
Metrika (2013) 76:393–407
DOI 10.1007/s00184-012-0394-8

D-optimal chemical balance weighing designs
with autoregressive errors

Krystyna Katulska · Łukasz Smaga

Received: 8 July 2011 / Published online: 19 April 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract In this paper, we consider the estimation problem of individual weights
of three objects. For the estimation we use the chemical balance weighing design and
the criterion of D-optimality. We assume that the error terms εi , i = 1, 2, . . . , n,

are a first-order autoregressive process. This assumption implies that the covariance
matrix of errors depends on the known parameter ρ. We present the chemical balance
weighing design matrix ˜X and we prove that this design is D-optimal in certain classes
of designs for ρ ∈ [0, 1) and it is also D-optimal in the class of designs with the design
matrix X ∈ Mn×3(±1) for some ρ ≥ 0. We prove also the necessary and sufficient
conditions under which the design is D-optimal in the class of designs Mn×3(±1), if
ρ ∈ [0, 1/(n − 2)). We present also the matrix of the D-optimal factorial design with
3 two-level factors.

Keywords Autoregressive process · D-optimal chemical balance weighing design ·
Factorial design · Fischer’s inequality · Hadamard’s inequality

1 Introduction

We make the following assumptions: n ≡ 0 (mod 4), ρ ∈ (−1, 1) and Mn×m(±1) is
the set of all n × m matrices with each entry {−1, 1}. We wish to estimate the true
unknown weights θ1, θ2, θ3 of 3 objects employing n measuring operations using a
chemical balance. Denote the observations in these n operations by y1, y2, . . . , yn ,
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394 K. Katulska, Ł. Smaga

respectively. Let observations follow the linear model

Y = Xθ + ε,

where Y = [y1, y2, . . . , yn]′ is an n×1 column vector of observations, θ = [θ1, θ2, θ3]′
is the vector of true unknown parameters, the matrix

X =

⎡

⎢

⎢

⎢

⎣

x11 x12 x13
x21 x22 x23
...

...
...

xn1 xn2 xn3

⎤

⎥

⎥

⎥

⎦

is called the design matrix and xi j = −1 if the j th object is placed on the left pan
or xi j = 1 if the j th object is placed on the right pan during the i th weighing oper-
ation, the vector ε = [ε1, ε2, . . . , εn]′ is the so-called vector of error components.
We assume that the sequence (εi ) is a first-order autoregressive process. Therefore
E(ε) = [0, 0, . . . , 0]′ is an n × 1 of zeros and Var(ε) = 1

1−ρ2 S, where

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 ρ ρ2 · · · ρn−2 ρn−1

ρ 1 ρ · · · ρn−3 ρn−2

ρ2 ρ 1 · · · ρn−4 ρn−3

...
...

...
. . .

...
...

ρn−2 ρn−3 ρn−4 · · · 1 ρ

ρn−1 ρn−2 ρn−3 · · · ρ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

and −1 < ρ < 1. If the design matrix X is full column rank, i.e. rank(X) = 3, then the
generalized least-squares estimator of vector θ is given by θ̂ = (

X′S−1X
)−1 X′S−1Y

and Var(θ̂) = 1
1−ρ2

(

X′S−1X
)−1

.

Definition 1 The design with the design matrix XD is D-optimal in the class of designs
with the design matrix in the set C ⊆ Mn×3(±1) if

det(X′
DS−1XD) = max

{

det(X′S−1X) : X ∈ C
}

.

The matrix 1
1−ρ2 A is the inverse matrix of S, where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
0 −ρ 1 + ρ2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 + ρ2 −ρ

0 0 0 · · · −ρ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

The matrix A is positive definite for ρ ∈ (−1, 1).
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D-optimal chemical balance weighing designs 395

Lemma 1 Let A be given by (2). The design XD is D-optimal in the class of designs
with design matrices in C ⊆ Mn×3(±1) if

det(X′
DAXD) = max

{

det(X′AX) : X ∈ C}

.

The case ρ = 0 is well known in the literature. The D-optimality problem is considered
for example in Hadamard (1893), Cohn (1967, 1989), Galil and Kiefer (1980), Cheng
(1980) or Jacroux et al. (1983). For ρ �= 0, the problem of the D-optimal design was
considered in Li and Yang (2005), Yeh and Lo Huang (2005) and Katulska and Smaga
(2010). In these papers, the D-optimality problem was solved in some subclasses of
Mn×3(±1).

