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Abstract Rychlik [Appl Math (Warsaw) 29:15–32, 2002] presented positive sharp
upper bounds on the expectations of order statistics with sufficiently large ranks,
based on i.i.d. samples from the decreasing density and failure rate populations (DDA
and DFRA, for short). They were expressed in terms of the population mean and
standard deviation. Here we provide respective non-positive upper tight evaluations
for expected small order statistics centered about the population mean, measured in
various scale units.
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1 Introduction

We assume that X1, . . . , Xn are i.i.d. random variables, and X1:n ≤ · · · ≤ Xn:n stand
for the respective order statistics. We denote by F , μ = EX1, and σ

p
p = E|x1 − μ|p

for some p ≥ 1, the respective parent distribution function, mean, and pth absolute
central moment. Writing σ

p
p or σp = (σ

p
p )1/2 below, we tacitly assume that they are

positive and finite. Let

F−1(x) = sup{u : F(u) ≤ x}, 0 ≤ x < 1,

be the upper quantile function of F . We also assume that aF = F−1(0) > −∞, i.e.,
F has a support bounded below, and
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540 T. Rychlik

F−1(x)− aF

x
, 0 < x < 1, (1)

is a non-decreasing function. An equivalent condition is that F(x)/(x − aF ), x > aF ,
is non-increasing which means that F has a possible jump at aF , and a density function
f such that 1

x−aF
[F(aF )+ ∫ x

aF
f (t)dt] does not increase for x > aF . If F(aF ) = 0,

one could say that the density function is non-increasing on the average. We extend
the definition to the distributions with atoms described above in order to make the
family of decreasing density on the average distributions (DDA) closed.

Moreover, we consider a narrower family of decreasing failure rate on the average
distribution functions (DFRA) for which functions

F−1(1− e−x )− aF

x
= F−1(1− e−x )− aF

1− e−x

1− e−x

x
, x > 0, (2)

are non-decreasing. Note that the latter fraction of the RHS is decreasing, and so (2)
is indeed a stronger condition than (1). In other words, for the DFRA distributions the
function

− ln(1− F(x))

x − aF
= − ln(1− F(aF ))+ ∫ x

aF

f (t)
1−F(t) dt

x − aF
, x > aF ,

does not increase. Usually the DFRA family is treated as a subfamily of life distribu-
tions with aF = 0. Here we drop this restrictive assumption.

We aim at providing precise upper evaluations on EF X j :n−μ, expressed in various
scale units σp, p ≥ 1, when the parent distributions come from the DDA and DFRA
families. It is intuitively obvious that these bounds can be positive for large j (with
respect to n), and negative for small ones. Rychlik (2002) presented conditions on the
pairs ( j, n) such that EF X j :n ≤ μ when the marginal distribution is either DDA or
DFRA. We recall them below. Since relations EF X1:n ≤ μ ≤ EF Xn:n are valid for
arbitrary distributions of Xi ’s, we focus now on 2 ≤ j ≤ n − 1. Formula

f j :n(x) = n

(
n − 1
j − 1

)

x j−1(1− x)n− j , 0 < x < 1, (3)

defines the density function of the j th order statistic based on n i.i.d. standard uniform
random variables. If 2 ≤ j ≤ n − 1, it continuously increases from f j :n(0) = 0 to

f j :n
(

j−1
n−1

)
> 1, and ultimately decreases to f j :n(1) = 0. Let 0 < a j :n <

j−1
n−1 <

b j :n < 1 denote the smaller and greater arguments at which f j :n amounts to 1. Let

Fj :n(x) =
n∑

i= j

(
n
i

)

xi (1− x)n−i ,

F̄j :n(x) =
j−1∑

i=0

(
n
i

)

xi (1− x)n−i , 0 < x < 1,
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DDA and DFRA populations 541

denote the distribution and survival functions of of the j th order statistic from the
standard uniform sample. We also define

K j :n(x) = j

n + 1
F̄j+1:n+1(x)− 1− x2

2
, (4)

L j :n(x) =
j∑

i=1

F̄i :n(x)

n + 1− i
− F̄j :n(x) ln(1− x)− (1− x)[1− ln(1− x)]. (5)

Proposition 1 (Rychlik 2002, Propositions 1 and 2) Let random variables X1, . . . , Xn

be i.i.d. with a common distribution function F and mean μ. If either

(a) F is DDA and either j = 1 or K j :n(a j :n) ≤ 0 for j ≥ 2,
or

(b) F is DFRA and either j = 1 or L j :n(a j :n) ≤ 0 for j ≥ 2,
then EF X j :n ≤ μ.

