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Abstract We consider i.i.d. random variables X1, . . . , Xn with a distribution function
F preceding the exponential distribution function V in the convex transform order
which means that F has an increasing failure rate. We determine sharp upper bounds
on the expectations of order statistics and spacings based on X1, . . . , Xn , expressed
in the population standard deviation units. We also specify the distributions for which
all these bounds are attained. Finally, we indicate some reliability applications.
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1 Introduction

Consider an i.i.d. sample X1, . . . , Xn based on the common cumulative distribution
function F with the finite expectation

μ = EX1 =
∫ 1

0
F−1(x)dx,
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and positive and finite variance

σ 2 = E(X1 − μ)2 =
∫ 1

0
[F−1(x) − μ]2dx .

Let X1:n ≤ · · · ≤ Xn:n denote the order statistics based on X1, . . . , Xn . The density
function of the i th order statistic from the standard uniform i.i.d. sample of size n is
defined by

f j :n(x) = nB j−1,n−1(x), 0 < x < 1, i = 1, . . . , n,

where

Bk,n(x) =
(
n
k

)
xk(1 − x)n−k, 0 < x < 1, k = 0, . . . , n,

denote the Bernstein polynomials of order n. Then

Fj :n(x) =
n∑

k= j

Bk,n(x),

is the respective distribution function.
Order statistics and their linear combinations (shortly called L-statistics), especially

spacings, play an important role in mathematical statistics and other fields of applied
probability. In the present paper we consider the problem of establishing sharp bounds
on the expected order statistics and spacings coming from the restricted class of distri-
butions which is defined with use of the convex transform order of van Zwet (1964).
We say that F precedesW in the convex transform order (F �C W ) if the composition
F−1W is concave on the support of W (equivalently, WF−1 is convex on the support
of F). We assume here that W is a fixed absolutely continuous distribution function
with a positive density w on an interval [0, d) for some 0 < d ≤ +∞. If W is either
uniform or exponential distribution function, every F �C W has increasing density
(F ∼ ID) or increasing failure rate (F ∼ IFR), respectively.

A lot of papers devoted to bounds on the expectations of order statistics and
L-statistics in various nonparametric models have been published so far. The most
classical results presenting the bounds on the sample range, maximum and other order
statistics and their differences based on sequences of independent observations with
arbitrary, identical distributions, expressed in terms of the standard deviation units,
were determined by Plackett (1947), Gumbel (1954), Hartley and David (1954) and
Moriguti (1953), respectively. Rychlik (1998) and Goroncy (2009) established the
optimal positive and nonpositive upper bounds on the expectations of L-statistics
coming from arbitrary distributions, respectively.

Sharper evaluations of order statistics and spacings from the classes of distributions
with decreasing density and failure rate functions were presented by Gajek and Rych-
lik (1998), Danielak (2003) and Danielak and Rychlik (2004). They were extended
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by Rychlik (2002), and Danielak and Rychlik (2003) to more general families of dis-
tributions with monotone density and failure rate functions on the average, which are
generated by the star ordering. Recently, Rychlik (2014) described the precise upper
bounds on the expectations of extreme order statistics based on the ID and IFR dis-
tributions. Goroncy and Rychlik (2015) provided general tools for obtaining sharp
upper bounds on the expectations of single order statistics and spacings expressed in
terms of the population mean and standard deviation, for the families of all parent
distributions preceding variousW in the convex transform order. They also character-
ized the distributions which attain the bounds, and specified the general results for the
distributions with increasing density functions.

We aim at completing these results with the analogous upper bounds for the
distributions with the increasing failure rates, i.e. for E

Xk:n−μ
σ

, 1≤ j ≤ n, and

E
X j+1:n−X j :n

σ
, 1≤ j ≤ n−1, with parent distribution functions F from the IFR family.

A general method of establishing positive sharp upper bounds on the expectations of
properly normalized linear combinations of order statisticsE

∑n
i=1 ci

Xi :n−μ
σ

, for arbi-
trarily fixed c = (c1, . . . , cn) ∈ R

n , and many other statistical functionals based on
restricted nonparametric families of distributions was presented in Gajek and Rychlik
(1996). In our setup, it is based on the following sequence of relations

E

n∑
i=1

ci
Xi :n − μ

σ
=
∫ 1

0

F−1(x) − μ

σ

n∑
i=1

ci [ fi :n(x) − 1]dx

=
∫ d

0

F−1W (x) − μ

σ

n∑
i=1

ci [ fi :nW (x) − 1]w(x)dx

≤
∫ d

0

F−1W (x) − μ

σ
P�cW

(
n∑

i=1

ci [ fi :nW − 1]
)

(x)w(x)dx

≤
(∫ d

0

[
F−1W (x) − μ

σ

]2
w(x)dx

×
∫ d

0

[
P�cW

(
n∑

i=1

ci [ fi :nW − 1]
)

(x)

]2
w(x)dx

⎞
⎠

1
2

=
∣∣∣∣∣
∣∣∣∣∣P�cW

(
n∑

i=1

ci [ fi :nW − 1]
)∣∣∣∣∣
∣∣∣∣∣
(∫ 1

0

[
F−1(x) − μ

σ

]2
dx

) 1
2

=
∣∣∣∣∣
∣∣∣∣∣P�cW

(
n∑

i=1

ci [ fi :nW − 1]
)∣∣∣∣∣
∣∣∣∣∣ , (1.1)

where P�cW h denotes the projection of a function h ∈ L2((0, d), w(x)dx) onto the
convex cone

C�cW = {g ∈ L2([0, d), w(x)dx) : g(x) is nondecreasing and concave}, (1.2)
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and || · || is the norm of L2([0, d), w(x)dx). If the norm in (1.1) is positive, then the
bound is attained by the distribution function satisfying

F−1W (x) − μ

σ
= P�cW

(∑n
i=1 ci [ fi :nW − 1]) (x)

||P�cW
(∑n

i=1 ci [ fi :nW − 1]) || , 0 < x < d. (1.3)

Goroncy and Rychlik (2015) described the projections on (1.2) of some particular
functions h satisfying the conditions which we list below.
(A) Assume that h is a bounded, twice differentiable function on [0, d) such that

d∫

0

h(x)w(x)dx = 0.

Moreover, h is strictly decreasing on (0, a), strictly convex increasing on (a, b), strictly
concave increasing on (b, c) with h(c) > 0 ≥ h(0), and strictly decreasing on (c, d)

with h(d) = h(0) for some 0 ≤ a < b < c < d.

