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Abstract A stochastic marked point process model based on doubly stochastic Pois-
son process is considered in the problem of prediction for the total size of future
marks in a given period, given the history of the process. The underlying marked point
process (Ti ,Yi )i≥1, where Ti is the time of occurrence of the i th event and the mark
Yi is its characteristic (size), is supposed to be a non-homogeneous Poisson process
on R

2+ with intensity measure P ×Θ , where P is known, whereas Θ is treated as an
unknown measure of the total size of future marks in a given period. In the problem of
prediction considered, a Bayesian approach is used assuming that Θ is random with
prior distribution presented by a gamma process. The best predictor with respect to
this prior distribution is constructed under a precautionary loss function. A simulation
study for comparing the behavior of the predictors under various criteria is provided.

Keywords Bayes prediction · Doubly stochastic Poisson process ·
Random measure · Precautionary loss

1 Introduction

Marked point process models are used in studying the reliability of technical sys-
tems, in failure-repair process analysis, in survival analysis for biological units, in
insurance problems, in meteorology, in seismology and in other sciences. There is a
vast literature on the theory of point processes and their applications; see, for exam-
ple, Andersen et al. (1993), Cox (2006), Grandell (1975), Kallenberg (1986), Kingman
(1964), Kingman (1993), Kingman (2006), Last and Brandt (1995), Mikosch (2009)
and Møller and Waagepetersen (2002).
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1024 A. Jokiel-Rokita et al.

Let (Ti )i≥1 be a sequence of time points in which events occur (T0 = 0), and
let (Yi )i≥1 be a sequence of the corresponding marks (additional characteristics of
the events, for instance censoring indicators, damage sizes, cost values, repair types,
repair times, stress values, atmospheric precipitation levels). Considering the dou-
ble sequence (Ti ,Yi )i≥1 (the marked point process) one usually associates to it the
counting processes {N (t, A), t ≥ 0}, where

N (t, A) =
∞∑

i=1

1(Ti ≤ t)1(Yi ∈ A), A ⊂ R,

with N (t) := N (t,R). It is then assumed that there exists a finite expectation mea-
sure (intensity measure) Λ(t, A) = E(N (t, A)) = ∫ t

0 λ(s, A)ds = ∫ t
0

∫
A λ(s, dy)ds.

The measure Λ(t, A) is the compensator of the process {N (t, A)} and {N (t, A) −
Λ(t, A), t ≥ 0}, A ⊂ R, is a martingale.

In the purpose of the statistical problem considered, we describe the counting
process N in the form

N ((t, u], (x, y]) =
∞∑

i=1

1(t < Ti ≤ u, x < Yi ≤ y). (1.1)

In this paper we deal with the problem of predicting the total value (size) of
the marks (e.g. the total damage value, total precipitation level or the total claim
amount) appeared in the future time interval (t, u] in a special case of a marked
counting process, namely in a doubly stochastic Poisson process model. Dou-
bly stochastic Poisson processes have been frequently used in many areas of sci-
ence.

The underlying marked point process (Ti ,Yi )i≥1 is supposed to be a non-
homogeneous Poisson process on R

2+ with intensity measure P × Θ , where P is
known, whereasΘ is treated as an unknown measure of the total size of future marks
in a given period. In the problem of prediction considered, a Bayesian approach
is used assuming that Θ is random with prior distribution presented by a gamma
process. The model was used by Niemiro (2006) in the problem of prediction
under the LINEX loss function. The Bayesian prediction under quadratic loss func-
tion was considered by Grandell (1975). In this paper the best predictor is derived
under a precautionary loss function. From a practical point of view, in many situ-
ations the precautionary loss function considered can be more appropriate than the
LINEX or a quadratic loss because of its right boundedness property (see next sec-
tion).

The paper is organized as follows. In Sect. 2 the process model considered is
presented. Section 3 contains the comparison of the precautionary loss function with
the LINEX loss function and a quadratic loss in the context of their use in the problem
of prediction considered. The best predictor under a precautionary loss function is
derived in Sect. 4. In Sect. 5 a simulation study for comparing the behavior of the
predictors under various criteria is provided.
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Doubly stochastic Poisson process 1025

2 The model

We will consider the counting process N of (1.1) based on a doubly stochastic
Poisson process. The observed random vectors (Ti ,Yi ) define the random measure N
which counts the events of specified size occurred in a time period (t, u]. The value
N ((t, u], (x, y]) is then the number of points in the rectangle {(t, u], (x, y]}, where
0 ≤ t < u < ∞; 0 < x < y < ∞.