We show in Sect. 2 that the design with the design matrix

˜X′ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎣

< n >+
< n/2 >+< n/2 >−

< n/4 >+< n/2 >+< n/4 >−

⎤

⎦ if n
4 = 2k − 1

⎡

⎣

< n >+
< n/2 >+< n/2 >−

< n/4 >+< n/2 >−< n/4 >+

⎤

⎦ if n
4 = 2k

(3)

where

< t >+ = [(−1)2, (−1)3, (−1)4, . . . , (−1)t+1],
< t >− = [(−1)1, (−1)2, (−1)3, . . . , (−1)t ]

and k = 1, 2, . . ., is D-optimal in certain classes of designs for ρ ∈ [0, 1) and this
design is D-optimal in the class of designs with design matrices X ∈ Mn×3(±1) for
ρ ∈ [0, 1/(n − 2)]. We present also theorems giving necessary and sufficient condi-
tions under which the design for three objects is D-optimal. At the end of Sect. 2, we
compare our results with results in Yeh and Lo Huang (2005). In Sect. 3, we present the
matrix of the D-optimal factorial design with 3 two-level factors, which is constructed
by the matrix of D-optimal weighing design for three objects. In the appendix, we give
some lemmas and theorems, which contain properties used in proofs of main results
in this paper, and present the proofs of theorems from Sect. 2 and 3.

2 D-optimal weighing design when ρ ∈ [0, 1)

We must introduce some notation, wchich we use in this paper. We define for x =
[x1, x2, . . . , xn]′ ∈ Mn×1(±1) the following numbers

cons(x) = # {i : xi = xi+1, 1 ≤ i ≤ n − 1} ,

fcons(x) = min {i : xi = xi+1, 1 ≤ i ≤ n − 1} ,

scons(x) = min {i : i > fcons(x), xi = xi+1, 1 ≤ i ≤ n − 1}.
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396 K. Katulska, Ł. Smaga

For example, if x = [1,−1, 1, 1,−1, 1,−1,−1, 1,−1, 1,−1]′, then cons(x) =
2, fcons(x) = 3, scons(x) = 7. For the matrix ˜X given by (3) from Lemmas 4 and 5,
we have

det(˜X′A˜X) = det

⎡

⎣

Δ 0 −2ρ(1 + ρ)

0 Δ − 4ρ 0
−2ρ(1 + ρ) 0 Δ − 8ρ

⎤

⎦

= Δ(Δ − 4ρ)(Δ − 8ρ) − 4ρ2(1 + ρ)2(Δ − 4ρ),

where Δ = x̃′Ãx = (n − 2)(1 +ρ)2 + 2(1 +ρ) and x̃ is the first column of the matrix
˜X. In the following theorem, we prove that the design ˜X given by (3) is D-optimal in
some large subclass of Mn×3(±1) for all ρ ∈ [0, 1).

Theorem 1 If n ≡ 0 (mod 4) and ρ ∈ [0, 1), then the design with the design matrix ˜X
given by (3) is D-optimal in the class of designs with design matrices X = [x, y, z] ∈
C1 ∪ C2 ∪ C3, rank(X) = 3, where

C1 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 1, cons(β) = 1, cons(γ ) = 1},
C2 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) ≥ 1, cons(β) ≥ 1, cons(γ ) ≥ 2},
C3 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) ≥ 1, cons(γ ) ≥ 2}.

The proof of Theorem 1 is given in the “Appendix”.
In the following theorem, we consider the whole class of designs Mn×3(±1) and

we show that the design ˜X of the form (3) is still D-optimal in this class if ρ ∈
[0, 1/(n − 2)].
Theorem 2 If n ≡ 0 (mod 4) and ρ ∈ [0, 1/(n − 2)], then the design with the
design matrix ˜X given by (3) is D-optimal in the class of designs with design matrices
X = [x, y, z] ∈ Mn×3(±1) and rank(X) = 3.

The proof of Theorem 2 is given in the “Appendix”.
We now formulate the necessary and sufficient conditions under which the design

is D-optimal in Mn×3(±1).