Rychlik (2002) established positive sharp upper bounds on EF (X j :n − μ)/σ2 when
either F is DDA and K j :n(a j :n) > 0 or F is DFRA and L j :n(a j :n) > 0. Here we focus
on calculating sharp non-positive bounds on EF (X j :n−μ)/σp under assumptions (a)
and (b) of Proposition 1. The DDA and DFRA families of distributions are treated
in Sects. 2 and 3, respectively. We show that in both the cases these bounds amount
trivially to 0 when p > 1. For p = 1, we describe strictly negative evaluations. We also
determine (sequences of) distributions which attain the bounds (possibly in the limit).
We conclude Sects. 2 and 3 with presenting numerical values of negative sharp bounds
on EF (X j :n − μ)/σ1 in the DDA and DFRA cases, respectively, for the samples of
sizes n = 10, 20 and 30.

We notice that the families of DDA and DFRA distributions can be defined in a
coherent way by use of the star order of distributions, introduced by Barlow et al.
(1969) (see also Shaked and Shantikumar 2007 for a comprehensive study). We say
that F succeeds G in the order iff the composition F−1 ◦G is starshaped, i.e. function
[F−1(G(x))− F−1(G(aG))]/(x − aG) is non-decreasing. The DDA and DFRA dis-
tribution functions are the ones that succeed the uniform and exponential distributions
in the star ordering. Our results can be extended onto the families of distributions
succeeding a general fixed distribution in the star order.

The expectations of order statistics coming from general i.i.d. samples were eval-
uated in terms of the population mean and standard deviation by Moriguti (1953).
Analytic formulae for respective bounds on the sample maxima were determined by
Gumbel (1954) and Hartley and David (1954). Analogous results for more general
scale units, generated by central absolute moments of various orders were determined
by Arnold (1985) for the sample maxima, and Rychlik (1998) for the other order
statistics. The first optimal evaluations of the expectations of order statistics from the
decreasing density and failure rate populations (DD and DFR, respectively) are due to
Gajek and Rychlik (1998). They were represented in the scale units connected with the
second raw moments of the parent distribution. Positive sharp mean-standard deviation
estimates of the expected order statistics and spacings from the DD and DFR families
were determined by Danielak (2003) and Danielak and Rychlik (2004), respectively.
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542 T. Rychlik

Barlow and Proschan (1966) and Barlow et al. (1969) derived some inequalities
for L-statistics implied by the star ordering of the distributions of observations [see
also Arnold nad Balakrishnan (1989, Section 3.4)]. Rychlik (2002) determined positive
tight upper mean-standard deviation bounds on the expectations of order statistics with
sufficiently large ranks, coming from DDA and DFRA populations. Similar results for
the spacings are due to Danielak and Rychlik (2003). Bieniek (2006, 2008) presented
analogous evaluations for the generalized order statistics based on the DFR, DFRA,
DD and DDA populations.

Tight positive lower (and negative upper) bounds on the expectations of positive
(negative) L-statistics with general parent distributions, expressed in various scale
units, were obtained by Goroncy (2009). Negative upper estimates for order statistics
less than the sample median, based on symmetric and symmetric unimodal distribu-
tions can be found in Rychlik (2009a). Rychlik (2009b,c) provided analogous results
for small order statistics coming from DD and DFR populations, respectively. Nega-
tive sharp upper evaluations for the expectations of generalized order statistics coming
from arbitrary populations were studied in Goroncy (2013).

2 DDA distributions

Here we collect the assumptions valid throughout this section.
Assumptions DD A(p): Random variables X1, . . . , Xn are i.i.d. with a common

distribution function F which is DDA, i.e. it has a finite left end-point aF of the
support, and function F(x)/(x − aF ), x > aF , is non-increasing. X1 has a finite
expectation EF X1 = μ and positive finite pth central absolute moment 0 < σ

p
p =

EF |X1 − μ|p < ∞ for some 1 ≤ p < ∞. We also assume that either j = 1 or
2 ≤ j ≤ n − 1 is such that K j :n(a j :n) ≤ 0 (cf. Proposition 1a), where function K j :n
is defined in (4), and a j :n is the smaller of two roots of equation f j :n(x) = 1 in (0, 1)

[see (3)]. We put

Mp(α)=
[

2(p+1)α(1− α)p + (1+α2)p+1−(α2+2α−1)|α2+2α−1|p
2p+1(p + 1)

]1/p

(6)

for 0 ≤ α < 1 and p ≥ 1. In particular, for p = 1 we have

M1(α) = 1

8

[
4α(1− α2)+ (1+ α2)2 − sgn(α2 + 2α − 1)(α2 + 2α − 1)2

]

=
{

(α2+1)2

4 , 0 ≤ α ≤ √2− 1,

α(1− α2),
√

2− 1 ≤ α < 1.
(7)

Proposition 2 (Case p > 1) If the above assumptions DD A(p) hold for some p > 1
and 1 ≤ j < n, then the bound

EF X j :n − μ

σp
≤ 0 (8)
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is sharp, and it is attained in the limit by the family of mixtures of atoms at μ −
σp

2Mp(α)
(1− α2) and uniform distributions on the intervals

[
μ+ σp

2Mp(α)
(2α−1+α2),

μ+ σp
2Mp(α)

(1+ α2)
]

with weights α and 1− α, respectively, as α ↗ 1.