Let us note that

N ((t, u],R) =
∞∑

i=1

1(t < Ti ≤ u)

denotes the number of events appeared in the time interval (t, u].
Assume that P is a known Radon measure on R+. It describes the diversity of risk

over time and can model for example seasonality. On the other hand, Θ is a finite
random measure. It characterizes the size of marks and also the general intensity of
occurrence of events. It is supposed that, conditional on Θ, N is a non-homogeneous
Poisson process with mean measure P × Θ . We can also think of N as a marked
Poisson process (N1(·), Yi )i≥1, where N1(·) = ∑∞

i=1 1(·)(Ti ) is a non-homogeneous
Poisson process with mean measure P(·)Θ(R+) and (Yi ) is the mark sequence with
distribution Θ(·)/Θ(R+).

In the sequel we shall assume that the process N is the two-dimensional non-
homogeneous Poisson process with the expectation measure

Λ((t, u], (x, y]) = P(t, u]Θ(x, y],

i.e.

N ((t, u], (x, y])
∣∣∣
Θ

= P
(

P(t, u]Θ(x, y]
)
,

where P(λ) denotes the Poisson distribution with parameter λ.
Let us also remark that the conditional expected value of the process N , given the

realization of the process Θ(x, y] is given by the formula

EΘN ((t, u], (x, y]) = P(t, u]Θ(x, y].

Assuming the points (Ti ,Yi ) are sorted with respect to the first axis, the points Ti

form one-dimensional point process with rescaled expectation measure P(·). On the
other hand, assuming the points (Ti ,Yi ) are sorted with respect to the second axis, the
points Yi form one-dimensional point process with rescaled expectation measureΘ(·).
Denoting these processes by N1(t, u] and N2(x, y], correspondingly, we observe that
N1(t, u] and N2(x, y] are the Poisson processes with the corresponding expectation
measures P(t, u]Θ(R+) and P(R+)Θ(x, y].

Our goal is to predict the total value of the marks (e.g. the total damage size, total
precipitation level or the total claim amount) appeared in the time interval (t, u], i.e.
we would like to predict the value
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1026 A. Jokiel-Rokita et al.

S(t, u] =
∞∑

i=1

Yi 1(t < Ti ≤ u) =
u∫

t

∞∫

0

yN (ds, dy). (2.1)

Note that the notation above follows from the Riemann-Stielties integral construc-
tion, and that S(t, u] is a stochastic process.

3 Precautionary loss versus LINEX and quadratic losses

Our goal is to predict S(t, u], i.e. the total value (size) of marks in the time period
(t, u]. This predictor could be used for calculating, for example, the total size of dam-
ages in a reliability system or capital reserves needed to cover claims that will occur in
the future. Underestimating of these values could lead to endangering the functionality
of a reliability system or to insolvency of an insurance company. That is why under-
estimating can be more dangerous than overestimating. Using asymmetric criteria is
a natural way to deal with this kind of situations. A very well known asymmetric loss
function is the LINEX function, i.e. the loss function of the form

L(ϑ, d) = K {exp[κ(ϑ − d)] − κ(ϑ − d)− 1}, K > 0, κ > 0. (3.1)

It is a function with many applications and worth being considered although there
are also some disadvantages. It may be difficult to choose the right parameter κ espe-
cially in the situation where we desire to estimate a nonnegative parameter, whereas
the LINEX loss function is defined for any real value of the parameter and its estimate.
For a wrong choice of κ the most of the exponential part of the LINEX curve (which
is penalizing underestimating) might fall into a region where the estimate should be
negative (see Fig. 1).

