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Abstract The receiver operating characteristic (ROC) curve is a popular graphical
tool for describing the accuracy of a diagnostic test. Based on the idea of estimating
theROCcurve as a distribution function, we propose a newkernel smoothing estimator
of the ROC curve which is invariant under nondecreasing data transformations. We
prove that the estimator has better asymptotic mean squared error properties than
some other estimators involving kernel smoothing and we present an easy method of
bandwidth selection. By simulation studies, we show that for the limited sample sizes,
our proposed estimator is competitive with some other nonparametric estimators of
the ROC curve. We also give an example of applying the estimator to a real data set.

Keywords ROC curve · Nonparametric estimation · Kernel smoothing · Bandwidth
selection

Mathematics Subject Classification 62G05 · 62G20

1 Introduction

The receiver operating characteristic (ROC) curve is used to describe the performance
of a diagnostic test, which on the basis of some observable measurements, assigns
individuals to one of two different groups. For definiteness, let us think of them as
the groups of diseased and healthy patients. This medical terminology is related to
the fact that, in practice, the ROC curves are mainly used in medicine. However,
their applications were recently extended to many other fields like economics and data
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mining.More information about the ROC curves and their possible applications can be
found, for example, in Swets (1988), Pepe (2003) and Krzanowski and Hand (2009).
For a given cutoff point c ∈ R, let an individual be classified as healthy if its test score is
greater than c and as diseased otherwise. Suppose that the real random variables X and
Y denote the test score in the groups of healthy and diseased individuals, respectively,
and let F(x) = P(X ≤ x) and G(x) = P(Y ≤ x) be their continuous and strictly
increasing distribution functions. The accuracy of the test is typically summarized
by the sensitivity and specificity, given by SE(c) = 1 − G(c) and SP(c) = F(c),
respectively. The ROC curve is a plot of SE(c) versus 1−SP(c) for all possible cutoff
values c ∈ R ∪ {−∞,∞}. Equivalently, it can be defined as

R(t) = 1 − G(F−1(1 − t)), t ∈ [0, 1]. (1)

Let XXXm = (X1, . . . , Xm) and YYY n = (Y1, . . . ,Yn) be independent simple samples
from healthy and diseased populations, respectively, and let Fm and Gn denote their
empirical cumulative distribution functions. The most commonly used nonparametric
estimator of R(t) is the empirical ROC curve, which is of the form

Rm,n(t) = 1 − Gn(F
−1
m (1 − t)), t ∈ [0, 1]. (2)

Asymptotic properties of this estimator were studied by Hsieh and Turnbull (1996).
Among other things they proved that, under some basic assumptions for F and
G, Rm,n(t) converges to the true ROC curve uniformly on [0, 1] with probability
one.

Although the empirical ROC curve is very simple and very popular, its obvious
weakness is being a step function, while R(t) is continuous and smooth. One of the
ways to obtain a continuous estimator of R(t) is to use the kernel smoothing method.
Zou et al. (1997) proposed a nonparametric estimator of R(t) from kernel estimates
for the density functions of F and G. Lloyd (1998), using kernel estimates directly
for F and G, obtained a smooth ROC curve estimator given by

˜Rm,n(t) = 1 − ˜Gn(˜F
−1
m (1 − t)), t ∈ [0, 1], (3)

where

˜Fm(x) = 1

m

m
∑

j=1

Q

(

x − X j

hF

)

, ˜Gn(x) = 1

n

n
∑

j=1

Q

(

x − Y j

hG

)

are kernel estimators of F and G with a kernel function Q,Q(v) = ∫ v

−∞ Q(z)dz and
bandwidths hF and hG . Lloyd and Zhou (1999) proved that estimator (3) has better
asymptoticmean squared error (MSE) properties than the empiricalROCcurve.Unfor-
tunately, to the best of our knowledge, in the case of estimator (3), there is no uniform,
but only pointwise convergence to R(t). Moreover, the kernel ROC curve estimator
is not invariant under monotone data transformations, which may be undesirable in
some practical applications. The problem of transformation-invariant nonparametric
estimation of the ROC curve is considered, e.g., in Du and Tang (2009) and Tang
et al. (2010). Finally, estimator (3) involves two separate bandwidth parameters, so
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special care is required for bandwidth selection (Zhou and Harezlak 2002; Hall and
Hyndmann 2003).

To overcome some of the mentioned drawbacks, different methods of smoothing
the empirical ROC curve were proposed, including local linear smoothing (Peng and
Zhou 2004), Bayesian bootstrap (Gu et al. 2008) and bandwidth-free smoothing of the
empirical CDFs (Jokiel-Rokita and Pulit 2012). In this paper, instead of estimating
the ROC curve as the composition of estimators of F−1 and G, we use the fact that
for Z = 1 − F(Y ),

P(Z ≤ t) = P(Y > F−1(1 − t)) = 1 − G(F−1(1 − t)) = R(t), (4)

and propose to estimate R(t) as the cumulative distribution function of Z . It is clear
that without any knowledge about F , we need to obtain a predictor of the unknown
random sample ZZZn = (1 − F(Y1), . . . , 1 − F(Yn)). The simplest way to do this is to
substitute the unknown distribution function F by its any estimator F̂ . Based on the
vector Ẑ̂ẐZn = (1 − F̂(Y1), . . . , 1 − F̂(Yn)), we can directly estimate R(t), using the
well known method of the kernel distribution function estimation.

In Sect. 2 we define a new kernel smoothing estimator of the ROC curve, which
is invariant to nondecreasing data transformations and involves only one bandwidth
parameter. We also show some asymptotic results, including a MSE comparison of
the proposed estimator and the kernel-smoothed estimator proposed by Lloyd (1998).
In Sect. 3 we propose a method of bandwidth selection. Section 4 contains results of
simulation studies. Finally, in Sect. 5 we apply the proposed estimator to real data. All
proofs are put in Appendices 1 and 2.

2 Main results

Let XXXm = (X1, . . . , Xm) and YYY n = (Y1, . . . ,Yn) be independent simple samples
from unknown distribution functions F and G with the same supports IF = IG ⊆ R

and with density functions f and g (with respect to Lebesgue measure), respectively.
Let K be a continuous symmetric density function with support [−1, 1] and denote
K (x) = ∫ x−∞ K (y)dy. Define the smooth ROC curve estimator as

R̂m,n(t) = 1

n

n
∑

i=1

K

(

t − 1 + Fm(Yi )

hn

)

, (5)

where hn > 0 is a bandwidth parameter and Fm denotes the empirical distribution
function of the sample XXXm . For the estimator R̂m,n to have better (than some other
estimators) asymptotic MSE properties, the kernel function K should satisfy some
conditions like e.g.

∫ 1
−1 K

′′(x)dx < 0. Therefore, for simplicity, we assume that K is
the Epanechnikov kernel K (x) = 3/4(1 − x2)1[−1,1](x).

If we consider the ROC curve as the distribution function of the random variable
Z = 1−F(Y ) [see (4)], it is easily seen that R̂m,n(t) is the kernel distribution function
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estimator based on Ẑi = 1 − Fm(Yi ), which are estimators of Zi = 1 − F(Yi ), i =
1, 2, . . . , n.

Remark 1 If we apply the same nondecreasing transformation to samples XXXm andYYY n ,
the estimator given by (5) does not change, whichmeans that R̂m,n(t) is transformation
invariant. Therefore, without loss of generality, we can assume that IF = IG = R.

