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Abstract We consider a problem of characterization of continuous distributions for
which linearity of regression of overlapping order statistics, E(Xi :m |X j :n) = aX j :n +
b, m ≤ n, holds. Due to a new representation of conditional expectation E(Xi :m |X j :n)
in terms of conditional expectations E(Xl:n|X j :n), l = i, . . . , n − m + i , we are able
to use the already known approach based on the Rao-Shanbhag version of the Cauchy
integrated functional equation. However this is possible only if j ≤ i or j ≥ n−m+i .
In the remaining cases the problem essentially is still open.

Keywords Order statistics · Overlapping samples · Linearity of regression ·
Characterization of probability distributions · Gamma distribution ·
Power distribution · Pareto distribution

1 Introduction

Consider a sequence (Xk)k≥1 of independent identically distributed continuous ran-
dom variables. For an arbitrary n ≥ 1 denote order statistics for the sample of size n
by X1:n ≤ X2:n ≤ · · · ≤ Xn:n . In this paper we are interested in linearity of regression
of overlapping order statistics, that is, we consider the condition

E(Xi :m |X j :n) = aX j :n + b, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (1)
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where a, b are some real constants, and we want to describe the family of parent
distribution for which (1) holds.

The problem has a long history. It goes back to Fisz (1958) who considered the
case m = n = i = 2, j = 1, a = 1 and characterized the exponential distribution.
This setting was extended in Rogers (1963) with characterization of the exponential
distribution by (1) with m = n, i = j +1, a = 1. The case of adjacent order statistics
was completed in Ferguson (1967) who considered the case m = n, i = j +1 with no
restriction on a and characterized three families of distributions: exponential for a = 1,
Pareto for a > 1 and power for 0 < a < 1. Similar result was obtained in the PhD thesis
of Pudeg (1991) and independently in Ahsanullah and Wesołowski (1997) for (1) with
m = n and i = j + 2. Other trials in the non-adjacent case where given in Dembińska
and Wesołowski ((1997)) and López-Blázquez and Moreno-Rebollo (1997). Finally
the problem for m = n was completely solved in Dembińska and Wesołowski (1998),
denoted in the sequel by DW, where the same triplet of exponential, Pareto and power
distributions or their symmetric (about zero) versions were characterized by (1) with
arbitrary j < i or j > i , respectively. Various recent extensions and complements of
this result can be found e.g. in Ahsanullah and Hamedani (2012), Ahsanullah et al.
(2012), Beg et al. (2013), Bieniek and Szynal (2003), Cramer et al. (2004), Ferguson
(2002) or Gupta and Ahsanullah (2004).

All the previously mentioned papers were concerned with the case of one sample,
i.e. m = n. We were able to trace in the literature only two papers dealing with the case
m �= n. In Ahsanullah and Nevzerov (1999) the authors claim that (1) with i = j = 1
and n > m characterizes the triplet of exponential, Pareto and power distributions as
above. In Wesołowski and Gupta (2001) only a very special case i = m = 1 was
considered—see Sect. 5 below for more details.

In the present paper we will give the characterization of both the triplet families
(exponential, Pareto, power or their symmetric versions) in the case m ≤ n and j ≤ i
or j ≥ n + m − i . Note that it does not cover the case considered in Wesołowski and
Gupta (2001) but it covers the result announced in Ahsanullah and Nevzerov (1999).
It appears that in the case considered, to prove the characterization one can apply Rao-
Shanbhag version of integrated Cauchy functional equation (see Rao and Shanbhag
1994), similarly as in DW. This is done in Sect. 4. However, to reduce the problem to one
to which this method can be applied we need to prove a representation of the conditional
expectation E(Xi :m |X j :n) through conditional expectations from a single sample of
size n. This is done, even in a more general setting, that is with no restrictions on
relations between i and j , in Sect. 2. In Sect. 3 we observe that suitable form of linearity
of regression (1) for m ≤ n holds for both considered triplets of distributions. In Sect. 5
we make some comments regarding the case i < j < n − m + i which still remains
unsolved.