In many practical problems it is desirable to take into account a loss function which
tends to ∞ as d → 0+ independently of the function parameters. A family of functions
fulfilling this assumption was introduced by Norstrøm (1996):

Fig. 1 The LINEX loss
function for K = 1, κ = 0.1 and
ϑ = 1. Only the shadowed part
is being used when estimating a
nonnegative parameter
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Doubly stochastic Poisson process 1027

L(ϑ, d) = w(ϑ)
(ϑ − d)2

dk
, 0 < k ≤ 2, (3.2)

wherew(ϑ) > 0 is a weight function and d > 0. Note that for k = 0 the above formula
is also correct and it is a weighted quadratic loss function. In the case 0 < k ≤ 2 it is
called precautionary loss function. This loss was considered by Norstrøm (1996) in
parametric problems for risk analysis. A precautionary index k regulates how downside
damaging the loss function is. The loss function becomes more precautionary as k
increases. A way to determine k (see Norstrøm 1996) is to: (1) select two values of
d: ϑ − ε and ϑ + bε, where b > 1, which have equal loss for the decision maker, (2)
solve L(ϑ, ϑ − ε) = L(ϑ, ϑ + bε) with respect to k. For example b = 2 gives k = 1,
and b = 3 gives k = 2.

The condition k ≤ 2 means that the loss increases as the difference ϑ−d increases.
Example curves for different values of k are shown in Fig. 2.

For k = 2 and a given value ϑ,L(ϑ, d) → w(ϑ) as d → ∞, which means that the
precautionary loss function is right bounded (see Figs. 3, 4).

Since in the model considered ϑ = S(t, u] is equal to 0 with positive probability,
we omit the weight function w(ϑ). Thus we use the loss function

Lk(ϑ, d) = (ϑ − d)2

dk
, 0 < k ≤ 2. (3.3)

Let us note that the precautionary loss function converges to the square error loss
function

k 1.5
k 1
k 0.5
k 0

Fig. 2 The plots of the precautionary loss function for chosen values of k and w(ϑ) ≡ 1 (ϑ = 2)
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w 1 1
w 1
w 1 1
w 1

Fig. 3 The plots of the precautionary loss function for k = 2 and various weights w(ϑ) (ϑ = 0.6)

r 2
r 1

r 0.5
r 0

Fig. 4 The plots of the precautionary loss function for k = 2 and the weight function w(ϑ) = 1/ϑr for
various r (ϑ = 2)

L(ϑ, d) = (ϑ − d)2 (3.4)

as k → 0, and that for κ close to 0 the LINEX loss is close to the quadratic loss
function.
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4 The Bayes prediction under the precautionary loss function

4.1 The Bayes approach

We assume that the finite random measure Θ is a gamma process:

Θ(x, y] ∼ Gamma(α(x, y], λ), (4.1)

such that
∫ ∞

0 y2Θ(dy) < ∞ almost sure, where α is a finite measure on (0,∞)

describing the shape of the gamma distribution and λ is the scale parameter. In other
words we impose on Θ(x, y] the prior distribution π(θ) = π(θ;α(x, y], λ) to be the
gamma distribution with the parameters α(x, y] and λ. The use of the gamma process
is justified by the fact that it is conjugate prior to the Poisson process and thereby the
posterior process is also a gamma process.

The posterior distribution of Θ(x, y] given N ((0, t], (x, y]) is proportional to

P
(

N ((0, t], (x, y]) = k
∣∣∣Θ(x, y] = θ

)
π(θ)

= exp(−P(0, t]θ) (P(0, t]θ)k
k!

λα(x,y]

Γ (α(x, y]) θ
α(x,y]−1 exp(−λθ)

∝ θk+α(x,y]−1 exp[−(P(0, t] + λ)θ ].

Thus the posterior processΘ(x, y]
∣∣∣N ((0, t], (x, y]) is the gamma process Gamma

(N ((0, t], (x, y])+ α(x, y], P(0, t] + λ).
Remark that the moment generating function of the increments of the processΘ is

of the form:
E exp[rΘ(x, y]] = exp[α(x, y]ψ(r)], (4.2)

where ψ(r) = ln
(

λ
λ−r

)
. This fact will be needed later.

4.2 The best predictor

Let

Ft = σ {N ((v, s], (x, y]) : 0 ≤ v < s ≤ t, 0 < x < y < ∞}

be the σ -algebra of events generated by the process N up to time t . We will determine
the form of the Ft -measurable Bayes predictor of the random variable S(t, u] under the
precautionary loss function. We find the optimal predictor by minimizing the expected
risk, i.e. the expectation of the loss with respect to the joint measure P ×Θ , over all Ft -
measurable decisions d (estimators). By the well known fact from Bayesian decision
theory we find the best predictor by minimizing the corresponding posterior risk, i.e.
we find a decision d∗ that satisfies the condition

E(L(S, d∗)|Ft ) = inf
d∈D

E(L(S, d)|Ft ),
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1030 A. Jokiel-Rokita et al.

where S = S(t, u],D is the set of all Ft -measurable functions and E(L(S, d)|Ft )

denotes the expectation with respect to the posterior distribution of S (the decision d
is fixed).