The assumptions are similar to those presented in Danielak and Rychlik (2004). Let
us recall some auxiliary functions, which are necessary for determining the projection
of h satisfying (A) onto (1.2). We begin with

T (β) = h(β)[1 − W (β)] −
∫ d

β

h(x)w(x)dx, 0 ≤ β ≤ d. (1.4)

It is easy to check that if T vanishes at someβ, then g(x) = h(β) is the optimal constant
approximation of h restricted to the interval (β, d) in the norm of L2((β, d), w(x)dx).
Moreover, there exists a unique a < β∗ < c such that T (β∗) = 0. Further we take

λ∗(α) =
∫ α

0 (x − α)[h(x) − h(α)]w(x)dx∫ α

0 (x − α)2w(x)dx
, (1.5)

which is the slope of optimal L2-approximation of h(0,α) by linear functions λ(x −
α) + h(α) with the fixed right-end point h(α). We also put

Y (α) = λ∗(α) − h′(α), (1.6)

Z(α) =
α∫

0

[h(x) − h(α) − λ∗(α)(x − α)]w(x)dx, 0 ≤ α < d. (1.7)

If Y (α) ≥ 0 for some b < α < c, then the function arising by gluing λ∗(α)(x − α) +
h(α) left to α and h(x) on the right is concave in a neighborhood of α. If Z(α) = 0,
then λ∗(α)(x − α) + h(α) is the projection of h(0,α) onto the subspace of all linear
functions in L2((0, α),w(x)dx).

It occurs that the projectionofh onto the convex cone (1.2) is either linear increasing,
then equal to h, and finally constant (written further l-h-c for brevity), or first linear
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and ultimately constant (l-c, respectively). This is precisely described in the following
proposition (cf. Goroncy and Rychlik 2015, Proposition 1).

Proposition 1 Assume that the zero a < β∗ < c of (1.4) belongs to (b, c), the set
Y = {α ∈ (b, β∗) : Y (α) ≥ 0, Z(α) = 0} is nonempty, and α∗ = inf{α ∈ Y}. Then

P�cW h(x) =
⎧⎨
⎩
h(α∗) + λ∗(α∗)(x − α∗), 0 ≤ x < α∗,
h(x), α∗ ≤ x < β∗,
h(β∗), β∗ ≤ x < d,

is the projection of h on (1.2). Otherwise we define

Pαh(x) =
∫ d
α
h(y)w(y)dy

1 − W (α)

[
(x − α)1(0,α)(x)

− ∫ α

0 (y − α)w(y)dy
+ 1

]
, β∗ ≤ α < d, (1.8)

with

||Pαh||2 =
∫ d
α
h(x)w(x)dx

[∫ α

0 (x − α)2w(x)dx − (∫ α

0 (x − α)w(x)dx
)2]

−[1 − W (α)] ∫ α

0 (x − α)w(x)dx
.

Let Z denote the set of arguments α ≥ β∗ satisfying

∫ d
α
h(x)w(x)dx

1 − W (α)
= −

∫ α

0 (x − α)h(x)w(x)dx
∫ α

0 (x − α)w(x)dx∫ α

0 (x − α)2w(x)dx − (∫ α

0 (x − α)w(x)dx
)2 > 0. (1.9)

ThenZ is nonempty, and P�cW h(x) = Pα∗h(x) for uniqueα∗ = argmaxα∈Z ||Pαh||2.

The original version of the proposition contained only the necessary condition (1.9)
for parameter α determining the projection of the l-c shape. Here we complete the
statement precisely indicating parameter α∗ of the l-c projection. Set Z is nonempty
by assumption, because the l-c projection is the only option if l-h-c is excluded. Then
the breaking point α∗ > β∗ of the broken line projection has to satisfy (1.9). If α ∈ Z ,
then the linear increasing part

lα(x) =
∫ d
α
h(y)w(y)dy

1 − W (α)

[
(x − α)

− ∫ α

0 (y − α)w(y)dy
+ 1

]
, 0 < x < α,

of Pαh is the orthogonal projection of h(0,α) onto the linear subspace of linear functions
in L2((0, α),w(x)dx), i.e.

∫ α

0
lα(x)[h(x) − lα(x)]w(x)dx = 0.
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Similarly, the constant part

cα(x) =
∫ d
α
h(y)w(y)dy

−[1 − W (α)] ∫ α

0 (y − α)w(y)dy
, α < x < d,

is the orthogonal projection of h(α,d) onto the subspace of constant functions in
L2((α, d), w(x)dx), i.e.

∫ d

α

cα(x)[h(x) − cα(x)]w(x)dx = 0.

This implies that for every α ∈ Z , we obtain

∫ d

0
Pαh(x)[h(x) − Pαh(x)]w(x)dx = 0,

and in consequence

||h||2 = ||Pαh||2 + ||h − Pαh||2.

Since the norm of h is fixed, the function Pα∗h minimizing the distance to h is just the
one with maximal norm. The projection is unique, and so is α∗. It occurs that in the
particular problems we consider below, there is only one α satisfying (1.9), and there
is no need for comparing norms of different Pαh.

2 Increasing failure rate distributions

In this paper we consider distribution functions F which precede the standard expo-
nential distribution function V (x) = 1−e−x , 0< x < d = ∞ in the convex transform
ordering. Note that F �C V means that the hazard function �F (x) = V−1F(x) =
− ln[1−F(x)] is convex. In consequence, its derivative called the failure rate function
λF (x) = �′

F (x) = f (x)
1−F(x) (which exists almost everywhere and has both one-

sided derivatives at each point as well as the respective density function f = F ′) is
nondecreasing. Therefore every distribution function F �C V is said to have increas-
ing failure rate (F ∼ IFR, for short). Distribution functions with monotone failure
rates are of vital interest in various branches of lifetime analysis. In order to calcu-
late sharp mean–variance upper bounds on the expectations of centered L-statistics
E
∑n

i=1 ci (Xi :n −μ) based on IFR samples, we determine the projections of functions∑n
i=1 ci [ fi :nV − 1] onto the convex cone

C�cV = {g ∈ L2([0,∞), e−xdx) : g(x) is nondecreasing and concave}. (2.1)

For arbitrarily fixed c1, . . . , cn , the functions are possibly multimodal polynomials of
degree n of the argument e−x . There are not known universal methods of projecting
such functions onto (2.1). We focus here on the single order statistics and spacings
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for which the respective projected functions satisfy Assumptions (A). They are also
the most popular L-statistics useful in the lifetime analysis, because they represent
consecutive failure times of items examined in lifetime experiments, and the time
distances between them.