2 A representation of conditional expectation for overlapping order statistics

In this section we are interested in the conditional moment E(Xi :m |X j :n) for different
values of i, j ∈ N, m < n ∈ N. We will express it as a convex combination of
conditional moments of the form E(Xl:n|X j :n), l = i, i + 1, . . . , n − m + i .
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Theorem 1 Let X1, . . . , Xn be a sequence of continuous, independent, identically
distributed and integrable random variables. Then for any m < n ∈ N, 1 ≤ i ≤ m,
1 ≤ j ≤ n

E(Xi :m |X j :n) =
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) E(Xl:n|X j :n). (2)

Proof Let us denote the set of all subsets of size m of {1, . . . , n} by C
n
m . Of course,

# C
n
m =

(
n
m

)
. We can number the elements of C

n
m arbitrarily and define C(k) as the

k-th element of C
n
m , where 1 ≤ k ≤

(
n
m

)
. Denote by X (k)

i :m the i-th order statistic

from (Xi , i ∈ C(k)). Due to the fact that the joint distribution of (X1, . . . , Xn) is
invariant under permutations, we can write:

E(Xi :m |X j :n) = E(X (k)
i :m |X j :n), k = 1, . . . ,

(
n
m

)
.

Consequently, denoting Si = X (1)
i :m + X (2)

i :m + · · · + X

((
n

m

))

i :m ,we have

E(Xi :m |X j :n) = E(Si |X j :n)(
n
m

) . (3)

Let us consider the event A = {X1 < X2 < · · · < Xn} and an arbitrary l ∈
{1, . . . , n}. Obviously, on the event A we have Xl = Xl:n . Note that if l ∈ {1, . . . , i −
1} ∪ {n − m + i + 1, . . . , n} then on A the variable Xl cannot appear in the sum
Si . Otherwise, on A the variable Xl appears in the sum Si as many times as there
are m-elementary combinations of elements of {1, . . . , n} which consist of: l, exactly
(i − 1) numbers smaller than l and exactly (m − i) numbers greater than l. That is,

Si IA =
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) Xl:n IA.

By (3) we get

E(Xi :m IA|X j :n) =
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) E(Xl:n IA|X j :n). (4)
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Let Sn denote the set of permutations of {1, . . . , n}. We may repeat the same reasoning
for any event Aσ = (Xσ(1) < · · · < Xσ(n)), where σ ∈ Sn . Consequently, (4) holds
with A changed into Aσ for any σ ∈ Sn . Since the sets Aσ , σ ∈ Sn , are disjoint, we
get

E(Xi :m |X j :n) =
∑

σ∈Sn

E(Xi :m IAσ |X j :n)

=
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) E(Xl:n
∑

σ∈Sn

IAσ |X j :n). (5)

Now (2) follows due to the identity
∑

σ∈Sn
IAσ = 1 holding P-a.s. ��

Remark 1 Note that the coefficients which appear at the right hand side of (2) have a
clear probabilistic interpretation. Namely, for any 1 ≤ i ≤ m ≤ n

P(Xi :m = Xl:n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) f or l ∈ {i, . . . , n − m + i},

0 f or l ∈ {1, . . . , i − 1} ∪ {n − m + i + 1, . . . , n}.

(6)

Thus
∑n−m+i

l=i P(Xl:n = Xi :m) = 1.

To see that Remark 1 holds true, note that the event {Xi :m = Xl:n} consists only of
special permutations of X1, . . . , Xn : The variables X1, . . . , Xm have to appear only

at: position l, i −1 positions chosen from {1, . . . , l −1} (on

(
l − 1
i − 1

)
ways) and m − i

positions chosen from {l + 1, . . . , n} (on

(
n − l
m − i

)
ways). Now it remains to permute

the variables X1, . . . , Xm at already fixed m positions (on m! ways) and to permute
the variables Xm+1, . . . , Xn at the remaining n − m positions (on (n − m)! ways).
Therefore, there are

(
l − 1
i − 1

) (
n − l
m − i

)
m! (n − m)!

permutations of X1, . . . , Xn for which Xi :m = Xl:n . Since every permutation of
X1, . . . , Xn is equally likely, we arrive at (6).