Proof Inequality (8) is obvious in view of Proposition 1. It merely suffices to check that
the distributions defined in the latter claim are DDA, satisfy the moment conditions,
and attain the zero bound in the limit. Note that the respective quantile functions satisfy

F−1
α (x)− μ

σp
= x 1[α,1)(x)− 1−α2

2

Mp(α)
, 0 ≤ x < 1.

Therefore

F−1
α (x)− μ+ σp

2Mp(α)
(1− α2)

x
= σp

Mp(α)
1[α,1)(x), 0 ≤ x < 1,

are non-decreasing, and so Fα , 0 ≤ α < 1, are DDA. Since

1∫

0

[F−1
α (x)− μ]dx = σp

Mp(α)

⎡

⎣
1∫

0

x1[α,1)(x) dx − 1− α2

2

⎤

⎦ = 0,

we have Eα X1 = μ. Now we calculate

1∫

0

∣
∣
∣
∣x1[α,1)(x)− 1− α2

2

∣
∣
∣
∣

p

dx =
α∫

0

(
1− α2

2

)p

dx

+

⎧
⎪⎨

⎪⎩

∫ (1−α2)/2
α

(
1−α2

2 −x
)p

dx+∫ 1
(1−α2)/2

(
x− 1−α2

2

)p
dx, 0 ≤ α ≤ √2− 1,

∫ 1
α

(
x − 1−α2

2

)p
dx,

√
2− 1 ≤ α < 1,

= (1− α2)pα

2p
+

⎧
⎨

⎩

(1−α2−2α)p+1+(1+α2)p+1

2p+1(p+1)
, 0 ≤ α ≤ √2− 1,

(1+α2)p+1−(1−α2−2α)p+1

2p+1(p+1)
,
√

2− 1 ≤ α < 1,
= M p

p (α).

Therefore

Eα|X1 − μ|p=
1∫

0

|F−1
α (x)−μ|pdx = σ

p
p

M p
p (α)

1∫

0

∣
∣
∣
∣x1[α,1)(x)− 1− α2

2

∣
∣
∣
∣

p

dx = σ
p
p ,
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as claimed. Furthermore

Eα X j :n − μ

σp
=

1∫

0

F−1
α (x)− μ

σp
f j :n(x)dx

=
1∫

0

x1[α,1)(x)− 1−α2

2

Mp(α)
f j :n(x)dx

= 1

Mp(α)

⎡

⎣
1∫

α

x f j :n(x)dx − 1− α2

2

⎤

⎦

= 1

Mp(α)

⎡

⎣ j

n + 1

1∫

α

f j+1:n+1(x)dx − 1− α2

2

⎤

⎦ = K j :n(α)

Mp(α)
.

[cf (4) and (6)]. Note that

K j :n(α) = j

n + 1

j∑

i=0

(
n + 1

i

)

αi (1− α)n+1−i − 1− α2

2

= (1− α)

⎡

⎣ j

n + 1

j∑

i=0

(
n + 1

i

)

αi (1− α)n−i − 1+ α

2

⎤

⎦ ,

and the expression in the square brackets tends to−1, as α ↗ 1. Indeed, the sum does
not converge there only for j = n. However, this case is excluded from our study
because EF Xn:n ≥ μ. So we have K j :n(α) ∼ −(1− α) as α ↗ 1.

For α ≥ √2− 1, we have

M p
p (α) = 2(p + 1)α(1− α)p + (1+ α2)p+1 − (α2 + 2α − 1)p+1

2p+1(p + 1)
.

Applying the Taylor expansions, we obtain

(1+ α2)p+1 = 2p+1 − (p + 1)2p+1(1− α)+O((1− α)2),

(α2 + 2α − 1)p+1 = 2p+1 − (p + 1)2p+2(1− α)+O((1− α)2).

Hence M p
p (α) = (1− α)+O((1− α)min{2,p}), and so

K j :n(α)

Mp(α)
∼ −(1− α)1−1/p → 0 as α ↗ 1,

which is the desired statement. 
�
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Proposition 3 (Case p = 1) If assumptions DD A(p) are satisfied for p = 1 and
1 ≤ j < n, then

EF X j :n − μ

σ1
≤ sup

0≤α<1

K j :n(α)

M1(α)
, (9)

[see (4) and (7)]. If the supremum in (9) is attained at some 0 ≤ α = α j :n < 1, then
the bound is attained by the mixture of the pole at μ− σ1

2M1(α)
(1−α2) and the uniform

distribution on
[
μ+ σ1

2M1(α)
(2α − 1+ α2), μ+ σ1

2M1(α)
(1+ α2)

]
with weights α and

1− α, respectively. If

sup
0≤α<1

K j :n(α)

M1(α)
= lim

α↗1

K j :n(α)

M1(α)
= −1

2
,

then the bound is attained in the limit by the sequences of mixtures described above
as α ↗ 1.

