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Abstract Given a large sample from a location-scale population we estimate the
unknown parameters by means of confidence regions constructed on the basis of two
order statistics. The problem of the best choice of those statistics to obtain good
estimates, as n → ∞, is considered.
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Location-scale population

1 Introduction

A problem of optimal choice of order statistics in large samples for the best estimation
of the location and scale is not new. For example, Subsection 10.4 of David and
Nagaraja (2003) is devoted to such a problem in case of the point estimation (see also
the references cited therein). However, the same problem for the confidence region
estimation has not attracted the attention so far, as far as we know. This paper is an
attempt to fill the gap.

Let x = (x1, x2, . . . , xn) be a sample from a distribution Pθ , θ = (θ1, θ2), that is
{xi } are independent real-valued random variables having the distribution Pθ . We deal
with the case where θ1 ∈ R is a location parameter and θ2 > 0 is a scale parameter. As
the estimators of θ = (θ1, θ2), let us consider two-dimensional confidence regions.
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578 A. Zaigraev, M. Alama-Bućko

Let α ∈ (0, 1) be a given confidence level. A strong confidence region of level α is
a mapping B : Rn �→ B2 such that

Pθ (θ ∈ B(x)) = α ∀θ,

where B2 is the σ -algebra of Borel subsets of R2. The quality of a confidence region
can be characterized by the risk function defined as

R(θ, B) = Eθλ2(B(x)),

where λ2 is the Lebesgue measure on B2. Among strong confidence regions we dis-
tinguish those having the minimal risk and call them optimal.

The method for construction of an optimal confidence region is well-known (see,
for example, Alama-Bućko et al. 2006 or Czarnowska and Nagaev 2001) and is based
on using a pivot. Let t1(x) and t2(x) be a couple of statistics satisfying the following
conditions: for any a ∈ R, b > 0,

t1(bx + a1n) = bt1(x) + a, t2(bx + a1n) = bt2(x), (1)

where 1n = (1, 1, . . . , 1) ∈ Rn . Let from now on y = (y1, y2, . . . , yn) be a sample
from the standard distribution P(0,1). Taking a set A ∈ B2 such that

P(0,1)

((
− t1(y)

t2(y)
,

1

t2(y)
− 1

)
∈ A

)
= α, (2)

one can obtain due to (1)

P(θ1,θ2)

((θ1 − t1(x)

t2(x)
,
θ2 − t2(x)

t2(x)

)
∈ A

)
= α. (3)

That is, (
θ1 − t1(x)

t2(x)
,
θ2 − t2(x)

t2(x)

)
(4)

is a pivot.
Thus, the set

BA(x) = (t1(x), t2(x)) + t2(x)A (5)

is a strong confidence region for (θ1, θ2). In this case,

R(θ, BA) = λ2(A)Eθ t2
2 (x) = θ2

2 λ2(A)E(0,1)t
2
2 (y), (6)

that is the risk function is proportional to the area of the set A, and the problem is to
choose the set A with the smallest area.

Assume that the density function g of the random vector (−t1(y)/t2(y), 1/t2(y)−1)

exists, continuous and such that
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On optimal choice of order statistics 579

λ2({u ∈ R2 : g(u) = z}) = 0 ∀z ≥ 0.

The confidence region is optimal among all the confidence regions of the form (5), if

A = {u ∈ R2 : g(u) ≥ zα},

where zα is defined by the equation

∫
A

g(u)du = α.

This is a corollary of Proposition 2.1 of Einmahl and Mason (1992).
Of course, the optimal confidence region depends on the choice of t1 and t2.
For the natural interpretation of confidence region (5) it is reasonable to take as

t1(x) and t2(x) the estimators of the location and scale parameters, respectively. Then
(t1(x), t2(x)) is the center of the region, while the set A defines the shape of the region
and t2(x) is responsible for its rescaling.

In this paper we consider the case, where t1 and t2 are linear functions of two
order statistics. Some other cases were considered in Alama-Bućko et al. (2006) and
Czarnowska and Nagaev (2001).

Let xk:n and xm:n be the k-th and the m-th order statistic of the sample x, respectively,
k < m. The main goal of the paper is to make the best possible choice of k = kn

and m = mn to minimize risk function (6), as n → ∞, under the assumption that
k/n → p, m/n → q, p < q.

Asymptotics of the optimal confidence region in case 0 < p < q < 1 is obtained
in Sect. 2. Our main results are established in Sect. 3, while Sect. 4 contains examples.
In “Appendix” we prove three useful auxiliary lemmas.