Theorem 3 Let n ≡ 0 (mod 4) and ρ ∈ [0, 1/(n − 2)). If X∗ = [x∗, y∗, z∗] ∈
Mn×3(±1) and rank(X∗) = 3, then the design X∗ is D-optimal in the class of designs
X ∈ Mn×3(±1), rank(X) = 3 if and only if

X′∗AX∗ =
⎡

⎣

Δ 0 ±2ρ(1 + ρ)

0 Δ − 4ρ 0
±2ρ(1 + ρ) 0 Δ − 8ρ

⎤

⎦ (4)

exact to permuting columns of the matrix X∗.

The proof of Theorem 3 is given in the “Appendix”.
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D-optimal chemical balance weighing designs 397

Theorem 4 Let n ≡ 0 (mod 4), ρ ∈ (0, 1/(n − 2)) and X∗ = [x∗, y∗, z∗] ∈
Mn×3(±1), rank(X∗) = 3. The design X∗ is D-optimal in the class of designs
X ∈ Mn×3(±1), rank(X) = 3 if and only if

X∗ ∈ {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) = 2}

and fcons(y∗) = n
2 , fcons(z∗) = n

4 , scons(z∗) = 3n
4 exact to permuting columns of

the matrix X∗.

The proof of Theorem 4 is given in the “Appendix”.
Yeh and Lo Huang (2005) considered the exact D-optimal designs with 2 two-level

factors and n autocorrelated observations. They proved that the design with the design
matrix

X̂′ =
⎡

⎣

1′
< n >+

< n/2 >+< n/2 >−

⎤

⎦ , (5)

where 1 = [1, 1, . . . , 1] ∈ Mn×1(±1), is D-optimal in considered class of designs
for ρ ∈ (0, 1). But as it is described in Banerjee (1975), the design from Yeh and Lo
Huang (2005) can be used as the design for finding the weights of three objects. It is
easy to calculate that

∀ρ∈(0,1) det(˜X′A˜X) > det(X̂′AX̂),

so the design X̂ given by (5) is D-worse than the design ˜X given by (3). Therefore, the
D-optimal design from the subclass of designs with the first column of all ones is not
D-optimal in the set Mn×3(±1).

3 D-optimal 23 factorial design

In this section, we consider designs of 3 factorial main effects with a first-order auto-
regressive errors. We describe the model similarly to Cheng (1980). Suppose we have
3 factors each with two levels 0 and 1. For any observation y j1 j2 j3 on the ji th level of
factor i , i = 1, 2, 3, ji = 0 or 1, E(y j1 j2 j3) can be written as

E(y j1 j2 j3) = φ0 +
3

∑

i=1

xiφ
1
i ,

where φ0 (grand mean) and φ1
i , i = 1, 2, 3 (main effects) are unknown parameters and

xi = 1 (−1) if ji = 1 (0). The sequence εi of error terms is a first-order autoregressive
process. In this setting, the design matrix X ∈ Mn×4(±1) has the first column of all
ones. Then D-optimality criterion is defined similarly to Definition 1. In this model,
we proved the following theorem.
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398 K. Katulska, Ł. Smaga

Theorem 5 Let n ≡ 0 (mod 4) and ρ ∈ (0, 1/(n − 2)). If X∗ is the matrix of the
D-optimal weighing design for three objects, then the design with the matrix [1, X∗]
is D-optimal factorial design with 3 two-level factors with a first-order autoregressive
errors.

The proof of Theorem 5 is very long and similar to the proofs of Theorems 1, 2 and
3, so we present only the sketch of it in the “Appendix”.

Acknowledgments Authors are thankful to the referees for their constructive suggestions which improved
the presentation of this article.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

First, we give several well known results.

Lemma 2 Let X be an n × m matrix and B be an n × n positive definite matrix. Then
matrix X′BX is positive semi-definite and rank

(

X′BX
) = rank (X). Moreover, X′BX

is positive definite if and only if a matrix X is of full column rank.

Theorem 6 (Hadamard’s inequality) Assume that P = [pi j ] is an n × n positive
semi-definite. Then

det(P) ≤
n

∏

i=1

pii .

Futhermore, when P is positive definite, then the equality holds if and only if P is
diagonal.