2.1 Single order statistics

For an i.i.d. sample X1, . . . , Xn with common marginal F ∼ IFR, we aim at estab-
lishing accurate upper bounds for E

X j :n−μ

σ
, 3 ≤ j ≤ n− 1, n ≥ 4. The extreme order

statistics with j = 1, 2, and n were already treated by Rychlik (2014). Our auxiliary
problem is to project the following function

h(x) = h j :n(x) = f j :nV (x) − 1 = f j :n(1 − e−x ) − 1, (2.2)

onto (2.1). Note that (2.2) satisfies Assumptions (A) with a = 0,

b = b j :n = − ln

(
1 − ( j − 1)(2n − 3) −√

( j − 1)(4n2 − 4n − 1 + 5 j − 4 jn)

2(n − 1)2

)
,

c = c j :n = − ln

(
n − j

n − 1

)
.

and d = +∞. Here the first interval of decrease of (2.2) is empty, which is acceptable.
By Proposition 1, the projection of (2.2) onto (2.1) can be either of l-h-c or l-c type.
In Proposition 2 below, we present the bounds corresponding with the first case. To
this end we specify the general functions (1.4)–(1.7) for particular h = h j :n defined
in (2.2). Using auxiliary formulas

α∫

0

(x − α)e−xdx = 1 − e−α − α, (2.3)

α∫

0

(x − α)2 e−xdx = α2 − 2α + 2 − 2e−α, (2.4)

α∫

0

f j :n
(
1 − e−x) e−xdx = Fj :n

(
1 − e−α

)
, (2.5)

α∫

0

(x − α) f j :n
(
1 − e−x) e−xdx =

j∑
k=1

Fk:n
(
1 − e−α

)
n − k + 1

− α, (2.6)

we determine functions

Tj :n(β) = f j :n
(
1 − e−β

)
e−β − 1 + Fj :n

(
1 − e−β

)
, (2.7)
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λ j :n(α) =
∑ j

k=1

Fk:n
(
1 − e−α

)
n − k + 1

− f j :n
(
1 − e−α

) (
1 − e−α − α

)− α

α2 − 2α + 2 − 2e−α
, (2.8)

Y j :n(α) = λ j :n(α) − n
[
(n − j + 1)Bj−2,n−1

(
1 − e−α

)
−(n − j)Bj−1,n−1

(
1 − e−α

)]
, (2.9)

Z j :n(α) = Fj :n
(
1 − e−α

)− f j :n
(
1 − e−α

) (
1 − e−α

)
−λ j :n(α)

(
1 − e−α − α

)
, (2.10)

on the positive half-axis.

Proposition 2 Suppose that Tj :n(b j :n) < 0 so that the unique zero 0 < β j :n < c j :n
of (2.7) belongs to (b j :n, c j :n). Also, suppose that Y j :n = {b j :n < α < β j :n : Y j :n ≥
0 and Z j :n = 0} is nonempty. Let α j :n denote the smallest (possibly unique) element
of Y j :n, and λ j :n = λ j :n(α j :n). Then

EX j :n − μ

σ
≤ Bj :n, (2.11)

where

B2
j :n = f 2j :n

(
1 − e−α j :n ) (1 − e−α j :n )+ 2λ j :n f j :n

(
1 − e−α j :n ) (1 − e−α j :n − α j :n

)

+ λ2j :n
(
α2
j :n − 2α j :n + 2 − 2e−α j :n

)
+ f 2j :n

(
1 − e−β j :n ) e−β j :n

+
(n!)2

(
2 j − 2
j − 1

)(
2n − 2 j
n − j

)

(2n − 1)!
[
F2 j−1:2n−1

(
1 − e−β j :n )

− F2 j−1:2n−1
(
1 − e−α j :n )]− 1.

The equality in (2.11) holds for the distribution function represented by the formula

F(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, y < f j :n
(
1 − e−α j :n

)− λ j :nα j :n,

1 − exp

(
−α j :n − y− f j :n

(
1−e−α j :n

)
λ j :n

)
, f j :n

(
1 − e−α j :n

)− λ j :nα j :n

≤ y < f j :n
(
1 − e−α j :n

)
,

f −1
j :n (y), f j :n

(
1 − e−α j :n

) ≤ y < f j :n
(
1 − e−β j :n

)
,

1, y ≥ f j :n
(
1 − e−β j :n

)
,

(2.12)
uniquely determined up to the location and scale parameters μ and σ , respectively,
with modified argument x 
→ y = x−μ

σ
Bj :n + 1, introduced for brevity.

Proof The crucial step of our reasoning consists in showing that the assumptions
guarantee that the projection of h j :n(x) = f j :n(1 − e−x ) − 1 onto C�cV has the form

P�cV h j :n(x) =
⎧⎨
⎩

λ j :n(x − α j :n) + f j :n
(
1 − e−α j :n

)− 1, 0 ≤ x < α j :n,
f j :n(1 − e−x ) − 1, α j :n ≤ x < β j :n,
f j :n

(
1 − e−β j :n

)− 1, x ≥ β j :n .
(2.13)
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The tools are collected in Proposition 1.
Function (2.7) satisfies Tj :n(0) < 0, Tj :n(c j :n) > 0, and increases in between (see

Goroncy and Rychlik 2015, p. 180). The first necessary condition for (2.13) is that
the unique zero β j :n of (2.7) belongs to the interval (b j :n, c j :n) of concave increase
of h j :n . This obviously holds iff Tj :n(b j :n) < 0. Point β j :n is the only admissible
candidate for the change of the l-h-c type projection from h j :n itself to the constant.

The other condition is that Y j :n is nonempty, i.e. the interval [b j :n, β j :n) contains
points α satisfying Y j :n(α) ≥ 0 and Z j :n(α) = 0. The latter relation together with
Tj :n(β j :n) = 0 imply that theweighted integral of the l-h-c function glued atα andβ∗

j :n
coincides with that of the original function h j :n , which is a necessary condition for the
projection (see, Rychlik 2001a, Lemma 1). Condition Y j :n(α) ≥ 0 implies that gluing
λ j :n(α)(x−α)+h j :n(α)with h j :n(x) at α ∈ (b j :n, β j :n) produces a concave function
in a vicinity of α. If there were more points in Y j :n , the projection is constructed
with use of the smallest one. Since all the necessary conditions are deduced from the
assumptions of Proposition 2, the projection is actually equal to (2.13).

Due to (1.1), an upper bound on the expectation of standardized j th order statistic
coincides with the norm of projection P�cV h j :n . Since P�cV h j :n �≡ 0, the bound is
sharp.We present here slightly simpler analytic form of the norm based on the identity
B2
j :n = ||P�cV h j :n||2 = ||P�cV f j :nV ||2 − 1. It follows from the obvious relations

P�cV h j :n = P�cV ( f j :nV − 1) = P�cV f j :nV − 1, and

||P�cV f j :nV − 1||2 = ||P�cV f j :nV ||2 − 2
∫ ∞

0
P�cV f j :nV (x)e−xdx +

∫ ∞

0
e−xdx

= ||P�cV f j :nV ||2 − 1,

valid due to

∫ ∞

0
P�cV f j :nV (x)e−xdx =

∫ ∞

0
f j :nV (x)e−xdx =

∫ 1

0
f j :n(x)dx = 1

(cf. Rychlik 2001a, Lemma 1). Using

F−1V (x) − μ

σ
= P�cV ( fi :nV ) (x) − 1

Bj :n
, 0 < x < ∞,

[cf. (1.3)], and performing some tedious calculations, we arrive to the explicit
form (2.12) of the parent IFR distribution function attaining the bound. ��

Up to linear transformations of the argument, the extreme distribution (2.12) is
composed of three parts: the exponential one on the left, the inverse of some increasing
part of the density function f j :n , and the jump of height e−β j :n at the right-end point.
We performed a number of numerical verifications of the assumptions of Proposition 2
for moderate n and all 3 ≤ j ≤ n − 1. It occurs that Proposition 2 provides the bound
for the case j = 3, n = 4 only. The precise value of the bound and description of the
IFR distribution attaining it is presented in Example 1.
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Example 1 The sharp bound

EX3:4 − μ

σ
≤ 0.50522

is attained by the distribution function

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x−μ
σ

< −1.73065,
1 − exp

(−0.20544 x−μ
σ

− 0.45773
)
, −1.73065 ≤ x−μ

σ
< 0.60205,

f −1
3:4
(
0.50522 x−μ

σ
+ 1

)
, 0.60205 ≤ x−μ

σ
< 0.75138,

1, x−μ
σ

≥ 0.75138.

The exponential part on the left have probability 0.44089. The jump on the right has
value 0.53753. The contribution of the inverse cubic function between them amounts
to 0.02160 only.

Our conjecture is that Example 1 is the only application of Proposition 2. For large
n, the inflection point b j :n lies close to the maximal argument c j :n , and in consequence
h j :n(b j :n) is only slightly less than the maximum h j :n(c j :n). However, by definition

h j :n(β j :n) =
∫∞
β j :n h j :n(x)e−xdx∫∞

β j :n e
−xdx

cannot be too large, because h j :n(x) for large arguments x is essentially less than
h j :n(c j :n). This implies that β j :n < b j :n , which violates condition Tj :n(b j :n) < 0.
Even for small n, when the relation holds, there is not enough space in the interval
(b j :n, β j :n) for any points α satisfying Z j :n(α) = 0 together with Y j :n(α) ≥ 0.

It seems that with the exception of the case presented in Example 1, the bounds
on the expectations of order statistics from IFR populations are determined with use
of the l-c-type projection. These are presented in Proposition 3 below. However, one
should be aware of the fact that for given j and n, first the assumptions of Proposition 2
should be verified and the l-h-c projection excluded before one uses the formulas of
Proposition 3. If the assumptions for the l-h-c shape of the projection do not hold, we
define

A j :n(α) = (1 − 2αe−α − e−2α)[1 − e−α − Fj :n(1 − e−α)]

+ e−α(1 − e−α − α)

⎡
⎣

j∑
k=1

Fk:n(1 − e−α)

n − k + 1
+ e−α − 1

⎤
⎦ , (2.14)

γ j :n(α) = [1 − Fj :n(1 − e−α)]eα − 1, (2.15)

λ j :n(α) = γ j :n(α)

e−α − 1 + α
, (2.16)

B2
j :n(α) = (α + 1)2λ2j :n(α) − [λ j :n(α) + γ j :n(α)]2. (2.17)
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Proposition 3 Suppose that either Tj :n(β j :n) ≥ 0 or Y j :n = ∅ for some fixed 3 ≤
j ≤ n−1 ≥ 3. Then setZ j :n = {α ≥ β j :n : A j :n(α) = 0, γ j :n(α) > 0} is nonempty,
and

EX j :n − μ

σ
≤ Bj :n = Bj :n(α j :n), (2.18)

where α j :n = argmaxα∈Z j :n B
2
j :n(α). The equality in (2.18) holds for the distribution

function

F(y) =
⎧⎨
⎩
0, y < 0,
1 − e−y, 0 ≤ y < α j :n,
1, y ≥ α j :n

(2.19)

for y = y(x) = x−μ
σλ j :n B j :n − γ j :n

λ j :n +α j :n with γ j :n = γ j :n(α j :n) and λ j :n = λ j :n(α j :n).

Proof Owing to the assumptions, the projection of (2.2) has an l-c form. Precisely,
by (1.8), (2.3), and (2.5), we have

Pαh j :n(x) = [
1 − e−α − Fj :n(1 − e−α)

]
eα

[
(x − α)1(0,α)(x)

e−α − 1 + α
+ 1

]

= λ j :n(α)1(0,α)(x) + γ j :n(α)

[cf. (2.15) and (2.16)] for some α ≥ β j :n satisfying

1 − e−α − Fj :n(1 − e−α)

e−α
=

−
[∑ j

k=1
Fk:n(1 − e−α)

n − k + 1
− α

]
(1 − e−α − α)

α2 − 2α + 2 − 2e−α − (1 − α − e−α)2
> 0

[cf. (1.9), (2.4), (2.6)]. Observe that the last formula can be rewritten as A j :n(α) = 0
with γ j :n(α) > 0. This means that parameter α determining the projection should be
chosen from set Z j :n . Its emptiness contradict existence of projection. Its cardinality
is also restricted, because function (2.14) cannot have infinitely many zeros.

For selecting the proper element of the set, we compare respective squared norms:

||Pαh j :n||2 = λ2j :n(α)

∫ α

0
(x − α)2e−xdx + 2λ j :n(α)γ j :n(α)

×
∫ α

0
(x − α)e−xdx + γ 2

j :n(α)

= λ2j :n(α)
[
α2 − 2(e−α − 1 + α)

]

+ 2
γ j :n(α)

e−α − 1 + α
γ j :n(α)(1 − e−α − α) + γ 2

j :n(α)

= λ2j :n(α)α2 − 2λ j :n(α)γ j :n(α) − γ 2
j :n(α)

= (α2 + 1)λ2j :n(α) − [λ j :n(α) + γ j :n(α)]2.
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646 A. Goroncy, T. Rychlik

There is a unique α j :n ∈ Z j :n minimizing ||Pαh j :n||2, and this defines the unique
non-zero projection P�cV h j :n . By (1.1), the sharp upper mean–variance bound for the
expectation of j th order statistic is

||Pα j :n h j :n|| = Bj :n =
[(

α2
j :n + 1

)
λ2j :n − (

λ j :n + γ j :n
)2]1/2

.

The distribution function attaining the bound is characterized by the relation

F−1(1 − e−x ) − μ

σ
= λ j :n(x − α j :n)1(0,α)(x) + γ j :n

B j :n
, 0 < x < ∞,

which determines (2.19). ��

The bounds in (2.18) are attained by the right truncated and linearly transformed
exponential random variables [cf. (2.19)], with the jumps of sizes e−α j :n on the right.

Precisely, Xi
d= λ j :nσ

Bj :n

[
min{Yi − α j :n, 0} + γ j :n

λ j :n

]
+ μ for Yi , i = 1, . . . , n, being

standard exponential. The transformation is defined in the complicated way just to
fulfil the first two moment conditions. The convex order transform is invariant under
the location and scale modifications. This means that every exponential distribution
truncated on the right at the level 1 − e−α j :n attains the bound for the expected j th
order statistic standardized with respective mean and standard deviation.