2 Asymptotics of the optimal confidence region

Let F = F(0,1) be the continuous distribution function corresponding to P(0,1) and

F−1(p) = inf{t ∈ R : F(t) ≥ p}, 0 < p < 1

be the so-called quantile function. We assume that the distribution F is absolutely
continuous and denote by f its density function. Let ϕV be the density corresponding
to the normal distribution with zero mean vector and covariance matrix V .

We start with the classical result on limit distribution for central order statistics
(see, for example, Theorem 10.3 of David and Nagaraja 2003 or Theorem 4.1.3 of
Reiss 1989).

Proposition 1 Let 0 < p < q < 1 be fixed and k/n − p = o(n−1/2), m/n − q =
o(n−1/2), as n → ∞. Assume also that f (F−1(p)) > 0, f (F−1(q)) > 0. Then the
limit distribution of the vector n1/2(yk:n − F−1(p), ym:n − F−1(q)), as n → ∞, is
normal with zero mean vector and covariance matrix
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580 A. Zaigraev, M. Alama-Bućko

V =

⎛
⎜⎜⎜⎝

p(1 − p)

f 2(F−1(p))

p(1 − q)

f (F−1(p)) f (F−1(q))

p(1 − q)

f (F−1(p)) f (F−1(q))

q(1 − q)

f 2(F−1(q))

⎞
⎟⎟⎟⎠ .

Assume that F−1(q) �= F−1(p) and take

t1(x) = xk:n F−1(q) − xm:n F−1(p)

F−1(q) − F−1(p)
, t2(x) = xm:n − xk:n

F−1(q) − F−1(p)
. (7)

Note that t1(x) and t2(x) from (7) satisfy (1) and are asymptotically unbiased estimators
of the location and scale, respectively.

Making use of statement (i) of Lemma 1 from “Appendix” with an = cn =
n1/2, bn = F−1(p), dn = F−1(q), ξn = yk:n, ηn = ym:n, f (u1, u2) = ϕV (u1, u2),

we immediately obtain the following result.

Corollary 1 Under the conditions of Proposition 1, the limit distribution of the vector
n1/2(−t1(y)/t2(y), 1/t2(y) − 1), where t1 and t2 are defined by (7), as n → ∞, is
normal with zero mean vector and the covariance matrix W = (H−1)T V H−1, where

H =
(

1 1
F−1(p) F−1(q)

)
.

Applying the method of construction of optimal confidence regions described in
Sect. 1 (see formulae (2)–(5)), one can obtain the following optimal confidence region
based on the vector n1/2(−t1(y)/t2(y), 1/t2(y) − 1):

BAn (x) = (t1(x), t2(x)) + (t2(x)/
√

n)An, (8)

where the set An is defined by

An = {u ∈ R2 : gn(u) ≥ zα},
∫
An

gn(u)du = α,

and gn is the density corresponding to n1/2(−t1(y)/t2(y), 1/t2(y) − 1). The corre-
sponding risk function has the form

R(θ, BAn ) = Eθ t2
2 (x)λ2(An)/n. (9)

Let us investigate the behaviour of R(θ, BAn ) as n → ∞. From Proposition 1 it
follows that

lim
n→∞ Eθ t2

2 (x) = θ2
2 lim

n→∞ E(0,1)t
2
2 (y) = θ2

2 . (10)
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On optimal choice of order statistics 581

Moreover, basing on Proposition 1, as it was shown in Theorem 2 of Alama-Bućko
and Zaigraev (2006), one can obtain the asymptotic expansion of the set An as n → ∞.

Namely, the set An, as n → ∞, approximates the ellipse A0 of the form

A0 = {u ∈ R2 : ϕW (u) ≥ z′
α},

where z′
α is defined by the equation

∫
A0

ϕW (u)du = α, that is z′
α = 1 − α

2π(det W )1/2 .

In other words,

A0 =
{

u ∈ R2 : e−uW−1uT /2

2π(det W )1/2 ≥ z′
α

}
,

or

A0 = {u ∈ R2 : uW −1uT ≤ −2 ln(1 − α)}.

Therefore,

lim
n→∞ λ2(An) = λ2(A0) = −2π ln(1 − α)(det W )1/2

and

(det W )1/2 = (det V )1/2

det H
= [p(q − p)(1 − q)]1/2

[F−1(q) − F−1(p)] f (F−1(p)) f (F−1(q))
. (11)

Summing up, R(θ, BAn ) is of order 1/n as n → ∞, if 0 < p < q < 1, F−1(q) �=
F−1(p), f (F−1(q)) > 0, f (F−1(p)) > 0.

The problem of interest is to search for p∗ and q∗ to minimize (11). In other
words, this is the problem of choice the order statistics xk:n, xm:n to obtain the optimal
confidence region for θ with the smallest risk function.