Theorem 1 Assume that R′′(s) exists for s near t ∈ (0, 1), R′′(s) is continuous at
s = t and let hn → 0. Then

Bias
(

R̂m,n(t)
) = R′′(t)

10
h2n + O

(

1

m
+ 1

m2h2n

)

+ o(h2n), (6)

Var
(

R̂m,n(t)
) = R(t) (1 − R(t))

n
+ t (1 − t)[R′(t)]2

m
−

9
35 R

′(t)
[m
n − R′(t)

]

hn
m

− 3t2(1 − t)2[R′(t)]2
m2h2n

+
15
4 t

3(1 − t)3[R′(t)]2
m3h4n

+ O

(

m + n

m2nhn
+ m + n

m3nh3n
+ m + nhn

m4nh5n

)

+ o

(

hn
m

)

. (7)

Let kn ∈ N denote the minimal sample size for which the MSE of the empirical ROC
curve is no greater than the MSE of estimator (3), based on a sample of size n ∈ N.
Lloyd and Zhou (1999) showed that, under some assumptions on the kernel function
and the bandwidths hF and hG , the difference kn − n is divergent to infinity and
kn − n ∼ n

√
hFhG . The proposed estimator R̂m,n has an analogous advantage, not

only over the empirical ROC curve, but also over estimator (3) proposed by Lloyd
(1998). Assume that

m = m(n) = nλn, λn → λ ∈ (0,∞), (M)

and denote

bn(t) = min
{

j ∈ N : MSE
(

R̃�
j (t)
) ≤ MSE

(

R̂n(t)
)

}

, (8)

where R̃�
n is the kernel ROC curve estimator given by (3), with the asymptotic optimal

(in the sense of minimizing the MSE) bandwidths h�
F and h�

G , which are O(m−1/3)

and O(n−1/3), respectively (Lloyd and Zhou 1999; Hall and Hyndmann 2003). The
asymptotic bias and variance of ˜Rm,n are given by

b
(

R̃n(t)
)

= αR′′(t)
2

[

h2F f 2(F−1(1 − t)) + t (1 − t)

m

]

+1

2
(h2F − h2G)g′(F−1(1 − t)) + o

(

h2F + 1

m

)

, (9)

Var
(

R̃n(t)
)

= R(t) [1 − R(t)]

n
+ t (1 − t)[R′(t)]2

m
+ O

(

hG
n

)

, (10)
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and were derived by Lloyd (1998). Therefore, using the condition (M), we get

MSE
(

R̃�
n(t)
)

= R(t) [1 − R(t)]

n
+ t (1 − t)[R′(t)]2

λnn
+ O
(

n− 4
3

)

. (11)

Theorem 2 Suppose that assumptions of Theorem 1 hold and the condition (M) is
satisfied. Then, if nh2n → ∞ and nh4n → 0, we have

lim
n→∞

bn(t)

n
= 1.

Under the additional assumptions nh3n → 0 and λ − λn = O
(

n−1/3
)

, we get

lim
n→∞ h2n(bn(t) − n) = 3t2(1 − t)2[R′(t)]2

R(t) [1 − R(t)] λ2 + t (1 − t)[R′(t)]2λ ≥ 0,

and the above limit is strictly positive if R′(t) > 0. Finally, if we assume that nh2n →
δ ∈ (0,∞) and δ > 5

4λ t (1 − t), then

lim
n→∞

bn(t)

n
= δ2

δ2 − 3t2(1−t)2[R′(t)]2
{

λδ− 5
4 t (1−t)

}

R(t)[1−R(t)]λ3+t (1−t)[R′(t)]2λ2

≥ 1,

and the above limit is strictly positive if R′(t) > 0.

Remark 2 The MSE of the ROC curve estimator proposed by Peng and Zhou (2004),
with asymptotically optimal choice of bandwidth, has the same form as the MSE of
the estimator proposed by Lloyd (1998), given by (11) (see Peng and Zhou (2004),
Sect. 3). Therefore, Theorem 2 remains true if, instead of the estimator R̃�

n appearing
in definition (8) of bn(t), we insert the Peng and Zhou’s estimator.

3 Bandwidth selection

In this section we deal with the issue of choosing the parameter hn , appearing in (5).
In the problem of bandwidth selection when estimating the distribution function, to
the best of our knowledge, only two methods have been investigated: plug-in and
cross-validation. The plug-in bandwidth choice was studied e.g. by Altman and Leger
(1995) and Polansky and Baker (2000). The least-squares cross-validationmethodwas
analyzed in Sarda (1993) and in Bowman et al. (1998). It seems that an idea presented
in the last paper may be adapted to our problem. Bowman et al. proposed the method
which minimizes the function

CV0(h) = 1

n

n
∑

i=1

∫

(

I (x − xi ) − ˜Fn,−i (x, h)
)2

dx, (12)
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where I (x − xi ) = 1 if x − xi ≥ 0 and 0 in other case, and ˜Fn,−i (x, h) denotes the
kernel distribution function estimator constructed from the data with observation xi
omitted. Analogously, one can choose the bandwidth parameter hn by minimizing the
function

CV (h) = 1

n

n
∑

i=1

∫ 1

0

(

I (t − 1 + Fm(yi )) − R̂m,n,−i (t)
)2

dt, (13)

where

R̂m,n,−i (t) = 1

n − 1

∑

j �=i

K

(

t − 1 + Fm(y j )

hn

)

. (14)

This method of bandwidth selection works decently and usually leads to the estimator
R̂m,n with the MSE smaller than in the case of the empirical ROC curve. However,
when the sample sizes are small, it is not very stable and often gives too small or too
large parameters hn , which results in under- or oversmoothed estimated ROC curves,
respectively. Moreover, procedure of numerical minimization of the function CV ,
repeated many times, is time consuming

For that reason we propose another method of choosing the parameter hn . From
Theorem 2 it follows that for fixed t ∈ (0, 1) and for nh2n → δ, where 5

4λ t (1 − t) <

δ < ∞, we have

lim
n→∞

bn
n

= δ2

δ2 − 3t2(1−t)2[R′(t)]2
{

λδ− 5
4 t (1−t)

}

R(t)[1−R(t)]λ3+t (1−t)[R′(t)]2λ2

:= Ψ (δ) ≥ 1,

and it is easy to check that the function Ψ (δ) is maximized for

δ� = 5t (1 − t)

2λ
.

Therefore, for fixed t ∈ (0, 1), to maximize the asymptotic relative efficiency of R̂n(t)
with respect to R̃�

n(t), the bandwidth parameter hn should be selected in such a way
that nh2n → δ�. Hence, we propose to choose the bandwidth parameter which depends
on t and is of the form

h�
n(t) = cn

√

δ�

n
= cn

√
5t (1 − t)√
2nλ

, (15)

where cn is some sequence converging to 1. Note that our proposed method of band-
width selection gives the smoothing parameter h�

n(t) which, in contrast to the optimal
bandwidth(s) obtained by other methods relating to some other kernel ROC curve
estimators (e.g. Lloyd and Zhou 1999; Hall and Hyndmann 2003; Peng and Zhou
2004), does not depend on the unknown distribution functions F and G. Therefore the
parameter h�

n(t) is easy to compute. Moreover, h�
n(t) becomes small near the ends of

the interval [0, 1], which results in a reduction of the bias of the proposed estimator,
especially for t close to 0.
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4 Simulation study

A small simulation study was performed to investigate the efficiency of the proposed
estimator of the ROC curve for the limited sample sizes. We considered four different
combinations of the distribution functions. In the first two studies, both F and G
belong to the same family of distributions, normal or logistic. The parameters are
selected so that the resulting ROC curves have similar shapes (see Fig. 1). In the
other two studies, F and G are different: if one is normal, the other is logistic. In this
case also the corresponding ROC curves are completely different. In the simulations
we used 1000 samples of equal sizes m = n = 20, 50. For each of the considered
ROC curves and sample sizes, we computed the empirical ROC curve (EM), the
smoothed empirical ROC curve (SEM) of Jokiel-Rokita and Pulit (2012), based on
smoothed empirical CDFs, the Bayesian bootstrap estimator (BB) proposed by Gu
et al. (2008), the local linear smoothing estimator (LLS) of Peng and Zhou (2004),
the Lloyd’s kernel-smoothed estimator (KS) and the new kernel smoothing estimator
(NKS) proposed in this paper.

Although the choice of the sequence cn appearing in (15) does not affect on the
asymptotic behavior of the estimator ˜Rm,n , for the limited sample sizes the best results
are achieved when cn ≈ 1.5 − 2.5, depending on the estimated ROC curve and the
value of n. In the simulation study, choosing h�

n(t) for our estimator, for simplicity,
we decided to take cn = 1 + 1.8n−1/5 in all the considered cases. In the problem
of bandwidth selection for the kernel estimator (KS), we used the normal-reference
method proposed by Hall and Hyndmann (2003), which is recommended when the
sampled distributions are not far from normal. The authors found that in the context of
the ROC curve estimation, proposedmethod give substantial improvement in themean
integrated squared error over other known methods of bandwidth selection. Finally,
in the case of the local linear smoothing estimator (LLS), we choose the smoothing

Fig. 1 The ROC curve
corresponding to: (1)
X ∼ N (0, 1), Y ∼ N (1, 1)
(solid curve); (2)
X ∼ LG (0, 2), Y ∼ LG (3, 2)
(dotted curve); (3)
X ∼ LG (0, 1), Y ∼ N (2.5, 9)
(dashed curve); (4)
X ∼ N (0, 9), Y ∼ LG (2.5, 1)
(dot-dashed curve)
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Fig. 2 The graphs of estimatedMSE on the unit interval for the sample sizesm = n = 20 and for data from:
a F ∼ N (0, 1),G ∼ N (1, 1); b F ∼ LG (0, 2),G ∼ LG (3, 2); c X ∼ LG (0, 1), Y ∼ N (2.5, 9); d
X ∼ N (0, 9), Y ∼ LG (2.5, 1)

parameter which minimizes the mean trimmed integrated squared error, assuming
knowledge of the distribution functions F andG, [see Peng and Zhou (2004), Sect. 3].