Numerical studies show that each set Z j :n contains only one element, and this is
used in construction of the projection and calculation of the bound. We cannot prove
it formally, though. We were able to do it for the analogous hypothesis in analy-
sis of increasing density distributions. In that case, the counterparts of (2.7)–(2.10)
and (2.14)–(2.16) were expressed by linear combinations of Bernstein polynomials.
Then we could apply the respective variation diminishing property of Schoenberg
(1959) for evaluating the numbers of their zeros and extremes. The property was
also useful in analysis of the DFR case, when the Bernstein polynomials of trans-
formed argument α 
→ 1 − e−α were studied. The method is not applicable here,
because we consider functions composed of polynomials of argument 1 − e−α com-
bined with small powers of α itself. Accordingly, specifying particular functions
h(x) = f j :n(1 − e−x ) − 1, does not allow us to obtain results stronger than those
concluded directly from Proposition 1, being stated for general h satisfying (A).

In Table 1 we present numerical values of bounds Bj :n on the standardized expecta-
tions of order statisticsE(X j :n −μ)/σ, 3 ≤ j ≤ n−1, 4 ≤ n ≤ 10, for the increasing
failure rate populations. Each bound is accompanied by the value 1 − exp(−α j :n)
which represents the contribution of the expectation part in the distribution attaining
the bound. Parameter α j :n uniquely determines the distribution. It does not appear
for j = 3, n = 4, because the extreme distribution has a more complicated form,
precisely described in Example 1. Comparing the obtained bounds with the respective
ones for the ID distributions (see Goroncy and Rychlik 2015, Table 1), we note that
the bounds in the IFR case are slightly greater. The relations are not surprising, since
the ID family of distributions is contained in the IFR family. We can also observe that
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Table 1 Bounds on
standardized expectations of
order statistics
E(X j :n − μ)/σ, 3 ≤ j ≤
n − 1, 4 ≤ n ≤ 10, for the
increasing failure rate
distributions

n j 1 − exp(−α j :n ) B( j, n)

4 3 0.50522

5 3 0.28131 0.37576

4 0.60045 0.67936

6 3 0.19341 0.30521

4 0.41879 0.52350

5 0.69163 0.81962

7 3 0.14280 0.25966

4 0.31338 0.43608

5 0.52004 0.64363

6 0.75343 0.93807

8 3 0.11069 0.22741

4 0.24605 0.37831

5 0.41012 0.54348

6 0.59561 0.74566

7 0.79735 1.04114

9 3 0.08890 0.20319

4 0.20001 0.33662

5 0.33486 0.47648

6 0.48716 0.63513

7 0.65334 0.83474

8 0.82979 1.13268

10 3 0.07334 0.18424

4 0.16687 0.30480

5 0.28063 0.42763

6 0.40902 0.56065

7 0.54899 0.71550

8 0.69847 0.91415

9 0.85453 1.21523

the bounds of Table 1 are close to the respective general bounds for arbitrary parent
distributions.

2.2 Spacings

We now establish sharp upper bounds on the standardized expectations of spacings
E(X j+1:n−X j :n)

σ
, 1 ≤ j ≤ n − 1, coming from i.i.d. samples with IFR distributions. To

this end, we project functions
h̃ j :n(x) = ( f j+1:n − f j :n)V (x) = f j+1:n(1 − e−x ) − f j :n(1 − e−x ). (2.20)

onto the convex cone (2.1). We first take into account the cases 2 ≤ j ≤ n − 2, for
which functions (2.20) satisfy Assumptions (A) of Sect. 1. Indeed, they decrease from
0 at 0 to their negative global minima at
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ã j :n = ln
n

n − j +
√

j (n− j)
n−1

,

then increase to the positive global maxima at

c̃ j :n = ln
n

n − j −
√

j (n− j)
n−1

,

and finally decrease to zero at d = +∞. In the increase intervals (ã j :n, c̃ j :n), they are
first convex and then concave. The tangency points cannot be written down explicitly.
These are unique b̃ j :n ∈ (ã j :n, c̃ j :n) solving the equations

n(n − 1)2

(n − j)(n − j − 1)
ln3 x + (n − 1)(3n2 − 3n − 3 jn + 4 j)

(n − j − 1)(n − j)
ln2 x

−−3n2 + 3 jn − 5 j + 6n − 3

n − j − 1
ln x + n − j − 1 = 0.

The bounds and justifications of their sharpness are presented in Propositions 4
and 5. Their statements are similar to those of Propositions 2 and 3, respectively.
Their proofs are almost identical with those of their counterparts, and therefore we
omit them. The only differences consist in using modifications of functions (2.7)–
(2.10) and (2.14)–(2.17). Noting the identity h̃ j :n = h j+1:n − h j :n and linearity of
operators (1.4)–(1.7) acting on functions h, we define

T̃ j :n(β) = Tj+1:n(β) − Tj :n(β)

= −(n − j + 1)Bj−1,n
(
1 − e−β

)+ (n − j − 1)Bj,n(1 − e−β),

λ̃ j :n(α) = λ j+1:n(α) − λ j :n(α)

= 1

α2 − α + 2 − 2e−α

⎧⎨
⎩

1

n − j

n∑
k= j+1

Bk,n
(
1 − e−α

)

− n(1 − e−α − α)
[
Bj,n−1

(
1 − e−α

)− Bj−1,n−1
(
1 − e−α

)]
⎫⎬
⎭ ,

Ỹ j :n(α) = Y j+1:n(α) − Y j :n(α) = λ̃ j :n(α) + n
[
(n − j + 1)Bj−2,n−1

(
1 − e−α

)
+ (n − j − 1)Bj,n−1

(
1 − e−α

)− 2(n − j)Bj−1,n−1
(
1 − e−α

)]
,

Z̃ j :n(α) = Z j+1:n(α) − Z j :n(α)

= ( j − 1)Bj,n(1 − e−α) − ( j + 1)Bj+1,n
(
1 − e−α

)
− λ̃ j :n(α)

(
1 − e−α − α

)
. (2.21)

Proposition 4 Suppose that T̃ j :n(b̃ j :n) < 0 so that the unique zero ã j :n < β̃ j :n < c̃ j :n
of (2.21) belongs to (b̃ j :n, c̃ j :n). Also, suppose that Ỹ j :n = {b̃ j :n < α < β̃ j :n : Ỹ j :n ≥
0, Z̃ j :n = 0} is nonempty. Let α̃ j :n denote the smallest (possibly unique) element of
Ỹ j :n, f̃ j :n = f j+1:n − f j :n, and λ̃ j :n = λ̃ j :n(α̃ j :n). Then
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E
X j+1:n − X j :n