3 Optimal choice of order statistics

After changing the notation u = F−1(p), v = F−1(q), the right-hand side of (11) is
rewritten as

[F(u)(F(v) − F(u))(1 − F(v))]1/2

(v − u) f (u) f (v)
:= G(u, v).

Let

(u∗, v∗) ∈ arg inf
u−

F <u<v<u+
F

G(u, v),
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582 A. Zaigraev, M. Alama-Bućko

where −∞ ≤ u−
F < u+

F ≤ ∞ are the lower and the upper end of the support of the
distribution F, respectively.

Note that for any fixed u ∈ (u−
F , u+

F ),

lim
v↓u

(v − u)1/2G(u, v) = [F(u)(1 − F(u))]1/2

( f (u))3/2 .

Therefore, G(u, v) ↑ ∞ as v ↓ u for any fixed u ∈ (u−
F , u+

F ). Similarly, it can be
shown that G(u, v) ↑ ∞ as u ↑ v for any fixed v ∈ (u−

F , u+
F ).

In what follows, we assume that the function f is differentiable at any point u ∈
(u−

F , u+
F ). Then

(ln(G(u, v))′v =− f ′(v)

f (v)
− 1

v − u
+ f (v)

2

( 1

F(v)−F(u)
− 1

1 − F(v)

)
:= H(u, v).

(12)

By simple calculations,

lim
v↓u

(v − u)H(u, v) = −1

2

and, therefore, H(u, v) < 0 in a neighborhood of any fixed u ∈ (u−
F , u+

F ), that is
the function G(u, v) is decreasing in v in a neighborhood of u. Similarly, the function
G(u, v) is increasing in u in a neighborhood of any fixed v ∈ (u−

F , u+
F ) since

(ln(G(u, v))′u = − f ′(u)

f (u)
+ 1

v − u
+ f (u)

2

( 1

F(u)
− 1

F(v) − F(u)

)
:= H∗(u, v)

(13)

and

lim
u↑v

(v − u)H∗(u, v) = 1

2
.

In the sequel we need some well-known facts from the extreme value theory (see,
for example, Subsection 10.5 of David and Nagaraja 2003).

If there exist cn > 0 and dn ∈ R such that the limit distribution of the sequence
cn(yn:n −dn) exists, as n → ∞, then the limit distribution function is one of just three
types (β > 0):

– (Fréchet) H1(u;β) =
{

0, u ≤ 0
exp(−u−β), u > 0,

– (Weibull) H2(u;β) =
{

exp(−(−u)β), u ≤ 0
1, u > 0,

– (Gumbel) H3(u) = exp(− exp(−u)), u ∈ R.

In this case it is said that F belongs to the domain of attraction of the distribution
Hi , i = 1, 2, 3 (written F ∈ D(Hi )).
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On optimal choice of order statistics 583

Let h be the hazard rate function, that is

h(u) = f (u)

1 − F(u)
, u ∈ (u−

F , u+
F ).

It turns out that the possible limit laws for the properly centered and normed maximal
order statistics xn:n are determined by the behaviour of the function h in a neighborhood
of the right endpoint of F. The following result (see, for example, Theorems 8.3.3 and
8.3.4 of Arnold et al. 1992) contains the well-known sufficient von Mises conditions
of attraction to D(Hi ), i = 1, 2, 3, and description of sequences {cn, dn}. In what
follows, L(v) denotes a slowly varying function as v → ∞.

Proposition 2 The following statements hold:

– F ∈ D(H1), if u+
F = ∞ and for some β > 0,

lim
u→∞ uh(u) = β; (14)

here dn = 0, cn = (F−1(1 − 1/n))−1 = n−1/β L(n);
– F ∈ D(H2), if u+

F < ∞ and for some β > 0,

lim
u→u+

F

(u+
F − u)h(u) = β; (15)

here dn = u+
F , cn = (u+

F − F−1(1 − 1/n))−1 = n1/β L(n);
– F ∈ D(H3), if f (u) is differentiable for all u > u0 and

lim
u→u+

F

(1/h(u))′ = 0; (16)

here dn = F−1(1 − 1/n), cn = h(dn) = n f (dn).

Remark 1 Comparing the norming sequences {cn} from all the above cases to n1/2,

one can conclude that: cn � n1/2 if F ∈ D(H2) with β < 2, while cn � n1/2 if
F ∈ D(H1), or F ∈ D(H3), or F ∈ D(H2) with β > 2. In what follows, we exclude
the case F ∈ D(H2) with β = 2 from the consideration since uncertainty remains
here.

Now we are able to establish the crucial result for optimal choice of order statistics.