Proof By Proposition 1, we have

sup
F∈DD A(1)

EF X j :n − μ

σ1
≤ 0,

where DD A(1) denotes the family of non-degenerate DD A distributions with a finite
first moment. Below we prove the implications

K j :n(a j :n) = 0⇒ sup
F∈DD A(1)

EF X j :n − μ

σ1
= 0, (10)

sup
F∈DD A(1)

EF X j :n − μ

σ1
< 0⇒ either j = 1 or K j :n(a j :n) < 0, (11)

which together imply that both (10) and (11) are equivalence relations.
We first observe that the mixtures defined in the statements of the proposition are

DDA, and satisfy both the moment conditions. It suffices to recall respective arguments
of the proof of Proposition 2 for specific p = 1. We also get

Eα X j :n − μ

σ1
= K j :n(α)

M1(α)
, 0 ≤ α < 1.

Moreover,

K ′j :n(α) = α[1− f j :n(α)], 0 ≤ α < 1. (12)

This means that for 2 ≤ j ≤ n − 1 function K j :n(α) increases from j
n+1 − 1

2 at 0 to
K j :n(a j :n), then decreases to K j :n(b j :n), and ultimately increases to 0 at 1. Function
(7) is strictly positive for 0 ≤ α < 1, and tends to 0 as α ↗ 1. By the de l’Hospital
rule, we also have
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546 T. Rychlik

lim
α↗1

K j :n(α)

M1(α)
= lim

α↗1

α[1− f j :n(α)]
1− 3α2 = −1

2
.

Therefore K j :n(a j :n) = 0 implies

sup
0≤α<1

K j :n(α)

M1(α)
= K j :n(a j :n)

M1(a j :n)
= 0 ≥ sup

F∈DD A(1)

EF X j :n − μ

σ1
,

which verifies (10). One should note, though, that equality K j :n(a j :n) = 0 for some
( j, n) is very unlikely, because a j :n is usually an irrational number, and K j :n is a
polynomial with rational coefficients.

Now we prove that

EF X j :n − μ

σ1
< 0, F ∈ DD A(1), (13)

implies

sup
F∈DD A(1)

EF X j :n − μ

σ1
= sup

0≤α<1

Eα X j :n − μ

σ1
= sup

0≤α<1

K j :n(α)

M1(α)
< 0. (14)

We can write

EF X j :n − μ

σ1
=

1∫

0

F−1(x)− μ

σ1
[ f j :n(x)− 1]dx =

1∫

0

g(x) f (x)dx = T f (g).

Function f = f j :n − 1 is fixed and integrates to 0. Functions g = F−1−μ
σ1

,

F ∈ DD A(1), belong to the subset G of elements of L1([0, 1), dx) which are
(right-continuous versions of) non-decreasing, starshaped functions with unit norms
satisfying

T1(g) =
1∫

0

g(x)dx =
1∫

0

F−1(x)− μ

σ1
dx = 0.

In particular,

gα(x) = 1

M1(α)

[

x1[α,1)(x)− 1− α2

2

]

∈ G, 0 ≤ α < 1.

Since T f (g) < 0 for f ∈ DD A(1), the simple linear operator g �→ g̃ = g
−T f (g)

transforms G onto the convex subset G̃ of L1([0, 1), dx) whose elements are right-
continuous, non-decreasing, star-shaped, and satisfy
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DDA and DFRA populations 547

T1(g̃) =
1∫

0

g̃(x)dx = 0,

T f (g̃) =
1∫

0

g̃(x) f (x)dx = −1.

In particular,

g̃α(x) = −1

K j :n(α)

[

x1[α,1)(x)− 1− α2

2

]

∈ G̃, 0 ≤ α < 1.

Note that ||g̃|| = 1
−T f (g)

, g̃ ∈ G̃, and the problem of maximizing T f (g), g ∈ G, is

equivalent with that of maximizing ||g̃||, g̃ ∈ G̃. The norm functional is convex, and so

||αg̃1 + (1− α)g̃2|| ≤ α||g̃1|| + (1− α)||g̃2|| ≤ max{||g̃1||, ||g̃2||}

for arbitrary g̃1, g̃2 ∈ G̃ and 0 ≤ α ≤ 1.
Suppose that for some 0 < α1 < · · · < αk < αk+1 = 1, and β−1 < β0 = 0 <

β1 < · · · < βk ,

hα,β(x) = β−1 +
k∑

i=1

βi x 1[αi ,αi+1)(x) ∈ G̃.