Lemma 1 The Bayes predictor dk of S = S(t, u] under the loss function Lk given by
(3.3) is determined by the following formula

dk =
⎧
⎨

⎩

(1−k)E(S|Ft )+
√
(1−k)2[E(S|Ft )]2+k(2−k)E(S2|Ft )

2−k , 0 < k < 2,
E(S2|Ft )
E(S|Ft )

, k = 2.
(4.3)

Proof The proof is analogous to that one of Norstrøm (1996). We can treat the posterior
risk as the function of a decision d. We have

E(L(S, d)|Ft ) = 1

dk
E(S2|Ft )− 2

dk−1 E(S|Ft )+ 1

dk−2 =: f (d). (4.4)

The derivative of f is

f ′(d) = − k

dk+1 E(S2|Ft )+ 2(k − 1)

dk
E(S|Ft )− k − 2

dk−1 . (4.5)

The sign of f ′(d) is the same as the sign of

g(d) = −k E(S2|Ft )+ 2(k − 1)d E(S|Ft )− (k − 2)d2. (4.6)

Considering the two situations k = 2 and 0 < k < 2 it is easy to find the roots of the
above function, which minimize the posterior risk. ��

The explicit form of the Bayes predictor in the point process model considered is
given in Theorem 1. To prove the theorem we need the following lemmas.

Lemma 2 (See Mikosch 2009) Let N be a non-homogeneous Poisson process on
A ⊂ R

d with mean measure μ and f be a real-valued measurable function on A.

1. Assume that
∫

A | f (x)|μ(dx) < ∞. Then

E

⎛

⎝
∫

A

f d N

⎞

⎠ =
∫

A

f (x)μ(dx). (4.7)

2. Assume that
∫

A max([ f (x)]2, | f (x)|)μ(dx) < ∞. Then

V ar

⎛

⎝
∫

A

f d N

⎞

⎠ =
∫

A

[ f (x)]2μ(dx). (4.8)
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Doubly stochastic Poisson process 1031

Using Lemma 2 we obtain the following form of the conditional expected value of
the process S(t, u]

EΘ S(t, u] = EΘ

⎛

⎝
u∫

t

∞∫

0

yN (ds, dy)

⎞

⎠ =
u∫

t

∞∫

0

y P(ds)Θ(dy)

= P(t, u]
∞∫

0

yΘ(dy), (4.9)

and for the conditional variance

V arΘ S(t, u] = V arΘ

⎛

⎝
u∫

t

∞∫

0

yN (ds, dy)

⎞

⎠ =
u∫

t

∞∫

0

y2 P(ds)Θ(dy)

= P(t, u]
∞∫

0

y2Θ(dy). (4.10)

Lemma 3 (See Niemiro 2006) Let α be a finite measure on the interval (0,∞).
Assume that Θ is the process with independent increments, such that the moment
generating function of the increments has the following form

E exp[rΘ(x, y]] = exp[ψ(r)α(x, y]], (4.11)

where ψ is a known function. Let r∗ = sup{r : ψ(r) < ∞}. Suppose that r∗ > 0
and ψ(r) → ∞ as r ↗ r∗. Moreover, let g be a real measurable function such that∫ ∞

0 |g(y)|Θ(dy) < ∞ a.s. Then

E

∞∫

0

g(y)Θ(dy) = ψ ′(0)
∞∫

0

g(y)α(dy),

V ar

∞∫

0

g(y)Θ(dy) = ψ ′′(0)
∞∫

0

g2(y)α(dy),

E exp

⎡

⎣
∞∫

0

g(y)Θ(dy)

⎤

⎦ = exp

⎡

⎣
∞∫

0

ψ(g(y))α(dy)

⎤

⎦ .