Figures 2 and 3 display the results of the simulations for the sample sizesm = n =
20 and m = n = 50, respectively. Every figure contains four plots corresponding to
four different ROC curves which are to be estimated (see Fig. 1) and every single plot
compares the considered ROC curve estimators in term of their mean squared error
(MSE) on the unit interval. The obtained results indicate that the proposed estimator
(NKS) is competitive with other estimators, also for the limited sample sizes. In the
problem of estimation of the ROC curve it performs better than the empirical ROC
curve (EM), the smoothed empirical ROC curve (SEM) and the Bayesian bootstrap
estimator (BB). In some of the cases it is also better than two other estimators, (KS)
and (LLS).

Supplementary materials to the paper, containing some box-plots comparing
the accuracy of the estimators in term of MSE when estimating AUC, are
available at https://drive.google.com/file/d/0B3L4pdDwuWxvT0RRbmUzWGtaa28/
view?pli=1.
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Fig. 3 The graphs of estimatedMSE on the unit interval for the sample sizesm = n = 50 and for data from:
a F ∼ N (0, 1),G ∼ N (1, 1); b F ∼ LG (0, 2),G ∼ LG (3, 2); c X ∼ LG (0, 1), Y ∼ N (2.5, 9); d
X ∼ N (0, 9), Y ∼ LG (2.5, 1)

5 Real data analysis

To illustrate our method, we apply it to the set of real data which comes from a clinical
study performed from November 2008 to August 2011 by a research team led by
Dr. Krzysztof Tupikowski from Department of Urology and Oncological Urology,
Wroclaw Medical University.

One investigated the efficacy of combined treatment of interferon alpha and metro-
nomic cyclophosphamide in patients with metastatic kidney cancer not eligible for
thyrosine kinase inhibitors treatment with various negative prognostic factors for sur-
vival. It has been approved by an independent local bioethics committee. One of
the secondary goals of the study was to assess if there are any predictive factors for
response to this novel combination treatment.

Table 1 contains presence (1) (or absence - 0) of clinical response (CR) observed at
24-th week of treatment, hemoglobin level (HL) and serum fibrinogen concentration
(FC) of 31 patients treated per protocol. Missing data are denoted by x. Low HL
has been previously associated with short survival and poor response to treatment in
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Table 1 The real data in the form (CR, HL, FC)

(0, 8.6, 7.8) (0, 12.9, x) (0, 11.5, 8.3) (1, 11.8, 4.1) (0, 14.7, 5) (0, 11.9, 6.7)

(0, 9.5, 9.6) (1, 13.3, 4.2) (0, 14.1, x) (0, 11.1, 6) (1, 12.2, x) (1, 15, 3.4)

(1, 17.2, 5.1) (1, 13.9, 3.1) (1, 13.1, 9.5) (0, 9.1, 9.7) (0, 7.2, 9) (1, 15.4, 6.8)

(0, 11.7, 6.2) (0, 10.9, 6.18) (1, 12.1, 7.6) (1, 13, x) (0, 12.7, x) (1, 10.3, 6)

(0, 10.9, 4.1) (1, 11.9, 5.9) (0, 13.9, 4.8) (1, 14.2, 6) (1, 11.5, 4.4) (0, 14.5, 4.5)

(0, 11.9, 5.9)

(a) HL
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Fig. 4 The fitted empirical ROC curve (dotted curve) and the proposed estimator of the ROC curve (solid
curve) for HL (a) and FC (b)

disseminated disease (Tonini et al. 2011). High FC is examined as a negative predictor
of response to treatment in metastatic kidney cancer patients for the first time.

The estimators of the ROC curves for HL (left) and FC (right) as the predictive
factors (positive and negative, respectively) are plotted in Fig. 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proofs of the theorems

Proof (of Theorem 1) Let us fix any t ∈ (0, 1) for which R′′(s) exists for s near t and
R′′(s) is continuous at s = t . Denote

Ti = t − 1 + F(Yi )

hn
, Ti,m = t − 1 + Fm(Yi )

hn
, (16)
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i = 1, 2, . . . , n. The bias of R̂m,n(t) is given by

b
(

R̂m,n(t)
) = EF,G

[

R̂m,n(t)
]− R(t) = 1

n

n
∑

i=1

EF,G
[

K
(

Ti,m
)]− R(t)

= EF,G
[

K
(

T1,m
)]− R(t).

Applying Taylor expansion to function K
(

T1,m
)

at T1, we obtain

b
(

R̂m,n(t)
) = EF,G

[

K
(

T1,m
)]− R(t)

= EF,G [K (T1)] +
∞
∑

k=1

1

k!EF,G

[

K (k) (T1) (T1,m − T1)
k
]

− R(t)

= EF,G [K (T1)] +
3
∑

k=1

1

k!EF,G

[

K (k) (T1) (T1,m − T1)
k
]

− R(t)

:= I0 +
3
∑

k=1

Ik − R(t).

(17)
The first term in the sum on the right side of equality (17) is equal to

I0 = EF,G [K (T1)] =
∫ ∞

−∞
K

(

t − 1 + F(y)

hn

)

g(y)dy

= K

(

t − 1 + F(y)

hn

)

G(y)

∣

∣

∣

∣

∞

−∞
−
∫ ∞

−∞
K

(

t − 1 + F(y)

hn

)

f (y)

hn
G(y)dy

= K

(

t

hn

)

−
∫ t

hn

t−1
hn

K (x)G
(

F−1(1 − t + xhn)
)

dx

= K

(

t

hn

)

−
∫ t

hn

t−1
hn

K (x) [1 − R(t − xhn)] dx

= K

(

t − 1

hn

)

+
∫ t

hn

t−1
hn

K (x)R(t − xhn)dx .

(18)
Expanding R(t − xhn) in a Taylor series at t to order 2 and substituting the obtained
expansion into (18), we get

I0 = K

(

t − 1

hn

)

+ R(t)
∫ t

hn

t−1
hn

K (x)dx − R′(t)hn
∫ t

hn

t−1
hn

xK (x)dx

+ R′′(t)
2

h2n

∫ t
hn

t−1
hn

x2K (x)dx + o(h2n).
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Note that for all n greater than some n0 ∈ Nwe have t−1
hn

< −1 and t
hn

> 1. Therefore

I0 = R(t)
∫ 1

−1
K (x)dx − R′(t)hn

∫ 1

−1
xK (x)dx

+ R′′(t)
2

h2n

∫ 1

−1
x2K (x)dx + o(h2n) = R(t) + R′′(t)

10
h2n + o(h2n).

(19)

The expectation I1 appearing in (17) is equal to zero, because Fm is an unbiased
estimator of F , namely

I1 = 1

1!EF,G
[

K ′ (T1) (T1,m − T1)
]

= EG

[

K

(

t − 1 + F(Y1)

hn

)

EF

[

Fm(Y1) − F(Y1)

hn

]]

= 0.
(20)

Applying Lemma 3 to I2 and I3, we obtain

I2 = O

(

1

m

)

, I3 = O

(

1

m2h2n

)

. (21)

From (17), (19), (20) i (21), we get

b
(

R̂m,n(t)
) = R′′(t)

10
h2n + O

(

1

m
+ 1

m2h2n

)

+ o(h2n).

The variance of R̃m,n is equal to

Var
(

R̂m,n(t)
) = 1

n2

n
∑

i=1

Var
[

K
(

Ti,m
)]+ 2

n2
∑

1≤i< j≤n

Cov
[

K
(

Ti,m
)

,K
(

Tj,m
)]

= 1

n
Var
[

K
(

T1,m
)]+ n − 1

n
Cov
[

K
(

T1,m
)

,K
(

T2,m
)]

:= 1

n
J1 + n − 1

n
J2.

(22)
Let us first take care of the variance of K (T1,m), denoted by J1.

J1 = EF,G

[

K 2 (T1,m
)

]

− E2
F,G

[

K
(

T1,m
)]

= EF,G

[

K 2 (T1,m
)

]

−
(

R(t) + b
(

R̂m,n(t)
)

)2

= EF,G

[

K 2 (T1,m
)

]

− R2(t) + O

(

h2n + 1

m
+ 1

m2h2n
+ 1

m4h4n

)

.