We show that hα,β is a convex combination of functions g̃αi , i = 1, . . . , k. Firstly,
g̃αi , i = 1, . . . , k, are linearly independent. Their linear combinations h̃α,γ (x) =
∑k

i=1 γi g̃αi (x) satisfy

T1(h̃α,γ ) =
1∫

0

h̃α,γ (x) dx = 0,

and

h̃α,γ (x)− h̃α,γ (0)

x
=

k∑

i=1

γi

K j :n(αi )
1[αi ,1)(x) =

k∑

i=1

δi 1[αi−1,αi )(x)

for δ j =∑ j
i=1

γi
K j :n(αi )

, j = 1, . . . , k. In particular,

hα,β(x) =
k∑

i=1

Ki :n(αi )(βi − βi−1)g̃αi (x) =
k∑

i=1

γi g̃αi (x).
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548 T. Rychlik

Starshapedness of hα,β and condition

−1 = T f (hα,β) =
k∑

i=1

γi T f (g̃αi ) = −
k∑

i=1

γi

imply that γi , i = 1, . . . , k, are non-negative, and sum up to 1. In consequence,

||hα,β || ≤ max
1≤i≤k

||g̃αi ||.

Consider now arbitrary g̃ ∈ G̃. For k = 1, 2 . . ., define

gk(x) = g(0)+
2k−1∑

i=1

2k

i
[g(i/2k)− g(0)] x 1[i/2k ,(i+1)/2k )(x).

The functions are non-decreasing, starshaped, and tend monotonously to g̃ on [0, 1).
By the Lebesgue monotone convergence theorem,

||g̃ − gk || =
1∫

0

[g̃(x)− gk(x)]dx ↘ 0,

and in consequence T1(gk)→ 0, and T f (gk)→−1 as k →∞. Furthermore, each

g̃k = gk − T1(gk)

−T f (gk)
∈ G̃,

and so is a convex combination of g̃i/2k , i = 1, . . . , 2k − 1, and

||g̃k − g̃|| =
∣
∣
∣
∣

∣
∣
∣
∣

gk

−T f (gk)
− gk + gk − g̃ − T1(gk)

−T f (gk)

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣

1

−T f (gk)
− 1

∣
∣
∣
∣ ||gk || + ||gk − g̃|| + |T1(gk)|

−T f (gk)
→ 0.

By continuity of the norm functional,

max
i=1,...,2k−1

||g̃i/2k || ≥ ||g̃k || → ||g̃||,

sup
0≤α<1

||g̃α|| ≥ ||g̃||, g̃ ∈ G̃,

and in consequence

sup
0≤α<1

K j :n(α)

M1(α)
= sup

0≤α<1
T f (gα) ≥ sup

g∈G
T f (g) = sup

F∈DD A(1)

EF X j :n − μ

σ1
.

So we proved that (13) implies (14).

123
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If j = 1 and σ1 > 0, we have (13). By (12), K1:n(α) < 0, 0 ≤ α < 1, and so
sup0≤α<1

K1:n(α)
M1(α)

< 0. If j ≥ 2 and K j :n(a j :n) = 0, then condition (13) does not hold.
Then

sup
F∈DD A(1)

EF X j :n − μ

σ1
= Ea j :n X j :n − μ

σ1
= 0.

Summing up, under condition K j :n(a j :n) ≤ 0, we have

sup
F∈DD A(1)

EF X j :n − μ

σ1
= sup

0≤α<1

K j :n(α)

M1(α)
≤ 0,

and the attainability conditions coincide with ones presented in Proposition 3. 
�

By Proposition 3,

sup
F∈DD A(1)

EF X j :n − μ

σ1
≥ lim

α↗1

K j :n(α)

M1(α)
= −1

2
.

It occurs that the supremum is equal to− 1
2 for some small j close to 1. These bounds are

attained in the limit. For larger j , the negative bounds fall between− 1
2 and 0, and they

are attained by particular combinations of the degenerate and uniform distributions.
These combinations always contain atoms, because for the uniform distribution we
have

E0 X j :n − μ

σ1
= K j :n(0)

M1(0)
= 4

(
j

n + 1
− 1

2

)

≥ 4

(
1

n + 1
− 1

2

)

> −1

2

when n ≥ 2. Observe that condition
K j :n(0)

M1(0)
= 4

(
j

n+1 − 1
2

)
≤ 0 is necessary for non-

positivity of the bounds in the DD case. This is the necessary and sufficient for non-
positivity of EF X j :n−μ for the parent distributions with decreasing density functions
(cf Rychlik 2009b). Numerical examples show that conditions K j :n(a j :n) ≤ 0 and
j ≤ n+1

2 do not differ much for small n.
Table 1 contains exemplary values of negative, greater than − 1