Theorem 1 The following statements hold for any fixed u ∈ (u−
F , u+

F ):

(i) if condition (14) holds, then G(u, v) ↑ ∞ as v ↑ u+
F = ∞;

(ii) if condition (16) holds, then G(u, v) is a non-decreasing function for all v > v0;
(iii) if condition (15) holds, then

β > 2 �⇒ G(u, v) ↑ ∞, v ↑ u+
F ,

β < 2 �⇒ G(u, v) ↓ 0, v ↑ u+
F .

123



584 A. Zaigraev, M. Alama-Bućko

Proof Statement (i) is a direct consequence of (14).
To prove the statement (ii), it is enough to show that

lim
v↑u+

F

H(u, v)

h(v)
> 0. (17)

From (12) it follows that

H(u, v)

h(v)
=

(
1

h(v)

)′
− 1

(v − u)h(v)
+ 1

2
· 1 − F(u)

1 − F(u) − [1 − F(v)] .

In view of condition (16), it is enough to prove that

lim
v↑u+

F

1

(v − u)h(v)
= 0

(
then lim

v↑u+
F

H(u, v)

h(v)
= 1

2

)
. (18)

For this purpose one can use the arguments from the proof of Remark 2 of Subsection
3.3.3 of Embrechts et al. (1997). If u+

F = ∞, then since (1/h(v))′ ↓ 0, as v ↑ ∞,

the Cesàro mean of this function also converges, that is

lim
v↑∞

1/h(v)

v
= lim

v↑∞
1

v

v∫
z

(1/h(u))′du = 0.

If u+
F < ∞, then

lim
v↑u+

F

1/h(v)

u+
F − v

= − lim
v↑u+

F

u+
F∫

v

(1/h(u))′du

u+
F − v

= lim
t↓0

1

t

t∫
0

(1/h(u+
F − s))′ds.

Since (1/h(u+
F − s))′ ↓ 0, as s ↓ 0, the last limit tends to 0 and (18) holds.

Statement (iii) follows from Theorem 3.3.12 of Embrechts et al. (1997) and prop-
erties of slowly varying functions.

Theorem 1 immediately implies the following result.

Corollary 2 If condition (15) holds with β < 2, then v∗ = u+
F < ∞ (q∗ = 1) and

inf G(u, v) = 0. In other cases (condition (14), or condition (16), or condition (15)
with β > 2 holds), v∗ < u+

F (q∗ < 1) and inf G(u, v) > 0.

As it is known, similar results hold also for the minimal order statistic y1:n . More
precisely, if there exist an > 0 and bn ∈ R such that the limit distribution of the
sequence an(y1:n −bn) exists, as n → ∞, then the limit distribution function is one of
just three types: H∗

i (u; γ ) = 1 − Hi (−u; γ ), i = 1, 2, 3. So, with the small evident
modifications one can establish for y1:n the similar results as for yn:n . We have gathered
them in the following theorem.
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On optimal choice of order statistics 585

Denote

h∗(u) = f (u)

F(u)
, u ∈ (u−

F , u+
F ).

Theorem 2 The following statements hold for any fixed v ∈ (u−
F , u+

F ).

1. If u−
F = −∞ and for some γ > 0,

lim
u→−∞ uh∗(u) = −γ, (19)

then F ∈ D(H∗
1 ) and G(u, v) ↑ ∞ as u ↓ u−

F = −∞.

2. If f (u) is differentiable for all u < u∗
1 and

lim
u→u−

F

(1/h∗(u))′ = 0, (20)

then F ∈ D(H∗
3 ) and G(u, v) is a non-increasing function for u < u∗

0.

3. If u−
F > −∞ and for some γ > 0,

lim
u→u−

F

(u − u−
F )h∗(u) = γ, (21)

then F ∈ D(H∗
2 ) and

γ > 2 �⇒ G(u, v) ↑ ∞, u ↓ u−
F ,

γ < 2 �⇒ G(u, v) ↓ 0, u ↓ u−
F .

If condition (21) with γ < 2 holds, then u∗ = u−
F > −∞ (p∗ = 0) and inf G(u, v) =

0. In other cases (condition (19), or condition (20), or condition (21) with γ > 2
holds), u∗ > u−

F (p∗ > 0) and inf G(u, v) > 0.

Summing up, assuming that the underlying distribution in a neighborhood of u+
F

satisfies one of von Mises conditions (14)–(16) and in a neighborhood of u−
F satisfies

one of von Mises conditions (19)–(21), we can formulate the results on optimal choice
of order statistics distinguishing between four cases.

Case I If in a neighborhood of u+
F (14), or (16), or (15) with β > 2 holds and in a

neighborhood of u−
F (19), or (20), or (21) with γ > 2 holds, then 0 < p∗ < q∗ < 1.