Theorem 7 (Fischer’s inequality) If a positive definite matrix

P =
[

B C
C′ D

]

is partitioned so that B and D are square and nonempty, then det(P) ≤ det(B) det(D)

and the equality holds if and only if C = 0.

Now, we present some simple lemmas.

Lemma 3 Let X ∈ Mn×3(±1). Then the determinant of the matrix X′AX, where A
is given by (2), does not change if we interchange two columns of the matrix X or we
multiply any column of this matrix by −1.

Proof This Lemma follows from properties of determinants. �
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D-optimal chemical balance weighing designs 399

Lemma 4 If ρ �= 0, Δ = x̃′Ãx = (n−2)(1+ρ)2+2(1+ρ), where x̃ is the first column
of the matrix ˜X given by (3), n ≡ 0 (mod 4), x ∈ Mn×1(±1) and ξ = 0, 1, 2, . . . , n−1,
then cons(x) = ξ if and only if x′Ax = Δ − 4ξρ.

Proof Let x = [x1, x2, . . . , xn]′. The lemma follows from the equality (see the proof
of Lemma 5 in Yeh and Lo Huang 2005)

x′Ax = (n − 2)(1 + ρ2) + 2 − 2ρ(x1x2 + x2x3 + · · · + xn−1xn).

�

Lemma 5 Let x, y ∈ Mn×1(±1) and n ≡ 0 (mod 4).

(a) If cons(x) = cons(y) = 1, fcons(x) = a > b = fcons(y), then

x′Ay =
{

(n − 2a + 2b − 2)(1 + ρ)2 + 2(1 + ρ) if x1 = y1

−((n − 2a + 2b − 2)(1 + ρ)2 + 2(1 + ρ)) if x1 �= y1
.

(b) If cons(x) = 0, cons(y) = 2, a = fcons(y), b = scons(y), then

x′Ay =
{

(n + 2a − 2b − 2)(1 + ρ)2 + 2(1 + ρ) if x1 = y1

−((n + 2a − 2b − 2)(1 + ρ)2 + 2(1 + ρ)) if x1 �= y1
.

(c) If cons(x) = 0, cons(y) = 1, a = fcons(y), then

x′Ay =
{

(2a − n)(1 + ρ)2 if x1 = y1

−(2a − n)(1 + ρ)2 if x1 �= y1
.

(d) If cons(x) = 1, fcons(x) = n
2 , cons(y) = 2, b = fcons(y) < n

2 , c = scons(y) >
n
2 , then

x′Ay =
{

2(b + c − n)(1 + ρ)2 if x1 = y1

−2(b + c − n)(1 + ρ)2 if x1 �= y1
.

Proof For example, we prove (c), when x1 = y1 = 1. If a is odd, then ya = 1, else
ya = −1. In both these situations, we have

y′Ax = y′[1 + ρ,−(1 + ρ)2, (1 + ρ)2, . . . ,−(1 + ρ)2, (1 + ρ)2,−(1 + ρ)]′
= (2a − n)(1 + ρ)2.

�

Lemma 6 Assume that ρ ∈ (0, 1) and a = 2k, k ∈ Z. Then (a(1 + ρ) + 2)2 ≥ 4ρ2.
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400 K. Katulska, Ł. Smaga

Proof It is easy to see that

(2k(1 + ρ) + 2)2 − 4ρ2 = (2k(1 + ρ) + 2 − 2ρ)(2k(1 + ρ) + 2 + 2ρ)

= 4(k + kρ + 1 − ρ)(k + kρ + 1 + ρ)

= 4(k + 1)(1 + ρ)(k + 1 + ρ(k − 1)) ≥ 0,

because

if k ≥ 0, then (k + 1)(1 + ρ) > 0 and k + 1 + ρ(k − 1) > 0,
if k < 0, then (k + 1)(1 + ρ) ≤ 0 and k + 1 + ρ(k − 1) ≤ 0. �

Lemma 7 Let ρ ∈ (0, 1). The function g : R → R, g(t) = (t (1 + ρ) + 2)2 is
increasing for t ≥ −2

1+ρ
and decreasing for t ≤ −2

1+ρ
.

Proof This is clear because the function g is the quadratic function with zero in
t0 = −2

1+ρ
for fixed ρ ∈ (0, 1). �

Now, we present proofs of the theorems.