2 , tight upper
bounds on the expectations of standardized order statistics EF (X j :n − μ)/σ1 for
n = 10, 20, 30. If for a given n, the numerical bounds are presented for j =
j1(n), . . . , j2(n), one should conclude that the respective bounds are equal to − 1

2
for j < j1(n), and are positive for j > j2(n). Each bound is accompanied by the
value of argument α which maximizes the RHS of (9) for a given pair ( j, n). It fully
determines the mixture distribution for which the bound is attained. The simplest
interpretation of this parameter is that it is equal to the probability of the atom in the
optimal mixture. In the cases of our numerical analysis the atom probabilities range
between 0.1817 and 0.2988.
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Table 1 Negative upper bounds on the expectations of standardized order statistics (EX j :n − μ)/σ1,
n = 10, 20, 30, coming from DDA populations

n j Bound Atom prob. n j Bound Atom prob.

10 4 −0.496507 0.181698 30 11 −0.474085 0.222497

5 −0.105490 0.244825 12 −0.328868 0.248340

20 8 −0.381335 0.225906 13 −0.186415 0.273790

9 −0.172557 0.261855 14 −0.047683 0.298779

3 DFRA distributions

The assumptions in Sect. 3 are following.
Assumptions DF R A(p): Let X1, . . . , Xn be i.i.d. random variables with a parent

distribution function F which has the DFRA property, i.e. its support starts at a finite
point aF , and the ratio − ln(1− F(x))/(x − aF ) is nonincreasing for x > aF . Each
Xi has a mean μ ∈ R, and pth central absolute moment 0 < σ

p
p < ∞ for some

1 ≤ p < ∞. Further we assume that either j = 1 or 2 ≤ j ≤ n − 1 which satisfies
L j :n(a j :n) ≤ 0, where L j :n is defined in (5), and a j :n is the smaller of two roots of
f j :n(x) = 1 belonging to (0,1). We define Np(α) = (N p

p (α))1/p, p ≥ 1, α ≥ 0,
where

N p
p (α) = (α + 1)pe−pα(1− e−α)+ exp(−(α + 1)e−α)

×
⎧
⎨

⎩

[∫ (α+1)e−α−α

0 x pex dx + �(p + 1)
]
, α ≤ α∗,

∫∞
α−(α+1)e−α x pe−x dx, α ≥ α∗,

with α∗ ≈ 0.80647 uniquely determined by the equation αeα = α + 1. We also use
here

Q1(β) = N1(− ln(1− β)) =
⎧
⎨

⎩
2

(
1−β

e

)1−β

, 0 ≤ β ≤ β∗,

2β(1− β)[1− ln(1− β)], β∗ ≤ β < 1,

(15)

with β∗ = 1−e−α∗ ≈ 0.408156 being the solution to the equation− ln(1−β) = 1
β
−1.

Proposition 4 (Case p > 1) If assumptions DF R A(p) are satisfied for some p > 1
and 1 ≤ j < n, then the evaluation

EF X j :n − μ

σp
≤ 0

is sharp, and the equality is attained in the limit by the family of mixtures of the atom

at μ − σp(1−β)[1−ln(1−β)]
Np(− ln(1−β))

with probability β, and the exponential distribution with

location μ + σp[−(1−β)−ln(1−β)]
Np(− ln(1−β))

and scale
σp

Np(− ln(1−β))
with probability 1 − β, as

β ↗ 1.
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Proof It only suffices to check the attainability conditions. For the family of mixture
distributions, the the quantile functions satisfy

F−1
β (y)− μ

σp
= − ln(1− y)1[β,1)(y)− (1− β)[1− ln(1− β)]

Np(− ln(1− β))
.

Substituting x = − ln(1− y) and setting α = − ln(1− β), we obtain

F−1
β

(
1− e−x

)− μ

σp
= x1[α,∞)(x)− (α + 1)e−α

Np(α)
.

This shows that Fβ , 0 ≤ β < 1, are DFRA. Since

Eβ X1 − μ =
1∫

0

[F−1
β (y)− μ]dy =

∞∫

0

[F−1
β (1− e−x )− μ]e−x dx

= σp

Np(α)

∞∫

0

[x1[α,∞)(x)− (α + 1)e−α]e−x dx = 0,

and

N p
p (α)

σ
p
p

Eβ |X1 − μ|p = N p
p (α)

σ
p
p

1∫

0

|F−1
β (y)− μ|pdy

=
∞∫

0

|x1[α,∞)(x)− (α + 1)e−α|pe−x dx

=
α∫

0

(α + 1)pe−pαe−x dx + exp(−(α + 1)e−α)

∞∫

α−(α+1)e−α

|x |pe−x dx

= (α + 1)pe−pα(1− e−α)+ exp(−(α + 1)e−α)

×
⎧
⎨

⎩

∫ 0
α−(α+1)e−α (−x)pe−x dx + ∫∞

0 x pe−x dx, α ≤ α∗,
∫∞
α−(α+1)e−α x pe−x dx, α ≥ α∗,

= N p
p (α),

distribution functions Fβ , 0 ≤ β < 1, satisfy both the moment conditions. Further-
more, we calculate