3 Linearity of regression for exponential, Pareto and power distributions

By PAR(θ;μ; δ) we denote the Pareto distribution with the density

f (x) = θ(μ + δ)θ−1

(x + δ)θ+1 I(μ,∞)(x),
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where θ > 0, μ, δ are some real constants such that μ + δ > 0.
By EXP(λ; γ ) we denote the exponential distribution with the density

f (x) = λ exp(−λ(x − γ )) I(γ,∞)(x),

where λ > 0, γ are some real constants.
By POW(θ;μ; ν) we denote the power distribution with the density

f (x) = θ(ν − x)θ−1

(ν − μ)θ
I(μ,ν)(x),

where θ > 0, −∞ < μ < ν < ∞ are some real constants.
It is well known, see e.g. DW, that for each of the above distributions for l > j

E(Xl:n|X j :n) = α X j :n + β, (7)

where α and β are some constants depending on the distribution and on l, j, n—the
formulas for these constants are given on pp. 217–218 of DW. These formulas together
with the representation, (2) imply for j < i that

E(Xi :m |X j :n) = a X j :n + b, (8)

where a and b are suitable constants, which in each of special cases are listed below.

• For the exponential distribution EXP(λ; γ )

a = 1, b = (n− j)!(
n
m

) λ

n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(n−l)!
l− j−1∑

s=0

(−1)s

s!(l− j−1−s)!(n−l+s+1)2 .

(9)

• For the Pareto distribution PAR(θ;μ; δ)

a = θ(n− j)!(
n
m

)
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(n−l)!
l− j−1∑

s=0

(−1)s

s!(l− j−1−s)![θ(n−l+1+s)−1] ,

b= δ(n− j)!(
n
m

)
n−m+i∑

l=i

(
l − 1
i −1

)(
n−l
m − i

)

(n−l)!
l− j−1∑

s−0

(−1)s

s!(l− j−1−s)!(n−l+s+1)[θ(n−l+s+1)−1] .

(10)
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• For the power distribution POW(θ;μ; ν)

a = θ(n− j)!(
n
m

)
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(n−l)!
l− j−1∑

s=0

(−1)s

s!(l− j−1−s)![θ(n−l+1+s)+1] ,

b= ν(n− j)!(
n
m

)
n−m+i∑

l=i

(
l − 1
i −1

)(
n − l
m−i

)

(n−l)!
l− j−1∑

s=0

(−1)s

s!(l− j−1−s)!(n−l+1+s)[θ(n−l+1+s)+1] .

(11)

For any distribution μ of a random variable X , denote by μ− the distribution of
−X . Since for Yi = −Xi , i = 1, . . . , n, we have Yi :n = −Xn−i+1:n it follows that (7)
holds for l < j if the distribution of Xi ’s is one of the triplet PAR−, EXP− or POW−.
Consequently, (8) holds for this triplet in the case j ∈ {n − m + i, . . . , n}.

4 Characterization in the case j ≤ i or j ≥ n − m + i

These three distributions of type μ or related of type μ− appear to be the only possible
distributions for Xi ’s for which (8) holds with j ≤ i or, respectively, with j ≥ n−m+i .

Before we give the proof of our main result we recall a result on possible solutions
of the integrated Cauchy functional equation. Following the method from DW we will
use this result in the proof of the characterization. Let λ denote the Lebesgue measure
on R+.

Theorem 2 ( Rao and Shanbhag (1994)) Consider the integral equation:

∫

R+

H(x + y)μ(dy) = H(x) + c,

where μ is a non-arithmetic σ -finite measure on R+ and H : R+ → R+ is a Borel
measurable, either non-decreasing or non-increasing λ-a.e. function that is locally
λ-integrable and is not identically equal zero λ-a.e. Then there exists η ∈ R such that

∫

R+

exp(ηx)μ(dx) = 1

and H has the form

H(x) =
{

γ + α(1 − exp(ηx)) λ − a.e., if η �= 0,

γ + βx λ − a.e. if η = 0,

where α, β, γ are some constants. If c = 0, then γ = −α and β = 0.
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Now we are ready to state and then to prove our main result which is a characteriza-
tion of both the triplets of distributions described in Sect. 3 by linearity of regression
of order statistics from overlapping samples.

Theorem 3 Let X1, . . . , Xn be independent random variables with a common con-
tinuous distribution μ. Assume that E(|X1|) < ∞. If for some i, m, n ∈ N such that
1 ≤ i ≤ m < n ∈ N linearity of regression (8) holds for some

• j ∈ {1, . . . , i} then only one of the following cases is possible:
(1) a = 1 and μ = EXP,
(2) a < 1 and μ = POW,
(3) a > 1 and μ = PAR.