In this case we take (see (7))

t1(x) = xk∗:n F−1(q∗) − xm∗:n F−1(p∗)
F−1(q∗) − F−1(p∗)

, t2(x) = xm∗:n − xk∗:n
F−1(q∗) − F−1(p∗)

,

(22)

where, for example, k∗ = [np∗]+1, m∗ = [nq∗]+1. The optimal confidence region
is based on the vector Tn(y) = n1/2(−t1(y)/t2(y), 1/t2(y) − 1) and is given by (8)
with risk function (9), where limn→∞ Eθ t2

2 (x) = θ2
2 (see (10)). The limit law for

Tn(y), established in Corollary 1, allows us to state that
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586 A. Zaigraev, M. Alama-Bućko

λ2(An)→(−2π ln(1−α))
[p∗(q∗ − p∗)(1 − q∗)]1/2

[F−1(q∗)−F−1(p∗)] f (F−1(p∗)) f (F−1(q∗))
, n →∞.

The risk function is of order 1/n, as n → ∞.

The important note: the order of the risk function for the optimal confidence region
equals to the reciprocal of the product of norming sequences of the components of
Tn(y), that is 1/n = 1/(n1/2 · n1/2).

It remains to consider the cases when in a neighborhood of u+
F (u+

F < ∞) (15) with
β < 2 holds and/or in a neighborhood of u−

F (u−
F > −∞) (21) with γ < 2 holds.

Here, the order of the corresponding risk function is evidently o(1/n) and q∗ = 1
and/or p∗ = 0. In this case we need to change the vector Tn(y) and norming sequences
according to statements (ii) or (iii) of Lemma 1 from “Appendix”. Again the reciprocal
of the product of norming sequences of the components of Tn(y) determines the order
of the risk function.

Let q∗ = 1 (the case p∗ = 0 can be considered similarly). In general, one can
distinguish between three types of sequences {mn} satisfying mn/n → q∗ = 1, n →
∞:

(a) mn = n; in this case ymn :n = yn:n, i. e. we deal with the extreme order statistics;
(b) mn = n − j + 1, j > 1 is fixed; in this case ymn :n = yn− j+1:n, i. e. we deal with

other extreme order statistics;
(c) mn = n − j + 1, j = jn → ∞, jn/n → 0, n → ∞; in this case ymn :n =

yn− jn+1:n, i. e. we deal with intermediate order statistics.

The question arises: what type of the sequence one should choose to obtain the
better confidence region?

First of all, note that according to the end of Subsection 10.8 of David and Nagaraja
(2003), lower extremes are asymptotically independent of upper extremes and both
are asymptotically independent of central order statistics as well as of intermediate
order statistics.

In situation (a) the possible limit laws and corresponding norming sequences
are given in Proposition 2. In situation (b), as it follows from Theorem 8.4.1 of
Arnold et al. (1992), F ∈ D(Hi ), i = 1, 2, 3, iff the limit distribution function
of an extreme order statistic yn− j+1:n, as n → ∞, where j is fixed, is of the form∑ j−1

r=0 Hi (u)[− ln(Hi (u))]r/r !, i = 1, 2, 3; the sequences {cn, dn} are the same as in
Proposition 2. Therefore, comparing the choice of yn:n with that of yn− j+1:n, where
j > 1 is fixed, we conclude that the norming sequences are the same, but the first
choice is better since it gives the shorter interval for the appropriate coordinate (see
Lemma 2 from “Appendix”).

At last, in situation (c), as it follows from Theorem 8.5.3 of Arnold et al. (1992), if
von Mises conditions (14)–(16) hold, then the limit law for yn− j+1:n, n → ∞, j →
∞, j/n → 0, is standard normal and dn = F−1(1 − j/n), cn = n f (dn)/j1/2. Note
that in the case of interest (when in a neighborhood of u+

F (15) with β < 2 holds) this
norming sequence {cn} is less than that for yn:n given in Proposition 2 (see Lemma 3
from “Appendix”); in all other cases it is less than n1/2.

Case II If in a neighborhood of u+
F (one can take u+

F = 0 without loss in generality)
(15) with β < 2 holds, while in a neighborhood of u−

F (19), or (20), or (21) with γ > 2
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On optimal choice of order statistics 587

holds, then 0 < p∗ < q∗ = 1. In this case, drawing on (22), we take

t1(x) = xn:n, t2(x) = − xn:n − xk∗:n
F−1(p∗)

.