Theorem 1 If assumption (4.1) is satisfied then the Bayes predictor dk of S(t, u],
under the loss function Lk given by (3.3), is determined by the following formula:
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1032 A. Jokiel-Rokita et al.

dk =
⎧
⎨

⎩
(1 − k) aI1

2−k +
√(

aI1
2−k

)2 + k(1 + a) aI2
2−k , 0 < k < 2,

aI1 + (1 + a) I2
I1
, k = 2,

(4.12)

where

a = P(t, u]
λ+ P(0, t] , (4.13)

I1 =
∞∫

0

y(α(dy)+ N ((0, t], dy)), (4.14)

I2 =
∞∫

0

y2(α(dy)+ N ((0, t], dy)). (4.15)

Proof To determine the Bayesian predictors with respect to the precautionary loss
function we need to evaluate E(S(t, u]|Ft ) and E(S2(t, u]|Ft ). To do this we will first
figure out E S(t, u] and E S2(t, u] and then switch to the parameters of the posterior
process. We can do so because we have chosen a conjugate prior.

Let us begin with E S(t, u]. We have already shown that

EΘ S(t, u] = P(t, u]
∞∫

0

yΘ(dy). (4.16)

Applying Lemma 3 to integral (4.16) we get

E S(t, u] = E EΘ S(t, u] = P(t, u]E

∞∫

0

yΘ(dy)

= P(t, u]ψ ′(0)
∞∫

0

yα(dy) = P(t, u]
λ

∞∫

0

yα(dy). (4.17)

Now we substitute the parameters of the prior process with the ones of the posterior
process. We then have

E(S(t, u]|Ft ) = P(t, u]
λ+ P(0, t]

∞∫

0

y(α(dy)+ N ((0, t], dy)). (4.18)

To evaluate E S2(t, u] we will use the formula

E S2(t, u] = V ar S(t, u] + (E S(t, u])2. (4.19)
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The last term was already calculated. To figure out V ar S(t, u] we will use the law
of total variance

V ar S(t, u] = EV arΘ S(t, u] + V ar EΘ S(t, u]. (4.20)

From Lemma 3 we have

V ar EΘ S(t, u] = P2(t, u]V ar

∞∫

0

yΘ(dy) = P2(t, u]ψ ′′(0)
∞∫

0

y2α(dy)

= P2(t, u]
λ2

∞∫

0

y2α(dy). (4.21)

We already know that

V arΘ S(t, u] = P(t, u]
∞∫

0

y2Θ(dy) (4.22)

Applying Lemma 3 to the above integral we get

EV arΘ S(t, u] = P(t, u]E

∞∫

0

y2Θ(dy) = P(t, u]ψ ′(0)
∞∫

0

y2α(dy)

= P(t, u]
λ

∞∫

0

y2α(dy). (4.23)

Thus,

E S2(t, u]=
(

1+ P(t, u]
λ

)
P(t, u]
λ

∞∫

0

y2α(dy)+
⎡

⎣ P(t, u]
λ

∞∫

0

yα(dy)

⎤

⎦
2

. (4.24)

Considering the posterior process gives

E(S2(t, u]|Ft ) =
(

1 + P(t, u]
λ+ P(0, t]

)
P(t, u]

λ+ P(0, t]
∞∫

0

y2(α(dy)+ N ((0, t], dy))

+
⎡

⎣ P(t, u]
λ+ P(0, t]

∞∫

0

y(α(dy)+ N ((0, t], dy))

⎤

⎦
2

. (4.25)

Combining equations (4.18), (4.25) and (4.3) we obtain the conclusion. ��
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4.3 Comparison to the square error loss function

It might be of interest to compare the derived predictors with the Bayes predictor
under the square error loss function defined by (3.4). Recall that the Bayes predictor
under loss function (3.4) is E(S|Ft ). In the model considered in this paper we have

E(S(t, u]|Ft ) = P(t, u]
λ+ P(0, t]

∞∫

0

y(α(dy)+ N ((0, t], dy)) = aI1 =: d0. (4.26)

It is easy to see that dk given in Theorem 1 tends to d0 when k → 0, and also the
best predictor under LINEX loss tends to d0 when the parameter κ → 0.

5 Simulation study

A simulation study is provided to illustrate the properties of the Bayes predictors,
which cannot be deduced by analyzing its explicit formulas. The Bayes predictors
under various loss criteria are compared and their behavior is studied according to
length of the future time interval.