• j ∈ {n − m + i + 1, . . . , n} then only one of the following cases is possible:
(1) a = 1 and μ = EXP−,
(2) a < 1 and μ = POW−,
(3) a > 1 and μ = PAR−.

Proof Let us note that if X has a continuous distribution function F then in the case
j < l the conditional distribution of Xl:n given X j :n has the form

d FXl:n |X j :n=x (y)= (n − j)!
(l − j − 1)!(n − l)!

[
F(y)−F(x)

1−F(x)

]l− j−1 [
1−F(y)
1−F(x)

]n−l d F(y)
1−F(x)

, (12)

lF ≤ x ≤ y ≤ rF , where lF = inf{x ∈ R : F(x) > 0} and rF = sup{x ∈ R : F(x) <

1}. Alternatively, for continuous F the conditional distribution Xl:n|X j :n = x is the
same as the distribution of Yl− j :n− j for the Yi , i = 1, . . . , n − j , which are iid and

their common distribution function is FY (y) = F(y)−F(x)
1−F(x)

, y ≥ x and FY (y) = 0,
otherwise. This fact seems to be well known for continuous parent distribution (in
particular, it was used in DW). Since in basic monographs by Arnold et al. (1992),
David and Nagaraja (2003) it is stated only in the absolutely continuous case, while in
Nevzerov (2001) it is formulated for continuous distributions but proved only in the
absolutely continuous case, for the sake of completeness we sketch its proof here. We
note that from the well known general formula for the distribution function of Xk:n
(see, e.g. (2.2.15) in Arnold et al. (1992), in the continuous case, since then F(Xi ) has
the uniform distribution on (0, 1), one gets

d Fk:n(x) = n!
(k−1)!(n−k)! (1 − F(x))n−k Fk−1(x) d F(x)

for any k = 1, . . . , n. Therefore, to prove the formula (12) it suffices to check (which
is an elementary computation) that with d FXl:n |X j :n=x (y) defined by (12) the following
identity holds

d Fl:n(y) =
y∫

−∞
d FXl:n |X j :n=x (y) d Fj :n(x)

for any y ∈ R.
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Let us first consider the case when j < i . From (2) and (12) we have:

E(Xi :m |X j :n = x) =
n−m+i∑

l=i

Al Bl

∞∫

x

y
(

F(x)−F(y)

F(x)

)l− j−1 (
F(y)

F(x)

)n−l

×d
(
− F(y)

F(x)

)
= ax + b, (13)

where Al =
(

l − 1
i − 1

)(
n − l
m − i

)

(
n
m

)

and Bl = (n− j)!
(l− j−1)!(n−l)! , x ∈ (lF , rF )

Observe that there does not exist an interval (c, d), lF < c < d < rF , on which
F is constant, because the right side of (13) is either strictly increasing or strictly
decreasing. Both sides of this equation are continuous, so they could not be equal
in the next point of increase of F . Therefore (lF , rF ) is the support of distribution
given by F and F is strictly increasing on this interval. Both sides of the second
equation in (13) are continuous with respect to x , so it holds for any x ∈ (lF , rF ).

After substituting t = F(y)/F(x), we insert y = F
−1

(t F(x)) (F
−1

exists, because
F is strictly decreasing on (lF , rF )) into (13) and thus

n−m+i∑

l=i

Al Bl

1∫

0

F
−1

(t F(x))tn−l(1 − t)l− j−1 dt = ax + b. (14)

Note that the left hand side is strictly increasing in x and thus a has to be positive.

Substituting again F(x) = w in (14), which implies x = F
−1

(w), we get:

n−m+i∑

l=i

Al Bl

1∫

0

F
−1

(tw)tn−l(1 − t)l− j−1 dt = aF
−1

(w) + b, w ∈ (0, 1).

Divide both sides of the above equation by a and substitute again t = e−u and w = e−v

for v > 0 to arrive at

n−m+i∑

l=i

Al Bl

a

∞∫

0

F
−1

(e−(u+v))(1 − e−u)l− j−1e−(n−l)ue−u du = F
−1

(e−v) + b

a
.