(23)
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Applying Taylor expansion to function K 2
(

T1,m
)

at T1, we obtain

EF,G

[

K 2 (T1,m
)

]

= EF,G

[

K 2 (T1)
]

+
∞
∑

k=1

1

k!EF,G

[

(K 2)(k) (T1) (T1,m − T1)
k
]

= EF,G

[

K 2 (T1)
]

+
6
∑

k=1

1

k!EF,G

[

(K 2)(k) (T1) (T1,m − T1)
k
]

:= J1,0 +
6
∑

k=1

J1,k,

and in consequence, using (23),

J1 = J1,0 +
6
∑

k=1

J1,k − R2(t) + O

(

h2n + 1

m
+ 1

m2h2n
+ 1

m4h4n

)

. (24)

With respect to J1,0, we have

J1,0 = EF,G

[

K 2 (T1)
]

= EG

[

K 2
(

t − 1 + F(Y1)

hn

)]

=
∫ ∞

−∞
K 2
(

t − 1 + F(y)

hn

)

g(y)dy = K 2
(

t − 1 + F(y)

hn

)

G(y)

∣

∣

∣

∣

∞

−∞

−
∫ ∞

−∞
2K

(

t − 1 + F(y)

hn

)

K

(

t − 1 + F(y)

hn

)

f (y)

hn
G(y)dy

= K 2
(

t

hn

)

− 2
∫ t

hn

t−1
hn

K (x)K (x)G
(

F−1(1 − t + xhn)
)

dx

= K 2
(

t − 1

hn

)

+ 2
∫ t

hn

t−1
hn

K (x)K (x)R(t − xhn)dx .

Expanding R(t − xhn) in a Taylor series at t to order 2, we get

J1,0 = K 2
(

t − 1

hn

)

+ 2R(t)
∫ t

hn

t−1
hn

K (x)K (x)dx

− 2R′(t)hn
∫ t

hn

t−1
hn

xK (x)K (x)dx + o(hn)

= 2R(t)
∫ 1

−1
K (x)K (x)dx − 2R′(t)hn

∫ 1

−1
xK (x)K (x)dx + o(hn)

= R(t) − 9

35
R′(t)hn + o(hn).

(25)
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Let us now return to equation (24). Using the fact that Fm is an unbiased estimator of
F , we get J1,1 = 0. Therefore, applying Lemma 3 to J1,k, k = 2, 3, . . . , 6, we obtain

6
∑

k=1

J1,k = O

(

6
∑

k=2

m� k
2 �

mkhk−1
n

)

= O

(

1

mhn
+ 1

m2h3n
+ 1

m3h5n

)

,

which in combination with (24) and (25), gives

J1 = R(t) (1 − R(t)) − 9

35
R′(t)hn + O

(

h2n + 1

mhn
+ 1

m2h3n
+ 1

m3h5n

)

(26)

With respect to the covariance Cov
[

K
(

T1,m
)

,K
(

T2,m
)]

denoted in (22) by J2,
using the fact that T1,m and T2,m have the same distributions, we can write

J2 = EF,G
[

K
(

T1,m
)

K
(

T2,m
)]− EF,G

[

K
(

T1,m
)]

EF,G
[

K
(

T2,m
)] =

= EF,G
[

K
(

T1,m
)

K
(

T2,m
)]− E2

F,G

[

K
(

T1,m
)]

.

Using now the fact that T1 and T2 are i.i.d., we get

J2 = EF,G
[

K
(

T1,m
)

K
(

T2,m
)]−E2

G

[

K (T1)
]+E2

G

[

K (T1)
]− E2

F,G

[

K
(

T1,m
)]

= EF,G
[

K
(

T1,m
)

K
(

T2,m
)]− EG

[

K (T1)K (T2)
]

+
(

E2
G

[

K (T1)
]− E2

F,G

[

K
(

T1,m
)]

)

.

Applying the two-variable Taylor formula to K
(

T1,m
)

K
(

T2,m
)

and expanding the
function at (T1, T2), we obtain

J2 =
∞
∑

k=1

1

k!
k
∑

i=0

(

k

i

)

EF,G

[

K (i) (T1)K
(k−i) (T2) (T1,m − T1)

i (T2,m − T2)
k−i
]

+
(

E2
G [K (T1)] − E2

F,G

[

K
(

T1,m
)]

)

=
6
∑

k=1

1

k!
∑

i∈Ik

(

k

i

)

EF,G

[

K (i) (T1)K
(k−i) (T2) (T1,m − T1)

i (T2,m − T2)
k−i
]

+
(

E2
G [K (T1)] − E2

F,G

[

K
(

T1,m
)]

)

,

(27)
where Ik = {i ∈ N : 0 ∨ (k − 3) ≤ i ≤ k ∧ 3}. Let us now take care of the last term
of the sum in (27). It is easy to check that

E2
G

[

K (T1)
]−E2

F,G

[

K
(

T1,m
)] = −2EG

[

K (T1)
] (

EF,G
[

K
(

T1,m
)]−EG

[

K (T1)
] )

− (EF,G
[

K
(

T1,m
)]− EG

[

K (T1)
] )2

.
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Form (17), (20) and (21), we know that EF,G
[

K
(

T1,m
)]− EG [K (T1)] is equal to

3
∑

k=1

1

k!EF,G

[

K (k) (T1) (T1,m − T1)
k
]

= O

(

1

m
+ 1

m2h2n

)

and in result

E2
G [K (T1)] − E2

F,G

[

K
(

T1,m
)]

= − 2EG [K (T1)]
3
∑

k=1

1

k!EF,G

[

K (k) (T1) (T1,m − T1)
k
]

+ O

(

1

m2 + 1

m3h2n
+ 1

m4h4n

)

.

(28)

Again using the fact that T1 and T2, and T1,m and T2,m have the same distributions,
and T1 and T2 are independent, equality (28) may be written in the following form

E2
G [K (T1)] − E2

F,G

[

K
(

T1,m
)]

= −2
3
∑

k=1

1

k!EF,G

[

K (k) (T1)K (T2) (T1,m−T1)
k
]

+O

(

1

m2+ 1

m3h2n
+ 1

m4h4n

)

= −
3
∑

k=1

1

k!EF,G

[

K (k) (T1)K (T2) (T1,m − T1)
k
]

−
3
∑

k=1

1

k!EF,G

[

K (T1)K
(k) (T2) (T2,m − T2)

k
]

+O

(

1

m2+ 1

m3h2n
+ 1

m4h4n

)

.

Therefore, using (27), we get

J2 =
6
∑

k=2

1

k!
∑

j∈Jk

(

k

j

)

EF,G

[

K ( j) (T1)K
(k− j) (T2) (T1,m − T1)

j (T2,m − T2)
k− j
]

+ O

(

1

m2 + 1

m3h2n
+ 1

m4h4n

)

:=
6
∑

k=2

J2,k + O

(

1

m2 + 1

m3h2n
+ 1

m4h4n

)

.

(29)
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where Jk = { j ∈ N : 1 ∨ (k − 3) ≤ j ≤ (k − 1) ∧ 3}. The first term in the sum on
the right side of equality (29) is equal to

J2,2 = 1

2!
(

2

1

)

EF,G

[

K
′
(T1)K

′
(T2) (T1,m − T1)(T2,m − T2)

]

= 1

h2n
EG [K (T1) K (T2)EF [Fm(Y1) − F(Y1)][Fm(Y2) − F(Y2)]]

= 1

mh2n
EG
[

K (T1) K (T2) H1,1
(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)]

,

where
H1,1(x, y, z) = x − yz = x1y0z0 − x0y1z1.

Applying Lemma 4 to J2,2 expressed as above, we obtain

J2,2 = 1

mh2n

(

h2n[R′(t)]2t (1 − t) + h3nβ[R′(t)]2 + o(h3n)
)

,

where

β =
∫ 1

−1
K (u)

∫ u

−1
xK (x)dxdu +

∫ 1

−1
uK (u)

∫ 1

u
K (x)dxdu = − 9

35
.

