σ 2
L ∈ (0,∞] a CWNBD is

universally optimal over the classRt,b,t , b < t−1, and over the classRt,b,t , b > t−1,
under the mixed interference model M1A.

Using the theory presented by Kushner (1997) and developed by Kunert andMartin
(2000) for fixed effect interference models and by Filipiak and Markiewicz (2007,
Proposition 3) for mixed effects interference models, we can prove the following
propositions.

Proposition 3 A BBD d∗ ∈ Dt,b,k such that Sd∗ +S′
d∗ andUd∗ +U′

d∗ are completely
symmetric is universally optimal under the mixed interference model M2A in the
estimation of treatment effects over the class of:

– designs with no treatment preceded by itself from Dt,b,k for every σ 2
L;

– designs with no treatment preceded by itself at distance 2 fromDt,b,k if k = 2, 3, 4,
or if k > 4 and σ 2

L ≤ t/(2b
√
k(k − 4));

– all designs from Dt,b,k if k = 2, 3, or if k > 3 and σ 2
L ≤ t/(2b

√
k(k − 3)).

Example A CNBD2 is universally optimal over the class of designs from Dt,b,k for
every σ 2

L ≤ t
2b

√
k(k−3)

. The areas for t and σ 2
L respectively for k = t, b = t − 1 and

k = t − 1, b = t are shown in Fig. 1.

Proposition 4 A BBD d∗ ∈ Dt,b,k such that Sd∗ and Ud∗ are completely symmetric
is universally optimal under the mixed interference model M3A in the estimation of
treatment effects over the class of:

Fig. 1 The areas for t and σ 2
L respectively for k = t, b = t − 1 and k = t − 1, b = t

123



Universally optimal designs under mixed interference… 803

– designs with no treatment preceded by itself from Dt,b,k for every σ 2
L;

– designs with no treatment preceded by itself at distance 2 fromDt,b,k for every σ 2
L

and k ≤ 6;
– all designs from Dt,b,k if k ≤ 4.

Moreover, there exist σ 2
L and σ 2

R such that a design d∗ is universally optimal over
the class of designs with no treatment preceded by itself at distance 2 from Dt,b,k for
k > 6, and over the class of all designs from Dt,b,k if k > 4.

Example Let k = t and b = t−1. Then a CNBD2 is universally optimal over the class
of designs from Dt,t−1,t for every t if σ 2

L and σ 2
R satisfy the following inequality:

2[t + (t − 1)tσ 2
R + (t − 1)2σ 2

R)] + (t − 1)σ 2
L [3t + (2t2 − t − 1)σ 2

R)]
+(t − 1)2σ 4

L [t + 1 + 3(t − 1)σ 2
R)]

≥ (t − 5)(t − 1)3σ 2
Lσ 4

R + (t − 4)(t − 1)4σ 4
Lσ 4

R .

It can be calculated that the above inequality is usually satisfied for small σ 2
L and

σ 2
R . For example, if σ 2

L = σ 2
R = 0.1, then a CNBD2 is universally optimal for every

t ≤ 23, while for σ 2
L = σ 2

R = 0.5 the number of treatments cannot exceed 7, for
σ 2
L = σ 2

R = 1 the number of treatments cannot exceed 5, etc. It can also be checked
that the above inequality is satisfied for the following triples of parameters (t, σ 2

L , σ 2
R):

(10, 0.5, 0.1), (10, 10, 0.1), (15, 0.5, 0.1), (15, 2, 0.1) etc.
It is worth noting that in the case of models without blocks the results presented

in Theorems 1, 2 and 3 cannot be extended. To illustrate this statement one may refer
to Druilhet (1999), where examples are given of designs that are better than CNBD2
under models M2B and M3B with fixed neighbor effects.
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