The pivotal quantity is

(
cn

θ1 − t1(x)

t2(x)
, n1/2 θ2 − t2(x)

t2(x)

)
,

where cn = n1/β L(n) � n1/2, n → ∞. The optimal confidence region is based on
the vector (−cnt1(y)/t2(y), n1/2(1/t2(y)−1)) and has the risk of order 1/(cnn1/2) �
1/n, as n → ∞. It has the form

BA∗
n
(x) = (t1(x), t2(x)) + t2(x)A∗

n,

where A∗
n = {(z1, z2) : (cnz1, n1/2z2) ∈ An}.

Case III If in a neighborhood of u+
F (14), or (16), or (15) with β > 2 holds, while

in a neighborhood of u−
F (one can take u−

F = 0 without loss in generality) (21) with
γ < 2 holds, then 0 = p∗ < q∗ < 1. In this case, drawing on (22), we take

t1(x) = x1:n, t2(x) = xm∗:n − x1:n
F−1(q∗)

.

The pivotal quantity is

(
an

θ1 − t1(x)

t2(x)
, n1/2 θ2 − t2(x)

t2(x)

)
,

where an = n1/γ L(n) � n1/2, n → ∞. The optimal confidence region is based on
the vector (−ant1(y)/t2(y), n1/2(1/t2(y)−1)) and has the risk of order 1/(ann1/2) �
1/n, as n → ∞. It has the form

BA∗
n
(x) = (t1(x), t2(x)) + t2(x)A∗

n,

where A∗
n = {(z1, z2) : (anz1, n1/2z2) ∈ An}.

Case IV At last, if in a neighborhood of u+
F (15) with β < 2 holds and in a neighbor-

hood of u−
F (21) with γ < 2 holds, then p∗ = 0, q∗ = 1. In this case the construction

repeats one of the previous cases depending on the relation between β and γ (see
Examples).

At last, it is worth to note that if the distribution F is symmetric, that is its density f
satisfies the condition f (−u) = f (u), and, moreover, if f is a differentiable infinitely
many times function such that f ′(−u) = − f ′(u), then p∗ = 1 − q∗ (see Theorem
10.4 of David and Nagaraja 2003 and also Ogawa 1998 for the proof and discussion).
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4 Examples

Here we consider three examples of distributions. In all the cases we calculate the
values of the risk function, according to (6): firstly, for (p, q) = (0.25, 0.75), and
secondly, for (p∗, q∗). Even for the realistic sample sizes, the risk is smaller in the
second case.

Example 1 Uniform distribution U (θ1 − θ2/2, θ1 + θ2/2).

It is the case IV since in a neighborhood of u+
F = 1/2 (15) with β = 1 holds, while

in a neighborhood of u−
F = −1/2 (21) with γ = 1 holds. Therefore, (p∗, q∗) = (0, 1).

Here β = γ, and the optimal confidence region for (θ1, θ2) is based on

t1(x) = (x1:n + xn:n)/2, t2(x) = xn:n − x1:n

while the pivot looks as n(
θ1−t1(x)

t2(x)
, θ2

t2(x)
− 1).

The optimal confidence region has the risk of order 1/n2.

Calculations of the risk function for (p, q) = (0.25, 0.75) (the first table) and for
(p∗, q∗) = (0, 1) (the second table):

n k m λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 8 23 1.076282 0.241935 0.260390

40 10 31 0.640971 0.243902 0.156334

50 13 38 0.599687 0.245098 0.146982

60 15 46 0.429006 0.245901 0.105493

70 18 53 0.414028 0.246478 0.102049

80 20 61 0.326711 0.246913 0.080669

90 23 68 0.312016 0.247252 0.077147

100 25 76 0.262212 0.247524 0.064904

500 125 376 0.052771 0.249500 0.013166

n k m λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 1 30 0.015230 0.877016 0.013357

40 1 40 0.008145 0.905923 0.007379

50 1 50 0.005059 0.923831 0.004674

60 1 60 0.003444 0.936012 0.003224

70 1 70 0.002495 0.944835 0.002357

80 1 80 0.001890 0.951520 0.001798

90 1 90 0.001481 0.956760 0.001417

100 1 100 0.001192 0.960978 0.001145

500 1 500 0.000050 0.992039 0.000049
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Example 2 Exponential distribution E(θ1, θ2).

It is the case III since in a neighborhood of u−
F = 0 (21) with γ = 1 holds, while

in a neighborhood of u+
F = ∞ (16) holds.

By simple calculations we obtain

G(u, v) = [(e2u − eu)(ev−u − 1)]1/2

v − u
, 0 < u < v < ∞,

and arg inf0<u<v<∞ G(u, v) = (0, v∗), where v∗ is the solution of the equation
(1 − v/2)ev = 1 (v∗ = 1.5936). Therefore, (p∗, q∗) = (0, v∗/2) = (0, 0.7968).

The optimal confidence region has the risk of order 1/n3/2.