Simplifying, we get

J2,2 = t (1 − t)[R′(t)]2
m

−
9
35 [R′(t)]2hn

m
+ o

(

hn
m

)

. (30)

The term J2,4 is the sum of three another terms from which the first one and the third
one have the same values, and their sum is equal to

J2,4,1 + J2,4,3

= 2J2,4,1 = 2

4!
(

4

1

)

EF,G

[

K
′
(T1)K

(3) (T2) (T1,m − T1)(T2,m − T2)
3
]

= 1

3h4n
EG

[

K (T1) K
(2) (T2)EF [Fm(Y1) − F(Y1)][Fm(Y2) − F(Y2)]3

]

,

and the second one is equal to

J2,4,2 = 1

4!
(

4

2

)

EF,G

[

K (2) (T1)K
(2) (T2) (T1,m − T1)

2(T2,m − T2)
2
]

= 1

4h4n
EG

[

K
′
(T1) K

′
(T2)EF [Fm(Y1) − F(Y1)]2[Fm(Y2) − F(Y2)]2

]

.
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One can check that

EF [Fm(Y1) − F(Y1)][Fm(Y2) − F(Y2)]3

= H (1)
1,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m2 + H (2)
1,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m3 ,

EF [Fm(Y1) − F(Y1)]2[Fm(Y2) − F(Y2)]2

= H (1)
2,2

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m2 + H (2)
2,2

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m3 ,

where

H (1)
1,3 (x, y, z) = 3xz − 3yz2 − 3xz2 + 3yz3,

H (2)
1,3 (x, y, z) = x − yz − 6xz + 6yz2 + 6xz2 − 6yz3,

H (1)
2,2 (x, y, z) = yz − yz2 − y2z + 2x2 − 4xyz + 3y2z2,

H (2)
2,2 (x, y, z) = x − yz − 2xz − 2xy + 2yz2 + 2y2z − 2x2 + 8xyz − 6y2z2.

Therefore

J2,4 = J2,4,1 + J2,4,2 + J2,4,3

= 1

3m2h4n
EG

[

K (T1) K
(2) (T2) H

(1)
1,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

]

+ 1

3m3h4n
EG

[

K (T1) K
(2) (T2) H

(2)
1,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

]

+ 1

4m2h4n
EG

[

K
′
(T1) K

′
(T2) H

(1)
2,2

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

]

+ 1

4m3h4n
EG

[

K
′
(T1) K

′
(T2) H

(2)
2,2

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

]

. (31)

Applying Lemma 4 to each of the expectations appearing in (31), we get

J2,4 = 1

3m2h4n

(

h2nγ [R′(t)]23t2(1 − t)2 + O(h3n)
)

+ O

(

h2n + mh3n + h3n
m3h4n

)

,

where

γ =
∫ 1

−1
K (x)dx

∫ 1

−1
K (2)(x)dx = −3.

After simplification, we have

J2,4 = −3t2(1 − t)2[R′(t)]2
m2h2n

+ O

(

1

m2hn
+ 1

m3h2n

)

. (32)
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The last term in the sum on the right side of equality (29) is equal to

J2,6 = 1

6!
(

6

3

)

EF,G

[

K (3) (T1)K
(3) (T2) (T1,m − T1)

3(T2,m − T2)
3
]

= 1

36h6n
EG

[

K (2) (T1) K
(2) (T2)EF [Fm(Y1) − F(Y1)]3[Fm(Y2) − F(Y2)]3

]

.

(33)
Again, one can check that

EF [Fm(Y1) − F(Y1)]3[Fm(Y2) − F(Y2)]3 = H (1)
3,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m3

+ H (2)
3,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m4 + H (3)
3,3

(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)

m5
,

where

H (1)
3,3 (x, y, z) = 9xyz − 9y2z2 − 9xyz2 − 9xy2z + 9y2z3 + 9y3z2

+27xy2z2 − 18x2yz + 6x3 − 15y3z3,

H (2)
3,3 (x, y, z) = yz + 3xy + 3xz − 6yz2 − 6y2z − 3xy2

− 3xz2 + 5yz3 + 5y3z + 18x2,

− 72xyz + 63y2z2 − 36x2y − 36x2z + 108xyz2 + 108xy2z

− 78y2z3 − 78y3z2 − 234xy2z2 + 126x2yz − 18x3 + 130y3z3

and

H (3)
3,3 (x, y, z) = x − yz − 6xy − 6xz + 6yz2+6y2z + 6xy2+6xz2 − 6yz3 − 6y3z

− 18x2 + 72xyz − 54y2z2+36x2y+36x2z − 108xyz2 − 108xy2z

+ 72y2z3 + 72y3z2 + 216xy2z2 − 108x2yz + 12x3 − 120y3z3.

Applying now Lemma 4 to the expectation in (33), we obtain

J2,6 = 1

36m3h6n

(

h2nδ[R′(t)]215t3(1 − t)3 + O(h3n)
)

+ O

(

mh2n + h2n
m5h6n

)

,

where

δ =
(∫ 1

−1
K (2)(x)dx

)2

= 9.

Simplifying, we get

J2,6 =
15
4 t

3(1 − t)3[R′(t)]2
m3h4n

+ O

(

1

m3h3n
+ 1

m4h4n

)

. (34)
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The remaining terms J2,3 and J2,5 in the sum on the right side of equality (29), we
can estimate using Lemma 3

J2,3 = O

(

1

m2hn

)

, J2,5 = O

(

1

m3h3n

)

. (35)

Combining now (29), (30), (32), (34) and (35), we obtain

J2 = t (1 − t)[R′(t)]2
m

−
9
35 [R′(t)]2hn

m
− 3t2(1 − t)2[R′(t)]2

m2h2n

+
15
4 t

3(1 − t)3[R′(t)]2
m3h4n

+ O

(

1

m2hn
+ 1

m3h3n
+ 1

m4h4n

)

+ o

(

hn
m

)

.

(36)

Finally, substituting (26) and (36) into (22), after simplification, we have

Var
(

R̂m,n(t)
) = R(t) (1 − R(t))

n
+ t (1 − t)[R′(t)]2

m
−

9
35 R

′(t)
[m
n − R′(t)

]

hn
m

− 3t2(1 − t)2[R′(t)]2
m2h2n

+
15
4 t

3(1 − t)3[R′(t)]2
m3h4n

+ O

(

m + n

m2nhn
+ m + n

m3nh3n
+ m + nhn

m4nh5n

)

+ o

(

hn
m

)

,

which completes the proof. ��

Proof (of Theorem 2) From (11) and Theorem 1, under the assumption nh2n → ∞,
we can write

MSE
(

R̃�
n(t)
)

= A(t)

n
+ O

(

λ − λn

n

)

+ O
(

n− 4
3

)

(37)

and

MSE
(

R̂n(t)
) = A(t)

n
− B(t)

n2h2n
+ O

(

λ − λn

n

)

+ O

(

hn
n

+ h4n

)

+ o

(

1

n2h2n

)

, (38)

where

A(t) = R(t) [1 − R(t)] λ + t (1 − t)[R′(t)]2
λ

> 0,

B(t) = 3t2(1 − t)2[R′(t)]2
λ2

≥ 0.

(39)
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From the definition (8) of bn = bn(t), we have

MSE
(

R̃�
bn (t)
)

≤ MSE
(

R̂n(t)
)

, (40)

MSE
(

R̃�
bn−1(t)

)

> MSE
(

R̂n(t)
)

. (41)

Substituting (37) and (38) into (40), we get

A(t)

bn
+ O

(

λ − λbn

bn

)

+ O
(

bn
− 4

3

)

≤ A(t)

n
− B(t)

n2h2n
+ O

(

λ − λn

n

)

+ O

(

hn
n

+ h4n

)

+ o

(

1

n2h2n

)

and after some simple transformations, we obtain

bn
n

≥
1 + O

(

λ − λbn
)+ O

(

bn− 1
3

)

1 − B(t)
A(t)

1
nh2n

+ O (λ − λn) + O
(

hn + nh4n
)+ o
(

1
nh2n

) . (42)

From (37), (38) and (41), after analogical transformations, we get

bn
n

<
1 + O

(

λ − λbn−1
)+ O

(

(bn − 1)− 1
3

)

1 − B(t)
A(t)

1
nh2n

+ O (λ − λn) + O
(

hn + nh4n
)+ o
(

1
nh2n

) + 1

n
. (43)

Combining (42) and (43), and using the assumptions hn → 0, nh2n → ∞, nh4n →
0, λn → λ and the fact that bn → ∞, we obtain

lim
n→∞

bn
n

= 1. (44)

Suppose now that nh3n → 0 and λ − λn = O
(

n−1/3
)

. Subtracting 1 from both sides
of inequalities (42) and (43), and multiplying them by nh2n , we get

h2n(bn − n) ≥
B(t)
A(t) + O

{(

1 +
(

bn
n

)− 1
3
)

n
2
3 h2n

}

+ O
(

nh3n + n2h6n
)+ o (1)

1 − B(t)
A(t)

1
nh2n

+ O
(

n− 1
3

)

+ O
(

hn + nh4n
)+ o
(

1
nh2n

) (45)

and

h2n(bn − n) <

B(t)
A(t) + O

{(

1 +
(

bn−1
n

)− 1
3
)

n
2
3 h2n

}

+ O
(

nh3n + n2h6n
)+ o (1)

1 − B(t)
A(t)

1
nh2n

+ O
(

n− 1
3

)

+ O
(

hn + nh4n
)+ o
(

1
nh2n

) ,

(46)
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respectively. Using the assumptions hn → 0, nh2n → ∞, nh3n → 0 and equality (44),
form inequalities (45) and (46), we obtain

lim
n→∞ h2n(bn − n) = B(t)

A(t)
= 3t2(1 − t)2[R′(t)]2

R(t) [1 − R(t)] λ2 + t (1 − t)[R′(t)]2λ ≥ 0.