After changing sum of integrals into integral of sums:

∞∫

0

F
−1

(e−(u+v))

(
n−m+i∑

l=i

Al Bl

a
(1 − e−u)l− j−1e−(n−l)u

)
e−u du = F

−1
(e−v) + b

a
.
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Let us now define H(v) = F
−1

(e−v). Consequently,

∫

R+

H(u + v)μ(du) = H(v) + b

a
, v > 0,

where μ is a finite measure on R+, which is absolutely continuous with respect to the
Lebesgue measure and has the form

μ(du) =
(

n−m+i∑

l=i

Al Bl

a
(1 − e−u)l− j−1e−(n−l)ue−u

)
du.

Note that H is strictly increasing on [0,∞) as composition of two strictly decreasing
functions. The assumptions of the Rao-Shanbhag theorem are satisfied, so H has the
form

H(v) =
{

γ + α(1 − exp(ηv)), if η �= 0,

γ + βv, if η = 0,

v > 0, where α, β, γ, δ, η are some constants and

∫

R+

exp(ηx)μ(dx) = 1. (15)

To find relations between η and a we rewrite (15) as

1 =
∞∫

0

eηx

(
n−m+i∑

l=i

Al Bl

a
(1 − e−x )l− j−1e−(n−l)x

)
e−x dx .

After substituting t = e−x

1 =
1∫

0

(
n−m+i∑

l=i

Al Bl

a
(1 − t)l− j−1tn−l−η

)
dt.

Performing the integration at the right hand side above (note that necessarily η <

m − i + 1, otherwise the integrals are infinite) we get
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1 =
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) (n − j)!
a(l − j − 1)!(n − l)!

�(n − l − η + 1)�(l − j)

�(n − j − η + 1)

=
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) (n − j)!
a(n − l)!

�(n − l − η + 1)

�(n − j − η + 1)
.

Finally, we get

a =
n−m+i∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) hl(η), (16)

where

hl(η) = (n − j)

(n − j − η)

(n − j − 1)

(n − j − η − 1)
· · · (n − l + 1)

(n − l − η + 1)
.

Since the function hl is strictly increasing on (−∞, m − i + 1) it follows from (16)
that for a given coefficient a there exists a unique η satisfying (15). Moreover,

• if η = 0 then a = 0,
• if 0 < η < m − i + 1 then a > 1,
• if η < 0 then a < 1.

Let us now consider the case when j = i . From (12) we get

E(Xi :m |Xi :n = x) = Ai x +
n−m+i∑

l=i+1

Al Bl

∞∫

x

y

(
F(x) − F(y)

F(x)

)l−i−1 (
F(y)

F(x)

)n−l

×d

(
− F(y)

F(x)

)
,

thus instead of (14) we get

n−m+i∑

l=i+1

Al Bl

∞∫

x

y

(
F(x) − F(y)

F(x)

)l−i−1 (
F(y)

F(x)

)n−l

d

(
− F(y)

F(x)

)
= (a − Ai )x + b.

Similarly, as in the case above we make substitutions and use the Rao-Shabhag theorem
to arrive at the solution H . The only difference is the equation for a which now reads
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Linearity of regression for overlapping order statistics 215

a − Ai =
n−m+i∑

l=i+1

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) hl(η).

This equation gives us the same condition for parameter a as for the case j < i .
Before computing the parameters of distributions we arrived at, we will explain

why solution of the case j ≤ i gives also the solution in the case j ≥ n − m + i .
Define Yk = −Xk , k = 1, . . . , n and consider order statistics of the random vector
(Y1, . . . , Yn). Since Yk:n = −Xn−k+1:n , so we can write for j ≥ n − m + i :

−aYn− j+1:n + b = aX j :n + b = E(Xi :m |X j :n) = −E(Ym−i+1:m |Yn− j+1:n).

Consequently,

E(Yi ′:m |Y j ′:n) = a′Y j ′:n + b′,

where j ′ = n − j + 1 ≤ i ′ = m − i + 1, a′ = a and b′ = −b.
We will find distribution functions only in the case j < i (For i = j the derivation

is almost exactly the same and is skipped. In the case j ≥ n − m + 1 one has again to
refer to the representation Yk = −Xk and use the results of the case j ≤ i). For η �= 0
from the definition of H we get

F
−1

(e−v) = γ + α(1 − eηv).