Calculations of the risk function for (p, q) = (0.25, 0.75) (the first table) and for
(p∗, q∗) = (0, 0.7968) (the second table):

n k m λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 8 23 0.636060 1.294206 0.823192

40 10 31 0.361046 1.431981 0.517011

50 13 38 0.332177 1.259720 0.418450

60 15 46 0.237054 1.354291 0.321040

70 18 53 0.224124 1.244763 0.278981

80 20 61 0.177264 1.316461 0.233361

90 23 68 0.171444 1.236410 0.211975

100 25 76 0.141810 1.294084 0.183514

500 125 376 0.027746 1.224075 0.033963

n j k λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 1 24 0.059575 2.783466 0.165825

40 1 32 0.036114 2.973219 0.107374

50 1 40 0.025097 3.149164 0.079034

60 1 48 0.018263 3.320204 0.060636

70 1 56 0.014387 3.490169 0.050213

80 1 64 0.011406 3.660958 0.041756

90 1 72 0.009464 3.833603 0.036281

100 1 80 0.008152 4.008691 0.032678

500 1 399 0.000517 12.822575 0.006629

Example 3 Normal distribution N (θ1, θ2).

It is the case I since in a neighborhood of u−
F = −∞ (20) holds, while in a

neighborhood of u+
F = ∞ (16) holds.
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Here G(u, v) = G(−v,−u), and by simple calculations one can obtain that

arg min−∞<u<v<∞ G(u, v) = (−v∗, v∗),

where v∗ = 1.1106 is the solution of the equation

1/v − 2v

f (v)
= 2 − 3F(v)

(2F(v) − 1)(1 − F(v))
.

Therefore, q∗ = F(v∗) = 0.8666, p∗ = 1 − q∗ = 0.1334.

The optimal confidence region has the risk of order 1/n.

Calculations of the risk function for (p, q) = (0.25, 0.75) (the first table) and for
(p∗, q∗) = (0.1334, 0.8666) (the second table):

n k m λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 8 23 0.520142 1.869376 0.972341

40 10 31 0.338648 2.079427 0.704193

50 13 38 0.294872 1.850483 0.545655

60 15 46 0.219608 1.991273 0.437299

70 18 53 0.204000 1.841996 0.375767

80 20 61 0.166246 1.947792 0.323812

90 23 68 0.156422 1.837179 0.287375

100 25 76 0.133028 1.921895 0.255665

500 125 376 0.026954 1.840690 0.049613

n k m λ2(A) E(0,1)t
2
2 (y) R(θ, BA)/θ2

2

30 5 26 0.182234 4.335487 0.790073

40 6 35 0.114722 4.794549 0.550040

50 7 44 0.086356 5.096922 0.440149

60 9 52 0.079592 4.625095 0.368120

70 10 61 0.063934 4.855632 0.310440

80 11 70 0.053892 5.037201 0.271464

90 13 78 0.050402 4.726140 0.238206

100 14 87 0.043930 4.879758 0.214367

500 67 434 0.008606 4.952811 0.042623
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Appendix

Here we establish three useful auxiliary lemmas.

Lemma 1 Let {ξn} and {ηn} be two sequences of random variables and assume that
there exist sequences of positive numbers {an} and {cn} and sequences of numbers
{bn} and {dn} such that the sequence of two-dimensional random vectors (an(ξn −bn),

cn(ηn −dn)), as n → ∞, converges in distribution to a random vector with continuous
density function f (u1, u2). If an → ∞, cn → ∞, bn → b ∈ R, dn → d ∈ R, d �= b,

then

(i) under the condition an = cn the random vector

an

(bnηn − dnξn

ηn − ξn
,

dn − bn

ηn − ξn
− 1

)
, as n → ∞,

converges in distribution to the random vector with the density |d −b| f (−v1
−bv2,−v1−dv2);

(ii) under the condition an � cn the random vector

(
an

(bn − ξn)(dn − bn)

ηn − ξn
, cn

(dn − bn

ηn − ξn
− 1

))
, as n → ∞,

converges in distribution to the random vector with the density |d − b| f (−v1,

−(d − b)v2);
(iii) under the condition an � cn the random vector

(
cn

(dn − ηn)(dn − bn)

ηn − ξn
, an

(dn − bn

ηn − ξn
− 1

))
, as n → ∞,

converges in distribution to the random vector with the density |d − b| f ((d −
b)v2,−v1).