Suppose now that nh2n → δ ∈ (0,∞). Then, from Theorem 1, we have

MSE
(

R̂n(t)
) = A(t)

n
− B(t)

n2h2n
+ C(t)

n3h4n
+ O

(

λ − λn

n

)

+ O
(

n− 3
2

)

, (47)

where A(t) and B(t) are given by (39), and

C(t) =
15
4 t

3(1 − t)3[R′(t)]2
λ3

≥ 0. (48)

Substituting (37) and (47) into (40), after some transformations, we get

bn
n

≥
1 + O

(

λ − λbn
)+ O

(

bn− 1
3

)

1 − B(t)
A(t)

1
nh2n

+ C(t)
A(t)

1
n2h4n

+ O (λ − λn) + O
(

n− 1
2

) . (49)

Analogously, substituting (37) and (47) into (41), we obtain

bn
n

<
1 + O

(

λ − λbn−1
)+ O

(

(bn − 1)− 1
3

)

1 − B(t)
A(t)

1
nh2n

+ C(t)
A(t)

1
n2h4n

+ O (λ − λn) + O
(

n− 1
2

) + 1

n
. (50)

Combining (49) and (50), and using the condition nh2n → δ ∈ (0,∞), we get

lim
n→∞

bn
n

= 1

1 − B(t)
A(t)

1
δ

+ C(t)
A(t)

1
δ2

= δ2

δ2 − B(t)δ−C(t)
A(t)

= δ2

δ2 − 3t2(1−t)2[R′(t)]2
{

λδ− 5
4 t (1−t)

}

R(t)[1−R(t)]λ3+t (1−t)[R′(t)]2λ2

.

One can easily see that for δ > 5
4λ t (1 − t), the above limit is greater then 1, which

completes the proof. ��

Appendix 2: Some useful lemmas

Lemma 1 (Znidaric 2009, Corollary 1) Let μk(m, p) denote the k-th central moment
of the binomial distribution B(m, p), i.e. μk(m, p) = E (X − mp)k , where X ∼
B(m, p). Then
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(1) μk(m, p) is a polynomial of degree � k
2� in m,

(2) μk(m, p) is a polynomial of degree k in p.

Lemma 2 Let μk,l(m, ppp) denote the mixed central moment of order k + l of the
multinomial distribution M3(m, ppp), i.e. μk,l(m, ppp) = E (X1 − mp1)k (X2 − mp2)l ,
where XXX = (X1, X2, X3) ∼ M3(m, ppp), ppp = (p1, p2, p3) , p1 + p2 + p3 = 1. Then

(1) μk,l(m, ppp) is a polynomial of degree at most � k+l
2 � in m.

(2) μk,l(m, ppp) is a polynomial of degree at most k + l in p1 and p2.

Proof Let k, l ∈ N and let X =
{

(x1, x2, x3) ∈ N
3 :∑3

i=1 xi = m
}

.

μk,l := μk,l(m, ppp) = E (X1 − mp1)
k (X2 − mp2)

l

=
∑

X

P (X1 = x1, X2 = x2, X3 = x3) (x1 − mp1)
k(x2 − mp2)

l

=
∑

X

m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l .

Differentiating μk,l with respect to p1, we get

∂μk,l

∂p1
=
∑

X

m!
x1!x2!x3! x1 p1

x1−1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l

−
∑

X

m!
x1!x2!x3! x3 p1

x1 p2
x2(1 − p1 − p2)

x3−1(x1 − mp1)
k(x2 − mp2)

l

− mk
∑

X

m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k−1(x2 − mp2)

l .

(51)
Analogously, differentiating μk,l with respect to p2, we obtain

∂μk,l

∂p2
=
∑

X

m!
x1!x2!x3! x2 p1

x1 p2
x2−1(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l

−
∑

X

m!
x1!x2!x3! x3 p1

x1 p2
x2(1 − p1 − p2)

x3−1(x1 − mp1)
k(x2 − mp2)

l

− ml
∑

X

m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l−1.

(52)
Note that the last of the three terms appearing in (51) and (52) are equal −mkμk−1,l
and −mlμk,l−1, respectively. Hence

[

∂μk,l

∂p1
+ mkμk−1,l

]

p1(1 − p1 − p2) +
[

∂μk,l

∂p2
+ mlμk,l−1

]

p2(1 − p1 − p2)
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=
∑

X

m!
x1!x2!x3! x1 p1

x1 p2
x2(1 − p1 − p2)

x3+1(x1 − mp1)
k(x2 − mp2)

l

−
∑

X

m!
x1!x2!x3! x3 p1

x1+1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l

+
∑

X

m!
x1!x2!x3! x2 p1

x1 p2
x2(1 − p1 − p2)

x3+1(x1 − mp1)
k(x2 − mp2)

l

−
∑

X

m!
x1!x2!x3! x3 p1

x1 p2
x2+1(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l

=
∑

X

[x1(1 − p1 − p2) − x3 p1 + x2(1 − p1 − p2) − x3 p2]

× m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l . (53)

Using the fact that x3 = m − x1 − x2, we get

x1(1 − p1 − p2) − x3 p1 + x2(1 − p1 − p2) − x3 p2 = (x1 − mp1) + (x2 − mp2),

which in combination with (53), gives

[

∂μk,l

∂p1
+ mkμk−1,l

]

p1(1 − p1 − p2) +
[

∂μk,l

∂p2
+ mlμk,l−1

]

p2(1 − p1 − p2)

=
∑

X

m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k+1(x2 − mp2)

l

+
∑

X

m!
x1!x2!x3! p1

x1 p2
x2(1 − p1 − p2)

x3(x1 − mp1)
k(x2 − mp2)

l+1

= μk+1,l + μk,l+1.

(54)
The recursive formula (54) and the initial conditions

μ1,0 = μ0,1 = 0,

μ2,0 = mp1(1 − p1), μ1,1 = −mp1 p2, μ0,2 = mp2(1 − p2),
(55)

let us to prove the lemma, using mathematical induction over s = k + l. We give the
proof only of the first assertion of the lemma. The proof of the second is essentially
the same. Equalities (55) indicate that, the thesis is true for s = 1 and s = 2. Suppose
that the thesis is satisfied for some natural s0 ≥ 2 and s0 + 1, i.e. for any k, l ∈ N

such that k + l = s0 or k + l = s0 + 1, μk,l is a polynomial (of variable m) of
degree at most � k+l

2 �. We need to show that all μk,l , where (k, l) ∈ {(s0 + 2, 0), (s0 +
1, 1), (s0, 2), . . . , (1, s0 + 1), (0, s0 + 2)}, are polynomials of degree at most � s0+2

2 �.
It follows from Lemma 1 that μs0+2,0 = E (X1 − mp1)s0+2 is a polynomial of

degree � s0+2
2 �. Assume that μs0+2,0, μs0+1,1, μs0,2, . . . , μs0+2−s1,s1 , where 0 ≤ s1 <
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s0+2, satisfied the thesis of the lemma.We show that then alsoμs0+1−s1,s1+1 satisfied
the thesis. Indeed, from (54) (taking k = s0 + 1 − s1, l = s1), we have

μs0+1−s1,s1+1 = −μs0+2−s1,s1

+
[

∂μs0+1−s1,s1

∂p1
+ m(s0 + 1 − s1)μs0−s1,s1

]

p1(1 − p1 − p2)

+
[

∂μs0+1−s1,s1

∂p2
+ ms1μs0+1−s1,s1−1

]

p2(1 − p1 − p2). (56)

By the induction hypothesis, μs0+1−s1,s1 is a polynomial of degree at most � s0+1
2 � and

μs0−s1,s1 and μs0+1−s1,s1−1 are polynomials of degree at most � s0
2 �. Moreover, as we

assumed, μs0+2−s1,s1 is a polynomial of degree at most � s0+2
2 �. Thus, using (56), we

conclude that alsoμs0+1−s1,s1+1 is a polynomial of degree at most � s0+2
2 �. Hence, one

can easily deduce that the degrees of all μs0+2−i,i , i = 0, 1, . . . , s0 + 2 are equal at
most � s0+2

2 �, which completes the proof. ��

Lemma 3 Let XXXm = (X1, . . . , Xm) be a simple sample from a continuous distribu-
tion function F and let Fm denote its empirical distribution function. Let Y1 and Y2
be independent random variables from a continuous distribution function G and let
R(s) = 1 − G(F−1(1 − s)). Assume that R′′(s) exists for s near t ∈ (0, 1), R′′(s) is
continuous at s = t , and let φ1 and φ2 be continuous functions supported on [−1, 1].
Then for any hn > 0 such that hn → 0 and for any k, n ∈ N, we have:

(1) EF,G

[

φ1 (T1)
(

T1,m − T1
)k
]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

O

(

m� k2 �
mkhk−2

n

)

, if φ1 is odd function,

O

(

m� k2 �
mkhk−1

n

)

, otherwise,

(2) EF,G

[

φ1 (T1) φ2 (T2)
(

T1,m − T1
)k (

T2,m − T2
)l
]

= O

(

m� k+l
2 �

mk+l hk+l−2
n

)

,

where Ti = t−1+F(Yi )
hn

, Ti,m = t−1+Fm(Yi )
hn

, i = 1, 2.