σ
≤ B̃ j :n,

where

B̃2
j :n = f̃ 2j :n

(
1 − e−α̃ j :n

) (
1 − e−α̃ j :n

)
+2λ̃ j :n f̃ j :n

(
1 − e−α̃ j :n

) (
1 − e−α̃ j :n − α̃ j :n

)

+ λ̃2j :n
(
α̃2
j :n − 2α̃ j :n + 2 − 2e−α̃ j :n

)
+ f̃ 2j :n

(
1 − e−β̃ j :n

)
e−β̃ j :n

+
(n!)2

(
2 j
j

)(
2n − 2 j − 2
n − j − 1

)

(2n − 1)!
[
F2 j+1:2n−1

(
1 − e−β̃ j :n

)
− F2 j+1:2n−1

(
1 − e−α̃ j :n

)]

−
2(n!)2

(
2 j − 1
j − 1

)(
2n − 2 j − 1
n − j

)

(2n − 1)!
[
F2 j :2n−1

(
1 − e−β̃ j :n

)
− F2 j :2n−1

(
1 − e−α̃ j :n

)]

+
(n!)2

(
2 j − 2
j − 1

)(
2n − 2 j
n − j

)

(2n − 1)!
[
F2 j−1:2n−1

(
1 − e−β̃ j :n

)
− F2 j−1:2n−1(1 − e−α̃ j :n )

]
.

The bound is attained by

F(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, y < f̃ j :n
(
1 − e−α̃ j :n

)− λ̃ j :n α̃ j :n,

1 − exp

(
−α̃ j :n − y− f̃ j :n

(
1−e−α̃ j :n

)

λ̃ j :n

)
, f̃ j :n

(
1 − e−α̃ j :n

)− λ̃ j :n α̃ j :n

≤ y < f j :n
(
1 − e−α̃ j :n

)
,

f̃ −1
j :n (y), f̃ j :n

(
1 − e−α̃ j :n

) ≤ y< f̃ j :n
(
1 − e−β̃ j :n

)
,

1, y ≥ f̃ j :n
(
1 − e−β̃ j :n

)
,

uniquely determined up to the location and scale parameters μ and σ , respectively,
with modified argument x 
→ y = x−μ

σ
B̃ j :n.

Define now

Ã j :n(α) = A j+:n(α) − A j :n(α) = nB j,n−1
(
1 − e−α

) (
1 − e−2α − 2αe−α

)

+ (1 − e−α − α)Fj+1:n(1 − e−α),

γ̃ j :n(α) = γ j+1:n(α) − γ j :n(α) = n

n − j
B j,n−1(1 − e−α),

λ̃ j :n(α) = λ j+1:n(α) − λ j :n(α) = γ̃ j :n(α)

e−α − 1 + α
,

B̃2
j :n(α) = (α + 1)2λ̃2j :n(α) −

[
λ̃ j :n(α) + γ̃ j :n(α)

]2
.

Proposition 5 Suppose that either T̃ j :n(β̃ j :n) ≥ 0 or Ỹ j :n = ∅ for some fixed 2 ≤
j ≤ n−2 ≥ 2. Then set Z̃ j :n = {α ≥ β̃ j :n : Ã j :n(α) = 0, γ̃ j :n(α) > 0} is nonempty,
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and

E(X j+1:n − X j :n)
σ

≤ B̃ j :n = B̃ j :n(α̃ j :n),

for α̃ j :n = argmax
α∈Z̃ j :n B̃

2
j :n(α). The equality holds for the distribution function

F(y) =
⎧⎨
⎩
0, y < 0,
1 − e−y, 0 ≤ y < α̃ j :n,
1, y ≥ α̃ j :n .

for y = y(x) = x−μ

σλ̃ j :n
B̃ j :n − γ̃ j :n

λ̃ j :n
+ α̃ j :n with γ̃ j :n = γ̃ j :n(α̃ j :n) and λ̃ j :n = λ̃ j :n(α̃ j :n).

We suspect that the assumptions of Proposition 4 never hold. We verified the claim for
small n. For large n, the increase parts of h̃ j :n are very steep, and only minor highly-
located fragments are concave. It is very unlikely that their smaller pieces become
parts of projections.

Now we focus on the extreme spacings with j = 1 and n − 1. In the first case, we
recall the results of Goroncy and Rychlik (2015, Proposition 6). The bounds

E
X2:n − X1:n

σ
≤ B̃1:n = n

√√√√ n − 1

(2n − 1)(2n − 3)

(
1 −

(
n − 2

n − 1

)2n−1
)

(2.22)

are valid for arbitrary parent distributions. They are attained by

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x−μ
σ

B̃1:n < −n,

f̃ −1
1:n
(
x−μ
σ

B̃1:n
)

, −n ≤ x−μ
σ

B̃1:n <
n(n−2)n−2

(n−1)n−1 ,

1, x−μ
σ

B̃1:n ≥ n(n−2)n−2

(n−1)n−1 .

(2.23)

Theyhave increasingdensity functions on their interval support, and atomswithmasses
n−2
n−1 at the right-end points. This implies that they are IFR as well. Accordingly, the
general upper bounds (2.22) are sharp for the IFR distributions. For n = 2, the bound

in (2.22) reduces to 2
√
3
3 , and (2.23) has uniform density. This is a special case of

range evaluations, due to Plackett (1947).
We finally proceed to the last spacings with j = n − 1. At the first step, we project

the functions

h̃n−1:n(x) = fn:n(1 − e−x ) − fn−1:n(1 − e−x ) = n(1 − e−x )n−2(1 − ne−x ), x > 0,

onto (2.1). Starting from the origin, they decrease to the global minimum at ãn−1:n =
ln n

2 , then convexly increase to the tangency point at b̃n−1:n = ln n

2−
√
2 n−2
n−1

, and

eventually concavely increase to n at +∞. The functions do not fulfil Assumptions
(A) of Sect. 1. Below we change them slightly and present a respective modification
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of Proposition 1. We say that Assumptions (Ã) hold if (A) are modified so that c =
d = +∞ and supx>0 h(x) = limx→∞ h(x) > 0.

Proposition 6 Under Assumptions (Ã), with notation (1.5)–(1.7), the set Ỹ = {α >

b : Y (α) ≥ 0, Z(α) = 0} is nonempty, and for α∗ = inf{α ∈ Y} yields

P�cW h(x) =
{
h(α∗) + λ∗(α∗)(x − α∗), 0 ≤ x < α∗,
h(x), x ≥ α∗.

Outline of proof Following Rychlik (2014, Proposition 3.2), we can show that the
projection belongs to the family

Phα,λ(x) =
{

λ(x − α) + h(α), 0 ≤ x < α,

h(x), x ≥ α,

with α ≥ b, λ ≥ h′(α). The only difference between our assumption and those of
Rychlik (2014) are that function h in the latter case does not have the decreasing part.
The arguments in both the cases are identical, though. Especially, they are based on the
fact that every concave nondecreasing function crosses at most two times the strictly
convex increasing part of h, and so does if the convex increasing part is preceded by
a strictly decreasing one.