Proof of Theorem 1 If ρ = 0, then the matrix S given by (1) is equal to the identity
matrix and from Hadamard (1893) we have det(˜X′S−1

˜X) = det(˜X′
˜X) ≥ det(X′X) =

det(X′S−1X), because ˜X′
˜X = nI, where I is the identity matrix of size 3. Therefore,

we assume that ρ ∈ (0, 1). From Lemma 3, we suppose that the first row of the matrix
X is [1, 1, 1]. The matrix X′AX is positive definite from Lemma 2, because the matrix
A given by (2) is positive definite and rank(X) = 3.

We must consider three cases. We show in Case i , i = 1, 2, 3, that

det(˜X′A˜X) ≥ det(X′AX) (6)

for all X ∈ Ci , and by Lemma 1, we conclude that the matrix ˜X given by (3) is the
matrix of the D-optimal design in the considered class of the designs.

Case 1 X = [x, y, z] ∈ C1

From Lemma 3, we can assume that c = fcons(z) < b = fcons(y) < a = fcons(x).
By definition of fcons(x), we obtain c ≥ 1 and a ≤ n − 1. If n = 4, then there is only
one design with the design matrix such that c = 1, b = 2, a = 3. So det(X′AX) =
−32ρ3+32, det(˜X′A˜X) = 32ρ3+64ρ2+96ρ+64. Hence det(˜X′A˜X)−det(X′AX) =
32(2ρ3 + 2ρ2 + 3ρ + 1) > 0. If n ≥ 8, then from Lemmas 4 and 5(a), it follows that

det(X′AX) = det

⎡

⎣

Δ − 4ρ Γ1 Γ2
Γ1 Δ − 4ρ Γ3
Γ2 Γ3 Δ − 4ρ

⎤

⎦ , (7)

where

Γ1 = (n − 2a + 2b − 2)(1 + ρ)2 + 2(1 + ρ),

Γ2 = (n − 2a + 2c − 2)(1 + ρ)2 + 2(1 + ρ),
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D-optimal chemical balance weighing designs 401

Γ3 = (n − 2b + 2c − 2)(1 + ρ)2 + 2(1 + ρ).

There are many posible design matrices X which depend on the numbers a, b and
c. Unfortunately, we do not know one proof of the inequality (6) for all of them.
Therefore, we must divide the proof into subcases.

Subcase 1.1 a ≤ n
2 or

(

a > n
2 and b ≥ a − n

2 + 2
)

. From Fischer’s inequality, we
have

det(X′AX) ≤ (Δ − 4ρ)
[

(Δ − 4ρ)2 − Γ 2
1

]

. (8)

Since n − 2a + 2b − 2 ≥ 2 and −2
1+ρ

∈ (−2,−1), we conclude from Lemma 7 that

the inequality Γ 2
1 ≥ [

2(1 + ρ)2 + 2(1 + ρ)
]2

holds. Therefore by inequality (8), we
obtain

det(X′AX) ≤ (Δ − 4ρ)

[

(Δ − 4ρ)2 −
[

2(1 + ρ)2 + 2(1 + ρ)
]2

]

. (9)

Hence

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X) − (Δ − 4ρ)
[

(Δ − 4ρ)2

−
[

2(1 + ρ)2 + 2(1 + ρ)
]2

]

= (Δ − 4ρ)
[

16ρ3 + 32ρ2 + 48ρ + 16
]

> 0.

Subcase 1.2 a > n
2 and b ≤ a− n

2 . Therefore, b ≤ n
2 −1 and n−2b+2c−2 ≥ 2c ≥ 2

because c ≥ 1. From Fischer’s inequality and Lemma 7, it follows that

det(X′AX) ≤ (Δ − 4ρ)
[

(Δ − 4ρ)2 − Γ 2
3

]

≤ (Δ − 4ρ)

[

(Δ − 4ρ)2 −
[

2(1 + ρ)2 + 2(1 + ρ)
]2

]

.

Thus, applying similar arguments to those in the proof of Subcase 1.1, we obtain (6).