5.1 Assumptions

Recall that in the model considered, the process N is assumed to be a doubly
stochastic Poisson process with mean measure P ×Θ . The measure P is supposed to
be known.

Let us assume, for example, that

P(0, t] = ct + b

π

[
1 − cos

(π
b

t
)]

(5.1)

where c > 1, b > 0. The Radon-Nikodym derivative of the above measure with
respect to the Lebesgue measure is of the form

d P

dμ
(t) = c + sin

(π
b

t
)
, (5.2)

whereμ denotes the Lebesgue measure. The function d P/dμ is the intensity function
of a Poisson process with mean measure P . The intensity (5.2) is a periodic function
with period equal 2b.

If it is convenient to take a month as the basic time unit, then we can put b = 6.
In this case it is easy to see that the function reaches its maximum at the third month
of each year. This means that the most events will appear around the third month.
Analogously, there will be the fewest events around the ninth month of each year.

Let us remind that conditional on Θ, N1 is a Poisson process with mean measure
P(·)Θ(R+). The measure Θ is a gamma process with shape measure α and scale
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Doubly stochastic Poisson process 1035

parameter λ. In our simulations we will assume that the random variables Yi are
bounded by a value, say, y∗. This assumption is justified in most practical situations
because it is unreasonable to suppose, for example, that damage values, precipitation
levels or claim sizes are infinite. This assumption ensures also finiteness of the needed
integrals. For the measureαwe will take the standard Lebesgue measure on the interval
(0, y∗].

5.2 Algorithms

To proceed our simulations sample paths of the process N on [0, T ] × [0, y∗] will
be needed. They can be obtained by generating independently the event moments
(Ti )

n
i=1 and their mark sizes (Yi )

n
i=1. Note that in general the random distribution

Θ(·)/Θ(R+) of the marks is a Dirichlet process with base distribution α(·)/α(R+)
and concentration parameter α(R+). This means Y1, . . . ,Yn ∼i id Θ(·)/Θ(R+) can
be generated via the Blackwell-MacQueen urn scheme (see Blackwell and MacQueen
1973). The algorithm for generating N is the following:

1. Generate Θ(0, y∗] ∼ Gamma(α(0, y∗], λ);
2. generate the number of events n ∼ P(P(0, T ]Θ(0, y∗]);
3. generate X1, X2, . . . , Xn according to distribution P(·)/P(0, T ];
4. set Ti = Xi :n , for i = 1, 2, . . . , n;
5. generate Y1,Y2, . . . ,Yn according to distribution Θ(·)/Θ(0, y∗] using the

Blackwell-MacQueen urn scheme.

A sample realization of the process N is shown on Fig. 5. We observe that the
points of the process form clusters in time intervals with high intensity d P/dμ. High
concentration of the marks around a few values is visible too. This is due to the fact
that the probability measure Θ/Θ(0, y∗] is discreet. Figure 6 shows the ECDF of
(Yi )

n
i=1.

Fig. 5 Sample realization of N
(P given by (5.1) for
c = 1.1, b = 6; (Yi )

n
i=1 like in

Fig. 6)
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Fig. 6 ECDF of (Yi )
n
i=1

(y∗ = 10, λ = 1, α—Lebesgue
measure)
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5.3 Bayes predictors examination

The main goal of the simulation study is to compare the predictors of S(t, u] under
the following expected loss criteria

K j (dk) = EL j (S, dk) = E
(S − dk)

2

d j
k

, j = 0, 1, 2; k = 0, 0.5, 1, 1.5, 2,

K3(dk) = P(dk < S), k = 0, 0.5, 1, 1.5, 2,

where dk is the Bayes predictor under the loss Lk . The indexes k = 0.5, 1, 1.5, 2
correspond to the precautionary loss function and k = 0 corresponds to the quadratic
loss.

The process N is generated on (0, u] × (0, y∗], where u = 30 and y∗ = 2. The
measures P (with b = 6, c = 1.1) and Θ are as described in Sect. 5.1. The scale
parameter λ of the process Θ is set to 1, and the upper bound y∗ of its support is set
to 2. With α being the Lebesgue measure, the value y∗ has an essential impact on the
number of events (note that EΘ(0, y∗] = y∗/λ). Assuming the history up to time
t = 24 is known, predictors of S(t, t + h] will be constructed, for h = 1, 2, . . . , 6.