We further note that for fixed α ≥ b

||h − Phα,λ||2 =
∫ α

0
[λ(x − α) + h(α) − h(x)]2w(x)dx

is a quadratic convex function of argument λ. It is globally minimized at λ∗(α) defined
in (1.5), and the constrained minimal slope is max{λ∗(α), h′(α)}.

Nowwe claim that Y (α) > 0 for all sufficiently large α. Indeed, the linear functions
h′(α)(x − α) + h(α) tend to the constant limx→∞ h(x) as α → ∞. Hence h′(α)(x −
α) + h(α) ≥ h(x) for all x > 0 if α is sufficiently large. However, this does not hold
for λ∗(α)(x −α)+ h(α), because this is the best approximation of h(0,α) by functions
λ(x − α) + h(α), λ ∈ R. This implies that λ∗(α)(x − α) + h(α) and h(x) cross each
other in (0, α), and so λ∗(α) > h′(α), as required.

Due to continuity of functions λ∗ and h′, the set {α > b : Y (α) < 0} is a possibly
empty sum of open intervals. Repeating arguments of the proof of Proposition 1 in
Goroncy and Rychlik (2015), we conclude that

Y (α) < 0 ⇒ d

dα
||Phα,h′(α) − h||2 < 0.

This means that for every α such that λ∗(α) < h′(α) we can decrease the distance
||Phα,h′(α) −h||moving α to the right as long as the inequality holds. In consequence,
we can restrict ourselves to the family {Phα,λ∗(α) : α ≥ b, Y (α) ≥ 0}.

Condition Z(α) = 0, being equivalent to

∫ d

0
Phα,λ∗(α)(x)w(x)dx =

∫ d

0
h(x)w(x)dx,
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is a necessary condition for Phα,λ∗(α) = P�cW h. One can easily check that under
condition Z(α) = c �= 0, function Phα,λ∗(α) −c better approximates h than Phα,λ∗(α)

itself.
Accordingly, we reduced the set of candidates for projection to {Phα,λ∗(α) : α ∈ Ỹ}.

The set is nonempty, because the projection exists, and is of the form Phα,λ∗(α). If
α1 < α2 for some α1, α2 ∈ Ỹ , the former provides a better approximation of h. It
follows from the fact that Phα,λ∗(α) with Z(α) = 0 is the projection of h(0,α) onto the
subspace of linear functions. Hence, λ∗(α1)(x−α1)+h(α1) lies closer to h on (0, α1)

than λ∗(α2)(x − α2) + h(α2). The same clearly holds if we compare h(x) itself with
λ∗(α2)(x − α2) + h(α2) in (α1, α2). ��
Remark 1 If we assumed that c = d < +∞ and h(c) = max0≤x≤c h(x), we could
get Ỹ = ∅ and P�cW h(x) = λ∗x + γ∗, being the orthogonal projection of h onto the
family of linear functions with

λ∗ =
∫ d
0 xh(x)w(x)dx − ∫ d

0 h(x)w(x)dx
∫ d
0 xw(x)dx

∫ d
0 x2w(x)dx −

(∫ d
0 xw(x)dx

)2 ,

γ∗ =
∫ d
0 h(x)w(x)dx

∫ d
0 x2w(x)dx − ∫ d

0 xh(x)w(x)dx
∫ d
0 xw(x)dx

∫ d
0 x2w(x)dx −

(∫ d
0 xw(x)dx

)2 .

Fixing h = h̃n−1:n , we obtain

λ̃n−1:n(α)= e−2α
(
1−n2

)+e−α
[
n−2+n2(1−α)

]+1 − n(1−α)

α2 − 2α + 2 − 2e−α

(
1 − e−α

)n−2
,

Ỹn−1:n(α) = λ̃n−1:n(α) − n(n − 1)
(
1 − e−α

)n−3
e−α

(
2 − ne−α

)
,

Z̃n−1:n(α) = e−2α(1 − n2)+e−α
[
n − 2+n2(1 − α)

]+1 − n(1 − α)

α2 + 2 − 2α − 2e−α

(
1 − e−α−α

)

+n
(
1 − e−α

) [
1 − e−α(n − 1)

]
, α > 0.

Proposition 7 The set Ỹn−1:n = {α ≥ b̃n−1:n : Ỹn−1:n(α) ≥ 0, Z̃n−1:n(α) = 0} is
nonempty and

E
Xn:n − Xn−1:n

σ
≤ B̃n−1:n,

where

B̃2
n−1:n = λ̃2n−1:n

(
α̃2
n−1:n − 2α̃n−1:n + 2 − 2e−α̃n−1:n

)

+ 2λ̃n−1:nh̃n−1:n(α̃n−1:n)(1 − e−α̃n−1:n − α̃n−1:n)

+ h̃2n−1:n(α̃n−1:n)(1 − e−α̃n−1:n ) + n2(n − 1)

2n − 1

[
1 −

(
1 − e−α̃n−1:n

)2n−1
]

− n3
(
1−e−α̃n−1:n

)2n−2
e−α̃n−1:n −n2(n − 1)2

(
1−e−α̃n−1:n

)2n−3
e−2α̃n−1:n ,
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α̃n−1:n = inf Ỹn−1:n, and λ̃n−1:n = λ̃n−1:n(α̃n−1:n). With the notation y = x−μ
σ

B̃n−1:n
and f̃n−1:n = fn:n − fn−1:n, the inequality becomes equality for

F(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, y < f̃n−1:n
(
1 − e−α̃n−1:n

)
−λ̃n−1:n α̃n−1:n,

1 − exp

(
−α̃n−1:n − y− f̃n−1:n

(
1−e−α̃n−1:n

)

λ̃n−1:n

)
, f̃n−1:n

(
1 − e−α̃n−1:n

)

−λ̃n−1:n α̃n−1:n ≤ y
< f̃n−1:n

(
1 − e−α̃n−1:n

)
f̃ −1
n−1:n(y), f̃n−1:n

(
1 − e−α̃n−1:n

) ≤ y < n,

1, y ≥ n.

We conclude the section with numerical evaluations of bounds B̃( j, n) for the
spacings in small samples, presented in Table 2 below. They are presented together
with the probabilities 1−exp(−α̃ j :n) of exponential parts of the distributions attaining
the bounds. The rests of the probability masses exp(−α̃ j :n) are concentrated at the
atoms located at the right ends of the supports. For fixed n, smaller bounds can be
observed for central spacings, and greater ones hold for extreme ones. Contributions
of the exponential density functions in the extreme distributions increase as do so the
spacing ranks.