Proof From the fact that the random variablemFm(y) = mFm(y, XXXm) has a binomial
distributionB(m, F(y)) for any y ∈ R, using Lemma 1, we can write

EF [Fm(y) − F(y)]k = 1

mk
EF [mFm(y) − mF(y)]k = 1

mk

� k
2 �
∑

i=0

ωi (F(y))mi ,
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where ωi (x), i = 1, 2, . . . , � k
2�, are polynomials of degree at most k. Hence

EF,G

[

φ1 (T1)
(

T1,m − T1
)k
]

= EF,G

[

φ1

(

t − 1 + F(Y1)

hn

) [Fm(Y1) − F(Y1)]k
hkn

]

= EG

[

φ1

(

t − 1 + F(Y1)

hn

)

EF [Fm(Y1) − F(Y1)]k
hkn

]

= 1

mkhkn

� k
2 �
∑

i=0

miEG

[

φ1

(

t − 1 + F(Y1)

hn

)

ωi (F(Y1))

]

= 1

mkhkn

� k
2 �
∑

i=0

mi
∫ ∞

−∞
φ1

(

t − 1 + F(y)

hn

)

ωi (F(y))g(y)dy

= 1

mkhk−1
n

� k
2 �
∑

i=0

mi
∫ t

hn

t−1
hn

φ1(x)ω̃i (t, xhn)r(t − xhn)dx,

(57)
where

r(t) = R′(t) = g(F−1(1 − t))

f (F−1(1 − t))
(58)

and ω̃i (t, xhn) = ωi (1 − t + xhn) = ∑k
j=0 ai, j (t)(xhn)

j for some ai, j (t) ∈ R.
Expanding r(t − xhn) in a Taylor series at t , we get

∫ t
hn

t−1
hn

φ1(x)ω̃i (t, xhn)r(t − xhn)dx

= r(t)
∫ t

hn

t−1
hn

φ1(x)ω̃i (t, xhn)dx − r ′(t)hn
∫ t

hn

t−1
hn

xφ1(x)ω̃i (t, xhn)dx + o(hn)

= r(t)
k
∑

j=0

ai, j (t)h
j
n

∫ t
hn

t−1
hn

x jφ1(x)dx + O(hn)

= r(t)ai,0(t)
∫ 1

−1
φ1(x)dx + r(t)

k
∑

j=1

ai, j (t)h
j
n

∫ 1

−1
x jφ1(x)dx + O(hn).

The above integral is finite for every i = 1, 2, . . . , � k
2� and, if φ1 is odd and in

consequence
∫ 1
−1 φ1(x)dx = 0, it is of order O(hn). This, in combination with (57),

proves statement (1) of the lemma. To prove statement (2) let us denote DF(x, y) =
F(y) − F(x) and DFm(x, y) = Fm(y) − Fm(x), x, y ∈ R and assume that x < y.
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Then

EF [Fm(x) − F(x)]k[Fm(y) − F(y)]l

= 1

mk+l
EF [mFm(x) − mF(x)]k[mFm(y) − mF(y)]l

= 1

mk+l
EF [mFm(x) − mF(x)]k

[mDFm(x, y) − mDF(x, y) + mFm(x) − mF(x)]l

= 1

mk+l

l
∑

s=0

(

l

s

)

EF [mFm(x) − mF(x)]k+l−s[mDFm(x, y) − mDF(x, y)]s .

The random vector (mFm(x),mDFm(x, y),m − mFm(x) − mDFm(x, y)) has a
multinomial distribution M3(m, ppp), where ppp = (F(x), DF(x, y), 1 − F(x)
−DF(x, y)). Therefore, from Lemma 2 we conclude that all expectations in the
sum on the right side of the above equation, are polynomials of degree � k+l

2 � in m.
Hence

EF [Fm(x) − F(x)]k[Fm(y) − F(y)]l = O

(

m� k+l
2 �

mk+l

)

. (59)

A similar arguments leads to the same conclusion when y < x , so equality (59) is true
for any x, y ∈ R. Therefore

∣

∣

∣EF,G

[

φ1 (T1) φ2 (T2)
(

T1,m − T1
)k (

T2,m − T2
)l
]∣

∣

∣

=
∣

∣

∣

∣

∣

EG

[

2
∏

i=1

φi

(

t − 1 + F(Yi )

hn

)

EF [Fm(Y1) − F(Y1)]k[Fm(Y2) − F(Y2)]l
hk+l
n

]∣

∣

∣

∣

∣

≤ Cm� k+l
2 �

mk+l hk+l
n

EG

[

2
∏

i=1

∣

∣

∣

∣

φi

(

t − 1 + F(Yi )

hn

)∣

∣

∣

∣

]

,

(60)
where C > 0 is some constant. With respect to the last expectation, we have

EG

[

2
∏

i=1

∣

∣

∣

∣

φi

(

t − 1 + F(Yi )

hn

)∣

∣

∣

∣

]

=
2
∏

i=1

EG

∣

∣

∣

∣

φi

(

t − 1 + F(Y1)

hn

)∣

∣

∣

∣

=
2
∏

i=1

∫ ∞

−∞

∣

∣

∣

∣

φi

(

t − 1 + F(y)

hn

)∣

∣

∣

∣

g(y)dy = h2n

2
∏

i=1

∫ t
hn

t−1
hn

|φi (x)| r(t − xhn)dx

≤ h2n

2
∏

i=1

∫ 1

−1
|φi (x)| r(t − xhn)dx ≤ h2nφ

�
1φ

�
2

(∫ 1

−1
r(t − xhn)dx

)2

= h2nφ
�
1φ

�
2 (2r(t) + o(1))2 = 4h2nφ

�
1φ

�
2r

2(t) + o(h2n),

123



A new method of kernel-smoothing estimation of the ROC curve 629

where r(t) is given by (58) and φ�
j = supx∈[−1,1] |φ j (x)| < ∞, j = 1, 2. This, in

combination with (60), completes the proof of statement (2) of the lemma. ��

Lemma 4 Let Y1 and Y2 be independent random variables from a continuous dis-
tribution function G and let F be a continuous distribution function. Let φ1 and φ2
be continuous functions supported on [−1, 1] and let R(s) = 1 − G(F−1(1 − s)).
Assume that R′′(s) exists for s near t ∈ (0, 1) and R′′(s) is continuous at s = t .
Denote Ti = t−1+F(Yi )

hn
, i = 1, 2 and H(x, y, z) =∑k0

k=1 ckx
αk yβk zγk , k0 ∈ N, ck ∈

R, αk, βk, γk ∈ N, k = 1, 2, . . . , k0. Then for any hn > 0 such that hn → 0 and for
any k, n ∈ N, we have:

EG
[

φ1 (T1) φ2 (T2) H
(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)]

= h2nη0,1η0,2r
2(t)

k0
∑

k=1

ck(1 − t)σk−h3n(η0,1η1,2+η0,2η1,1)r(t)r
′(t)

k0
∑

k=1

ck(1 − t)σk

+ h3n(η2 + η3)r
2(t)

k0
∑

k=1

ckαk(1 − t)σk−1 + h3nη0,2η1,1r
2(t)

k0
∑

k=1

ckβk(1 − t)σk−1

+ h3nη0,1η1,2r
2(t)

k0
∑

k=1

ckγk(1 − t)σk−1 + o(h3n),

where r(t) = R′(t) = g(F−1(1−t))
f (F−1(1−t))

, η0,i = ∫ 1−1 φi (x)dx, η1,i = ∫ 1−1 xφi (x)dx, i =
1, 2, η2 = ∫ 1−1 φ2(u)

∫ u
−1 xφ1(x)dxdu, η3 = ∫ 1−1 uφ2(u)

∫ 1
u φ1(x)dxdu and σk =

αk + βk + γk .