Np(α)

σp
(Eβ X j :n − μ) = Np(α)

σp

1∫

0

[F−1
β (y)− μ] f j :n(y)dy

=
∞∫

0

[x1[α,∞)(x)− (α + 1)e−α] f j :n(1− e−x )e−x dx
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=
∞∫

α

x f j :n(1− e−x )e−x dx − (α + 1)e−α

= α F̄j :n(1− e−α)+
∞∫

α

F̄j :n(1− e−x )dx − (α + 1)e−α

=
j−1∑

i=0

(
n
i

) ∞∫

α

(1− e−x )i e−(n−1−i)x e−x dx + α F̄j :n(1− e−α)− (α + 1)e−α

=
j−1∑

i=0

1

n − i

1∫

1−e−α

fi+1:n(y)dy + α F̄j :n(1− e−α)− (α + 1)e−α

=
j∑

i=1

F̄i :n(1− e−x )

n + 1− i
+ α F̄j :n(1− e−α)− (α + 1)e−α

= L j :n(1− e−α) ≤ 0.

Accordingly, it remains to prove that for p > 1

lim
β↗1

Eβ X j :n − μ

σp
= lim

α↗∞
L j :n(1− e−α)

Np(α)
= 0.

We observe that

lim
α↗∞

L j :n(1− e−α)

αe−α
= −1,

because

lim
α↗∞

j∑

i=1

F̄i :n(1− e−x )

(n + 1− i)e−(n+1− j)α
=

(
n

j − 1

)
1

n + 1− j
,

lim
α↗∞

α F̄j :n(1− e−α)

αe−(n+1− j)α
=

(
n

j − 1

)

,

lim
α↗∞

(α + 1)e−α

αe−α
= 1.

Also,

lim
α↗∞

N p
p (α)

α pe−α
= 1,
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because

lim
α↗∞

(α + 1)pe−pα(1− e−α)

α pe−pα
= 1,

lim
a↗∞

∫∞
a x pe−x dx

a pe−a
= lim

a↗∞
−a pe−a

pa p−1e−a − a pe−a

= lim
a↗∞

1

1− p/a
= 1,

lim
α↗∞

exp(−(α + 1)e−α)
∫∞
α−(α+1)e−α x pe−x dx

α pe−α
= lim

α↗∞
(α − (α+1)e−α)pe−α

α pe−α
= 1.

Therefore

lim
α↗∞

L j :n(1− e−α)

Np(α)
= lim

α↗∞
αe−α

αe−α/p
= 0,

which ends the proof. 
�
Proposition 5 (Case p = 1) Under the assumptions DF R A(p) with p = 1, we have

EF X j :n − μ

σp
≤ sup

0≤β<1

L j :n(β)

Q1(β)
, (16)

where the numerator and denominator of the RHS are defined in (5) and (15), respec-
tively. If the supremum of the RHS of (16) is attained at some 0 ≤ β < 1, then the
bound is attained by the mixture of the pole at μ− σ1(1−β)[1−ln(1−β)]

Q1(β))
with probability

β, and the exponential distribution with location μ + σ1[−(1−β)−ln(1−β)]
Q1(β)

and scale
σ1

Q1(β)
with probability 1− β. Otherwise, i.e. when

sup
0≤β<1

L j :n(β)

Q1(β)
= lim

β↗1

L j :n(β)

Q1(β)
= −1

2
,

then the bound is attained in the limit by the sequences of the mixture distributions as
β ↗ 1.

Proof It is similar to that of Proposition 3, and we describe only the main ideas.
Recalling the arguments of the proof of Proposition 4, we observe that the mixture
distributions described in Proposition 5 are DFRA, and have first raw and central
absolute moments μ and σ1, respectively, for all 0 ≤ β < 1. Moreover,

Eβ X j :n − μ

σ1
= L j :n(β)

Q1(β)
, 0 ≤ β < 1,

holds. Since

L ′j :n(β) = − ln(1− β)[1− f j :n(β)],
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function L j :n itself is first decreasing, and then increasing for j = 1, and it is increasing
on [0, a j :n], decreasing on [a j :n, b j :n], and ultimately increasing for j ≥ 2. Function
(15) is strictly positive. Since

lim
β↗1

L j :n(β)

Q1(β)
= lim

β↗1

− ln(1− β)[1− f j :n(β)]
2(1− 2β)[− ln(1− β)] + 2β

= −1

2
,

the supremum of the RHS in (16) is non-negative iff L j :n(a j :n) ≥ 0, and this certainly
implies that

sup
F∈DF R A(1)

EF X j :n − μ

σ1
≥ 0.