3 Possible further developments

Propositions 1 and 6 provide direct useful tools for evaluations of standardized expec-
tations of L-statistics

∑n
i=1 ci (Xi :n −μ)/σ from IFR populations under the condition

that respective functions hc = fcV = ∑n
i=1 ci ( fi :nV −1) = n

∑n−1
i=0 ci+1(Bi,n−1V −

1) satisfy either of Assumptions (A) and (Ã). We have

h′
c = n

n−2∑
i=0

(n − i − 1)(ci+2 − ci+1)Bi,n−1V,

h′′
c = n

n−2∑
i=0

(n − i − 1)[(n − i − 2)ci+3

− (2n − 2i − 3)ci+2 + (n − i − 1)ci+1]Bi,n−1V (3.1)

(the coefficient at cn+1 vanishes in the latter formula). Variation diminishing property
(VDP, for short) of Bernstein polynomials (see, e.g., Rychlik 2001b, Lemma 14) can
be used in establishing the numbers of increase/decrease and convexity/concavity
intervals and verifying the assumptions. It asserts that the number of sign changes of
any linear combination of Bernstein polynomials in (0, 1) does not exceed the number
of sign changes in the vector of combination coefficients. Moreover, the initial and
ultimate signs of the combination coincide with the signs of the first and last non-zero
coefficients, respectively.
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Table 2 Bounds on expected
spacings E(X j+1:n −
X j :n)/σ, 1 ≤ j ≤ n − 1, 3 ≤
n ≤ 10, for the increasing failure
rate distributions

n j 1 − exp(−α̃ j :n) B̃( j, n)

3 1 0.50000 1.07819

2 0.95108 1.02837

4 1 0.33333 1.13629

2 0.70310 0.75231

3 0.98934 1.00824

5 1 0.25000 1.21166

2 0.54311 0.70425

3 0.81981 0.65698

4 0.99690 1.00273

6 1 0.20000 1.28919

2 0.44119 0.69943

3 0.68057 0.57390

4 0.87751 0.61149

5 0.99898 1.00095

7 1 0.16667 1.36521

2 0.37114 0.70960

3 0.57897 0.54421

4 0.76039 0.51044

5 0.91058 0.58511

6 0.99965 1.00034

8 1 0.14286 1.43872

2 0.32016 0.72622

3 0.50291 0.53410

4 0.66687 0.46853

5 0.81155 0.47294

6 0.93144 0.56804

7 0.99987 1.00012

9 1 0.12500 1.50952

2 0.28145 0.74590

3 0.44419 0.53312

4 0.59252 0.44868

5 0.72717 0.42370

6 0.84666 0.44820

7 0.94553 0.55616

8 0.99995 1.00005
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Table 2 continued
n j 1 − exp(−α̃ j :n) B̃( j, n)

10 1 0.11111 1.57770

2 0.25106 0.76706

3 0.39759 0.53698

4 0.53253 0.43936

5 0.65699 0.39814

6 0.77075 0.39405

7 0.87198 0.43069

8 0.95553 0.54746

9 0.99998 1.00002

Fig. 1 Bridge system

Apparent applications are provided by the reliability theory. If a system is composed
of n elements with i.i.d. lifetimes X1, . . . Xn (exchangeability is sufficient here), then
the distribution function of the system lifetime T is a convex combination of order
statistics distribution functions

P(T ≤ t) =
n∑

i=1

siP(Xi :n ≤ t),

where the combination coefficient vector s = (s1, . . . , sn), called the Samaniego
signature depends merely on the system structure. Therefore ET = E

∑n
i=1 si Xi :n ,

and our methods can be applied for precise evaluations of ET−EX1√
Var X1

, when Xi have an
IFR distribution.

For the overwhelmingmajority of the coherent systems, the signature vector is either
monotone or unimodal, i.e. first nondecreasing and then nonincreasing. E.g., Navarro
and Rubio (2010) showed that there is only one system with a bimodal signature
among 180 systems of size 5. Due to (3.1) and VDP, the monotonicity properties are
inherited by the respective functions hs. The conclusion is not immediately apparent in

analysis of the secondderivatives: then themodifications
[
1 − 1

2n−2i−3

]
ci+3−2ci+2+[

1 + 1
2n−2i−3

]
ci+1 instead of the standard second differences ci+3−2ci+2+ci+1, i =

0, . . . , n − 2, should be studied.

Example 2 The classic bridge system (see Fig. 1) has signature s1 = (
0, 1

5 ,
3
5 ,

1
5 , 0

)
.
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In consequence,

h′
s1 = 4B0,4V + 6B1,4V − 4B2,4V − B3,4V,

h′′
s1 = 8B0,4V − 6B1,4V + 6B2,4V + B3,4V .

By VDP, hs1 is first convex increasing, then concave increasing, concave decreas-
ing, and finally convex decreasing. It satisfies the other requirements of (A) with the
exponential weight as well. Using the projection of hs1 onto (2.1), we determine the
bound

ET1 − EX1√
Var X1

≤ 0.304099,

for the i.i.d. IFR component lifetimes and the attainability condition

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x−μ
σ

< −3.29566,
1 − exp

(−0.07239 x−μ
σ

− 0.23855
)
, −3.29566,≤ x−μ

σ
< −1.66202,

f̃ −1
s1 (0.30412 x−μ

σ
+ 1), −1.66202 ≤ x−μ

σ
< 0.48936,

1, x−μ
σ

≥ 0.48936.

The difference from the respective sharp bound without the IFR restriction is
ET1−EX1√
Var X1

≤ 0.304111 is almost unnoticeable. We see that except for Example 1,
the l-h-c type projections may be useful in description of bounds for various systems.
Finally, we note that EX3:5−EX1√

Var X1
≤ 0.37576 in the IFR case.

Example 3 Consider the parallel connection of three single components and the series
of two items, which lifetime is given by

T2 = max(X1, X2, X3,min(X4, X5)).

This system has nondecreasing signature s2 = (
0, 0, 0, 2

5 ,
3
5

)
. Since

h′
s2 = 4B2,4V + B3,4V,

h′′
s2 = 12B1,4V − 6B2,4V − B3,4V,

assumptions (Ã) are satisfies. Using Proposition 6, we obtain

ET2 − EX1√
Var X1

≤ 0.95632,

with the equality for

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x−μ
σ

< −1.28639,
1 − exp

(−0.67669 x−μ
σ

− 0.87049
)
, −1.28639 ≤ x−μ

σ
< 1.10586,

f̃ −1
s2 (0.95632 x−μ

σ
+ 1), 1.10586 ≤ x−μ

σ
< 2.09135,

1, x−μ
σ

≥ 2.09135.
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The bound for the five-component parallel system amounts to 1.15470. For general

i.i.d. distributions of component lifetimes we have ET2−EX1√
Var X1

≤
√

58
63 = 0.95950,

which is slightly more than in the IFR case. Observe that for the dual system, i.e. the
series connection of 3 items and parallelly connected pair with nonincreasing signature
s3 = ( 3

5 ,
2
5 , 0, 0, 0

)
, we get the trivial bound ET3−EX1√

Var X1
≤ 0, valid in the general and

IFR cases.
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