Proof We establish only statement (i); the other cases are treated similarly. The trans-
formation (u1, u2) �→ (v1, v2) of

an(ξn − bn, ηn − dn) onto Tn = an

(bnηn − dnξn

ηn − ξn
,

dn − bn

ηn − ξn
− 1

)

is given by ⎧⎪⎨
⎪⎩

v1 = anbnu2−andnu1
u2−u1+an(dn−bn)

v2 = anu1−anu2
u2−u1+an(dn−bn)

�⇒

⎧⎪⎨
⎪⎩

u1 = − v1+bnv2
1+v2/an

u2 = − v1+dnv2
1+v2/an

.

This transformation has the Jakobian

J (v1, v2) = |dn − bn|
(1 + v2/an)3 .
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Therefore, the density function of the random vector Tn has the form

|dn − bn|
(1 + v2/an)3 f

(
−v1 + bnv2

1 + v2/an
,−v1 + dnv2

1 + v2/an

)
.

Since an → ∞, bn → b, dn → d, as n → ∞, statement (i) follows.

Lemma 2 For β > 0 consider two densities

fβ(u) = β(−u)β−1e−(−u)β , gβ, j (u) = β(−u) jβ−1e−(−u)β /( j − 1)!, u < 0

where j > 1, and let (a, b) and (a′, b′) be such intervals that for given α ∈ (0, 1)

b∫
a

fβ(u)du =
b′∫

a′
gβ, j (u)du = α.

If β ≤ 1, then for any j > 1

min
(a,b)

(b − a) ≤ min
(a′,b′)

(b′ − a′).

Proof Let Fβ and Gβ, j be the distribution functions corresponding to the densities fβ
and gβ, j , respectively, i. e.

Fβ(u) =
{

exp(−(−u)β), u < 0
1, u ≥ 0,

Gβ, j (u) =
{

exp(−(−u)β)[1 + (−u)β/1! + . . . + (−u)( j−1)β/( j − 1)!], u < 0
1, u ≥ 0

and let Xβ and Yβ, j be the corresponding random variables.
Recall two notions of stochastic ordering (see e.g. Sect. 1A and Sect. 3B of Shaked

and Shanthikumar 2007):

Xβ ≤st Yβ, j , if Fβ(u) ≥ Gβ, j (u), ∀u > 0;
Xβ ≤disp Yβ, j , if F−1

β (q) − F−1
β (p) ≤ G−1

β, j (q) − G−1
β, j (p), ∀ 0 < p ≤ q < 1.

Thus, if we show that Xβ ≤disp Yβ, j , the lemma follows.
It is not difficult to check that −X1 ≤st −Y1, j and that −X1 ≤disp −Y1, j for

any j > 1 (e.g. by Theorem 3.B.18 of Shaked and Shanthikumar 2007). Moreover,
−Xβ has the same distribution as (−X1)

1/β, and −Yβ, j has the same distribution as
(−Y1, j )

1/β . Since the function φ(u) = u1/β, u ≥ 0, is increasing and convex, from
Theorem 3.B.10 of Shaked and Shanthikumar (2007) it follows that (−X1)

1/β =
φ(−X1) ≤disp φ(−Y1, j ) = (−Y1, j )

1/β . Therefore, −Xβ ≤disp −Yβ, j , but the latter
means, from Theorem 3.B.6 of Shaked and Shanthikumar (2007), that Xβ ≤disp Yβ, j .

Numerical calculations show that Lemma 2 is true not only for β ∈ (0, 1], but also
for β ∈ (1, 2).
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Lemma 3 If in a neighborhood of u+
F (15) with β < 2 holds, then for j → ∞, j/n →

0, n → ∞, the relation n f (F−1(1 − j/n))/j1/2 � (u+
F − F−1(1 − 1/n))−1 holds.

Proof Let zn = F−1(1 − 1/n) and dn = F−1(1 − j/n). Our goal is to prove that
n f (dn)/j1/2 � (u+

F − zn)
−1, n → ∞. By (15) and equality 1 − F(dn) = j/n it is

equivalent to

√
j

u+
F − dn

� 1

u+
F − zn

, n → ∞. (23)

To show (23) remind that for distributions satisfying (15) we have

1 − F(v) = L(1/(u+
F − v))(u+

F − v)β as v ↑ u+
F

(see, for example, Theorem 3.3.12 of Embrechts et al. 1997). Since

j = 1 − F(dn)

1 − F(zn)
= L(1/(u+

F − dn))

L(1/(u+
F − zn))

(
u+

F − dn

u+
F − zn

)β

and j → ∞ as n → ∞, we obtain (u+
F − zn)/(u+

F − dn) → 0, n → ∞, for β > 0.

Then it is obvious that for β < 2

√
j

u+
F − zn

u+
F − dn

=
√

L(1/(u+
F − dn))

L(1/(u+
F − zn))

(
u+

F − zn

u+
F − dn

)1−β/2

→ 0, n → ∞.
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