Hence for z > γ

F(z) =
(

1

1 − z−γ
α

)1/η

. (17)

Consider now three cases:

(1) a < 1 and η < 0 then (17) for z ∈ (μ, ν) can be written as

F(z) =
(

α + γ − z

α

)−1/η

=
(

α + γ − z

α + γ − γ

)−1/η

=
(

ν − z

ν − μ

)θ

,

where ν = α + γ , μ = γ , θ = − 1
η

> 0. Notice that α has to be positive. Hence
X1 has POW(θ;μ; ν) distribution and

(a) θ = − 1
η

, where η satisfies (16),

(b) ν may be calculated from (11) with θ = − 1
η

,
(c) μ is a real number such that μ < ν.

(2) a > 1 and η > 0 then (17) for z > μ can be written as

F(z) =
( −α

z − α − γ

)1/η

=
(

γ + (−α − γ )

z + (−α − γ )

)1/η

=
(

μ + δ

z + δ

)θ

,
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where and δ = −α − γ , μ = γ , θ = 1
η

> 0.
Thus X1 has PAR(θ;μ; δ) distribution and

(a) θ = 1
η

, where η satisfies (16),

(b) δ may be calculated from (10) with θ = 1
η

,
(c) μ is a real number.

(3) a = 1 and η = 0 then by the definition of H we get

F
−1

(e−v) = γ + βv

and, consequently,

F(z) = e−(z−γ )/β = e−λ(z−γ )

for z > γ , where λ = 1
β

> 0
Hence X1 has EXP(λ; γ ) distribution and

(a) λ may be calculated from the formula for b in (9),
(b) γ is a real number. ��

5 The case i < j < n − m + i remains unsolved

As it was already said in the introduction if i < j < n − m + i then only the case
m = i = 1 was considered in Wesołowski and Gupta (2001) (see also Nagaraja and
Nevzerov 1997, and Gupta and Kirmani 2008). More precisely, only the family of
distributions for which E(X1|Xk+1:2k+1) = aXk+1:2k was described. Unexpectedly,
this family is completely different than the triplets of distributions described above,
e.g. it contains Student distribution with two degrees of freedom.

In the case j ∈ {i + 1, . . . , n − m + i − 1} it follows from Theorem 1 that

E(Xi :m |X j :n = x)

=

(
j − 1
i − 1

)(
n − j
m − i

)

(
n
m

) x +
j−1∑

l=i

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

) ( j − 1)!
(l − 1)!( j − l − 1)!

×
x∫

−∞

(
F(y)

F(x)

)l−1 (
F(x) − F(y)

F(x)

) j−l−1 f (y)

F(x)
dy +

n−m+i∑

l= j+1

(
l − 1
i − 1

)(
n − l
m − i

)

(
n
m

)

×
∞∫

x

(n − j)!
(l − j − 1)!(n − l)!

(
F(y) − F(x)

1 − F(x)

)l− j−1 (
1 − F(y)

1 − F(x)

)n−l f (y)

1 − F(x)
dy .

Linearity of regression, as in (1) would imply that the right hand side above equals
ax+b. Such an equation seems to be much harder to solve than the one solved in Sect. 4
above. In particular, it is not visible how to reduce it, through some substitutions, to
the Rao-Shanbhag equation.
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For i = 1, j = 2, m = 2, n = 4 under linearity of regression assumption we obtain
the equation

E(X1:2|X2:4 = x) = 1

3
x + 1

2

x∫

−∞

f (y)

F(x)
dy + 1

3

∞∫

x

1 − F(y)

1 − F(x)

f (y)

1 − F(x)
dy = ax + b.

Similarly, for i = 2, j = 3, m = 2, n = 4 we have

E(X2:2|X3:4 = x) = 1

3
x + 1

6

x∫

−∞

F(y)

F(x)

f (y)

F(x)
dy + 2

3

∞∫

x

f (y)

1 − F(x)
dy = ax + b.

These two last equations seem to be the simplest unsolved cases.
Nevertheless, it can be easily verified that if a sample is taken from a uniform

distribution then both the above linearity of regression conditions hold true.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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