Now we show that under the condition

EF X j :n − μ

σ1
< 0, F ∈ DF R A(1),

(that implies L j :n(a j :n) < 0 in particular), we have

sup
F∈DF R A(1)

EF X j :n − μ

σ1
= sup

0≤β<1

Eβ X j :n − μ

σ1
= sup

0≤β<1

L j :n(β)

Q1(β)
< 0.

(17)

First we note that

EF X j :n − μ

σ1
=
∞∫

0

F−1(1− e−x )− μ

σ1
[ f j :n(1− e−x )− 1]e−x dx

=
∞∫

0

h(x) f (x)e−x dx,

where f (x) = f j :n(1 − e−x ) − 1, and h(x) = F−1(1−e−x )−μ
σ1

is an arbitrary element

of the set H ⊂ L2(R+, e−x dx), which contains the (right-continuous versions of)
non-decreasing, starshaped functions such that

S1(h) =
∞∫

0

h(x)e−x dx = 0,

||h|| =
∞∫

0

|h(x)|e−x dx = 1.
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We also have

S f (h) =
∞∫

0

h(x) f (x)e−x dx < 0, h ∈ H.

The family H̃ of functions h̃(x) = h(x)
−S f (h)

is a convex set in L2(R+, e−x dx) which

consists of non-decreasing starshaped functions with S1(h̃) = 0 and S f (h̃) = −1.
Since ||h̃|| = − 1

S f (h)
, the problems of maximizing S f over H and that of maximizing

the norm over H̃ are equivalent.
Using the convexity property of the norm functional, we prove that the latter problem

is solved by the elements

h̃α(x) = x1[α,∞)(x)− (α + 1)e−α

L j :n(α)
, 0 ≤ α <∞,

of a parametric class contained in H̃. Every h̃ ∈ H̃ can be approximated by piecewise
linear discontinuous functions

hk(x) = h̃(0)+
4k−1∑

i=1

2k

i

[

h̃

(
i

2k

)

− h̃(0)

]

x 1[
i

2k , i+1
2k

)(x)

+ h̃(2k)− h̃(0)

2k
x 1[2k ,∞)(x),

k = 1, 2, . . . , so that hk ↗ h̃ and ||h̃ − hk || ↘ 0 as k →∞. Functions

h̃k = hk − S1(hk)

−S f (hk)
∈ H̃,

and are convex combinations of h̃ i
2k

, i = 1, . . . , 4k . We have

||h̃|| ← ||h̃k || ≤ sup
1≤i≤4k

||h̃ i
2k
|| ≤ sup

0≤α<∞
||h̃α||.

This allows us to deduce (17) which ends the proof. 
�
As in the DDA case, under condition (5) yields

−1

2
≤ sup

F∈DF R A(1)

EF X j :n − μ

σ1
≤ 0.

The supremum is not attained by the exponential distribution (without any contribution
of the atom) because
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Table 2 Negative upper bounds on the expectations of standardized order statistics (EX j :n − μ)/σ1,
n = 10, 20, 30, coming from DFRA populations

n j Bound Atom prob. n j Bound Atom prob.

10 7 −0.394763 0.713069 30 18 −0.481136 0.570305

8 −0.175588 0.786236 19 −0.399720 0.596811

20 13 −0.415996 0.627060 20 −0.316247 0.625045

14 −0.299618 0.666699 21 −0.228813 0.654837

15 −0.170139 0.710833 22 −0.134745 0.686115

16 −0.015518 0.759193 23 −0.030140 0.718871

L j :n(0)

Q1(0)
= e

2

⎛

⎝
j∑

i=1

1

n + 1− i
− 1

⎞

⎠ >
e

2

(
1

n
− 1

)

> −1

2

for all n ≥ 2. The sign of
L j :n(0)

Q1(0)
is identical with the sign of the upper bound on

EF X j :n−μ

σ1
for the DFR populations (cf Rychlik 2002, 2009c).

Table 2 provides the tight upper negative and different from− 1
2 bounds on the stan-

dardized expectations of order statistics from DFRA populations, when the sample size
n = 10, 20, and 30. If for a given n, the bounds are presented for j = j1(n), . . . , j2(n),
then the respective evaluations amount to− 1

2 for j = 1, . . . , j1(n)−1, and are positive
for j2(n)+1, . . . , n. Together with the bounds values, there are listed the probabilities
of atoms in the DFRA distributions attaining the bounds. They are essentially greater
than the respective values in Table 1 for the DDA distributions, and greater than the
contributions of the uniform distributions in the mixtures as well.

We finally note that we presented simple examples of families of distributions which
attain in the limit the zero bounds in Propositions 2 and 4, and − 1

2 in Propositions
3 and 5. Slight modifications of the distributions would not violate these asymptotic
properties. The other bounds determined in Propositions 3 and 5 are attained by the
distributions uniquely determined up to the location and scale transformations.
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