Proof

I : = EG
[

φ1 (T1) φ2 (T2) H
(

F(Y1 ∧ Y2), F(Y1), F(Y2)
)]

=
∫∫

R2

2
∏

l=1

φl

(

t − 1 + F(yl)

hn

)

g(yl)H
(

F(y1 ∧ y2), F(y1), F(y2)
)

dy1dy2

=
∫∫

A1

2
∏

l=1

φl

(

t − 1 + F(yl)

hn

)

g(yl)H
(

F(y1), F(y1), F(y2)
)

dy1dy2

+
∫∫

A2

2
∏

l=1

φl

(

t − 1 + F(yl)

hn

)

g(yl)H
(

F(y2), F(y1), F(y2)
)

dy1dy2

:= I1 + I2,
(61)
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where A1 = R× (−∞, y2] and A2 = R× (y2,∞). Changing variables in the integral
I1 and using the definition of the function H , we get

I1=
∫∫

˜A1

2
∏

l=1

φl (xl) r(t−xlhn)H
(

1−t+x1hn, 1 − t+x1hn, 1 − t+x2hn
)

h2ndx1dx2

= h2n

k0
∑

k=1

ck

∫∫

˜A1

2
∏

l=1

φl (xl) r(t − xlhn)(1 − t + x1hn)
αk+βk

(1 − t + x2hn)
γk dx1dx2,

where ˜A1 =
(

t−1
hn

, t
hn

)

×
(

t−1
hn

, x2
]

and r(t) is given by (58). Applying Newton’s

binomial formula to (1 − t + x1hn)αk+βk and (1 − t + x2hn)γk , we obtain

I1 = h2n

k0
∑

k=1

ck

γk
∑

i=0

αk+βk
∑

j=0

(

γk

i

)(

αk + βk

j

)

(1 − t)σk−i− j hi+ j
n

×
∫∫

˜A1

x j
1 x

i
2

2
∏

l=1

φl (xl) r(t − xlhn)dx1dx2

= h2n

k0
∑

k=1

ck(1 − t)σk I1,0 + h3n

k0
∑

k=1

ck(αk + βk)(1 − t)σk−1 I1,1

+ h3n

k0
∑

k=1

ckγk(1 − t)σk−1 I1,2 + O(h4n),

(62)

where

I1,0 =
∫ t

hn

t−1
hn

φ2 (x2) r(t − x2hn)
∫ x2

t−1
hn

φ1 (x1) r(t − x1hn)dx1dx2,

I1,1 =
∫ t

hn

t−1
hn

φ2 (x2) r(t − x2hn)
∫ x2

t−1
hn

x1φ1 (x1) r(t − x1hn)dx1dx2,

I1,2 =
∫ t

hn

t−1
hn

x2φ2 (x2) r(t − x2hn)
∫ x2

t−1
hn

φ1 (x1) r(t − x1hn)dx1dx2.

Analogously, one can check that in the case of the integral I2, we have

I2 = h2n

k0
∑

k=1

ck(1 − t)σk I2,0 + +h3n

k0
∑

k=1

ckβk(1 − t)σk−1 I2,1

+ h3n

k0
∑

k=1

ck(αk + γk)(1 − t)σk−1 I2,2 + O(h4n),

(63)
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where

I2,0 =
∫ t

hn

t−1
hn

φ2 (x2) r(t − x2hn)
∫ t

hn

x2
φ1 (x1) r(t − x1hn)dx1dx2,

I2,1 =
∫ t

hn

t−1
hn

φ2 (x2) r(t − x2hn)
∫ t

hn

x2
x1φ1 (x1) r(t − x1hn)dx1dx2,

I2,2 =
∫ t

hn

t−1
hn

x2φ2 (x2) r(t − x2hn)
∫ t

hn

x2
φ1 (x1) r(t − x1hn)dx1dx2.

Combining (61), (62) and (63), after simplification, we have

I = I1 + I2 = h2n

k0
∑

k=1

ck(1 − t)σk (I1,0 + I2,0)

+ h3n

k0
∑

k=1

ckαk(1 − t)σk−1(I1,1 + I2,2) + h3n

k0
∑

k=1

ckβk(1 − t)σk−1(I1,1 + I2,1)

+ h3n

k0
∑

k=1

ckγk(1 − t)σk−1(I1,2 + I2,2) + O(h4n).

(64)
Note that

I1,0 + I2,0 =
∫ t

hn

t−1
hn

φ1 (x1) r(t − x1hn)dx1

∫ t
hn

t−1
hn

φ2 (x2) r(t − x2hn)dx2,

I1,1 + I2,1 =
∫ t

hn

t−1
hn

x1φ1 (x1) r(t − x1hn)dx1

∫ t
hn

t−1
hn

φ2 (x2) r(t − x2hn)dx2,

I1,2 + I2,2 =
∫ t

hn

t−1
hn

φ1 (x1) r(t − x1hn)dx1

∫ t
hn

t−1
hn

x2φ2 (x2) r(t − x2hn)dx2.

(65)

Expanding r(t − xi hn), i = 1, 2, in a Taylor series at t in the above integrals, we
obtain

∫ t
hn

t−1
hn

φi (xi )r(t − xi hn)dxi

= r(t)
∫ t

hn

t−1
hn

φi (xi )dxi − r ′(t)hn
∫ t

hn

t−1
hn

xiφ1(xi )dxi + o(hn)

= r(t)
∫ 1

−1
φi (xi )dxi − r ′(t)hn

∫ 1

−1
xiφ1(xi )dxi + o(hn)

= r(t)η0,i − hnr
′(t)η1,i + o(hn), i = 1, 2,
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and
∫ t

hn

t−1
hn

xiφi (xi )r(t − xi hn)dxi = r(t)
∫ t

hn

t−1
hn

xiφi (xi )dxi + o(1)

= r(t)
∫ 1

−1
xiφi (xi )dxi + o(1) = r(t)η1,i + o(1), i = 1, 2,

where η0,i , η1,i , i = 1, 2, are define in the lemma. In consequence, substituting the
obtained expansions into (65), we get

I1,0 + I2,0 = η0,1η0,2r
2(t) − hn

(

η0,1η1,2 + η0,2η1,1
)

r(t)r ′(t) + o(hn),

I1,1 + I2,1 = η0,2η1,1r
2(t) + o(1),

I1,2 + I2,2 = η1,2η0,1r
2(t) + o(1).

(66)

Now we need to check that

I1,1 + I2,2 = (η2 + η3) r
2(t) + o(1). (67)

Indeed

I1,1 + I2,2 =
∫ t

hn

t−1
hn

φ2 (x2) r(t − x2hn)
∫ x2

t−1
hn

x1φ1 (x1) r(t − x1hn)dx1dx2

+
∫ t

hn

t−1
hn

x2φ2 (x2) r(t − x2hn)
∫ t

hn

x2
φ1 (x1) r(t − x1hn)dx1dx2

= r2(t)
∫ t

hn

t−1
hn

φ2 (x2)
∫ x2

t−1
hn

x1φ1 (x1) dx1dx2

+ r2(t)
∫ t

hn

t−1
hn

x2φ2 (x2)
∫ t

hn

x2
φ1 (x1) dx1dx2 + o(1)

= r2(t)
∫ 1

−1
φ2 (x2)

∫ x2

−1
x1φ1 (x1) dx1dx2

+ r2(t)
∫ 1

−1
x2φ2 (x2)

∫ 1

x2
φ1 (x1) dx1dx2 + o(1)

= (η2 + η3) r
2(t) + o(1).
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Substituting (66) and (67) into (64), we obtain

I = h2nη0,1η0,2r
2(t)

k0
∑

k=1

ck(1 − t)σk

− h3n
(

η0,1η1,2 + η0,2η1,1
)

r(t)r ′(t)
k0
∑

k=1

ck(1 − t)σk

+ h3n (η2 + η3) r
2(t)

k0
∑

k=1

ckαk(1 − t)σk−1 + h3nη0,2η1,1r
2(t)

k0
∑

k=1

ckβk(1 − t)σk−1

+ h3nη1,2η0,1r
2(t)

k0
∑

k=1

ckγk(1 − t)σk−1 + o(h3n),

which completes the proof. ��
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