Average values

K̂ j (dk) := ̂EL j (S, dk) = 1

m

m∑

i=1

L j (Si , dk,i ),

j = 0, 1, 2, and

K̂3(dk) := 1

m

m∑

i=1

1(dk,i < Si )

(the occurrence rate of events d < S(t, t + h]) of the four loss criteria are evaluated
via Monte-Carlo method for m = 10,000 repetitions.
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Fig. 7 Estimates of the criterion K0 for the best predictors of S(t, t +h] under the square error loss function
and the precautionary loss function for parameters k = 0.5, 1, 1.5, 2

It is obvious that for k = 0 the average loss is minimized by the best predictor
under the quadratic loss function. However, we would like to see how are the other
predictors doing compared to the best one. Analogously we will look at the loss
criteria K1 and K2 which are minimized by the predictors under the precautionary loss
function for k = 1 and k = 2, respectively. The loss criterion K3 is the probability of
underestimating. One of the main reasons for using the precautionary loss function is
to prevent underestimation. The simulation study shows that

K̂ j (d j ) = min
k

{K̂ j (dk)}, j = 0, 1, 2,

what confirms the theoretical properties of the predictors considered.
Let us take into account the best predictor of S(t, u] under the LINEX loss function

(for K = 1), which was presented by Niemiro (2006) The predictor is of the form:

d L
κ = − 1

κ

y∗∫

0

log

(
1 − P(t, u](eκy − 1)

λ+ P(0, t]
)
(α(dy)+ N ((0, t], dy)), (5.3)

provided that

y∗ < 1

κ
log

(
1 + λ+ P(0, t]

P(t, u]
)
. (5.4)
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Fig. 8 Estimates of the criterion K2 for the best predictors of S(t, t +h] under the square error loss function
and the precautionary loss function for parameters k = 0.5, 1, 1.5, 2

Table 1 Estimates of the
criterion K0 for the best
predictors of S(t, t + h] under
the square error loss function,
the precautionary loss function
for parameter k = 2 and the
LINEX loss function for the
parameters κ = 0.01, 0.1, 0.2

h d0 d2 d L
0.01 d L

0.1 d L
0.2

1 3.68 5.44 3.68 3.74 3.98

2 9.03 10.98 9.03 9.42 10.90

3 16.14 18.40 16.15 17.44 22.30

4 23.84 26.40 23.87 26.77 37.93

5 31.61 34.62 31.67 36.99 57.33

6 37.85 40.97 37.92 45.32 74.83

We compare the predictors d L
κ for different parameter values with the predictors

d0 and d2 in terms of the criteria K0 and K3, because of the closeness of d L
κ to d0 for

small values of κ and of course because of its underestimation preventing properties.

5.4 Concluding remarks from the simulation study

The predictors d0, d1 and d2 minimize the average losses K̂0, K̂1, K̂2 respectively.
which can be seen in Figs. 7 and 8 (we omit the graph for K̂1). The underestimation
rate of predictors dk is the lower, the higher the parameter k is (Table 2). Of course,
lower underestimation rates causes higher mean square errors. That is especially good
to see for the predictors due to the LINEX loss function (Table 1). It is interesting
that for high values of κ the underestimation rate decreases as the length h of the
prediction horizon increases (Table 2). The predictors due to the precautionary loss
function behave different. Their underestimation rates are bigger for bigger h. Note
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Table 2 Estimates of the
criterion K3 for the best
predictors of S(t, t + h] under
the square error loss function,
the precautionary loss function
for parameters k = 1, 2 and the
LINEX loss function for the
parameters κ = 0.01, 0.2

h d0 d1 d2 d L
0.01 d L

0.2

1 0.43 0.32 0.20 0.42 0.36

2 0.45 0.36 0.27 0.45 0.35

3 0.46 0.38 0.30 0.45 0.31

4 0.47 0.39 0.32 0.46 0.28

5 0.46 0.39 0.33 0.45 0.26

6 0.47 0.40 0.33 0.45 0.24

that the predictor d2 achieves very low underestimation rates for h = 1, much lower
then d L

κ for the parameter values considered. In some situations it might be difficult
to decrease the underestimation rates for d L

κ for small h, because of the relation (5.4)
between y∗ and κ .
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