Subcase 1.3 a > n
2 , b = a − n

2 + 1 and c �= b − n
2 + 1. Thus b ≤ n

2 and
(

c ≤ b − n
2 or c ≥ b − n

2 + 2
)

. But c ≤ b − n
2 ≤ 0 and therefore we have only

the case c ≥ b − n
2 + 2. Thus n − 2b + 2c − 2 ≥ 2 and the rest of the proof runs as

in Subcase 1.2.

Subcase 1.4 a > n
2 , b = a− n

2 +1 and c = b− n
2 +1. In this subcase c = a−n+2 ≤ 1

but c ≥ 1 so c = 1. Therefore b = n
2 , a = n − 1 and by (7), we have Γ1 = Γ3 =
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2(1 + ρ), Γ2 = (2 − n)(1 + ρ)2 + 2(1 + ρ) and

det(˜X′A˜X) − det(X′AX) = det(˜X′A˜X) − (Δ − 4ρ)3

− 8(1 + ρ)3((2 − n)(1 + ρ) + 2)

+ (Δ − 4ρ)(1 + ρ)2((2 − n)(1 + ρ) + 2)2

+ 8(Δ − 4ρ)(1 + ρ)2

= (Δ − 4ρ)
[

−16ρ2 − 4ρ2(1 + ρ)2

+ (1 + ρ)2((2 − n)(1 + ρ) + 2)2

+ 8 (1 + ρ)2
]

− 8(1 + ρ)3((2 − n)(1 + ρ) + 2).

From Lemma 7, we obtain ((2 − n)(1 + ρ) + 2)2 ≥ (−4(1 + ρ) + 2)2. Hence

det(˜X′A˜X) − det(X′AX) ≥ (Δ − 4ρ)
[

−16ρ2 − 4ρ2(1 + ρ)2

+ (1 + ρ)2(−4(1 + ρ) + 2)2

+ 8 (1 + ρ)2
]

− 8(1 + ρ)3((2 − n)(1 + ρ) + 2)

= (Δ − 4ρ)
[

4(3ρ4 + 10ρ3 + 8ρ2 + 6ρ + 1)

+ 8 (1 + ρ)2
]

− 8(1 + ρ)3((2 − n)(1 + ρ) + 2) > 0,

because (2 − n)(1 + ρ) + 2 < 0.

Case 2 X = [x, y, z] ∈ C2

In this case we use Hadamard’s inequality. From this inequality, we obtain

det(X′AX) = det([x, y, z]′A[x, y, z]) ≤ (x′Ax)(y′Ay)(z′Az).

The inequalities x′Ax ≤ Δ − 4ρ, y′Ay ≤ Δ − 4ρ and z′Az ≤ Δ − 8ρ hold by
Lemma 4. Hence

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X) − (Δ − 4ρ)2(Δ − 8ρ)

= 4ρ(Δ − 4ρ)(Δ − 8ρ − ρ(1 + ρ)2) > 0,

because

Δ − 8ρ − ρ(1 + ρ)2 =
{

4 − ρ(ρ2 + 3) if n = 4
ρ2(−ρ + n − 4) + ρ(2n − 11) + n if n ≥ 8

is positive for all ρ ∈ (0, 1).

Case 3 X = [x, y, z] ∈ C3
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D-optimal chemical balance weighing designs 403

We can write C3 as C3 = C3.1 ∪ C3.2 ∪ C3.3, where

C3.1 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) = 2} ,

C3.2 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) ≥ 2, cons(γ ) ≥ 2} ,

C3.3 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) ≥ 3}.
In this case, the proof follows from the following subcases.

Subcase 3.1 X = [x, y, z] ∈ C3.1. Let a = fcons(z) and b = scons(z). From
Lemma 3, we have

det(X′AX) = det([x, y, z]′A[x, y, z]) = det([x, z, y]′A[x, z, y]). (10)

From equality (10), Fischer’s inequality and Lemma 4, we obtain

det(X′AX) ≤ (Δ − 4ρ)[Δ(Δ − 8ρ) − (x′Az)2]. (11)

By Lemmas 5(b) and 6, we conclude that

(x′Az)2 = ((n + 2a − 2b − 2)(1 + ρ)2 + 2(1 + ρ))2 ≥ 4ρ2(1 + ρ)2, (12)

since n + 2a − 2b − 2 is even. By (11) and (12), it follows that

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X)

−(Δ − 4ρ)[Δ(Δ − 8ρ) − (x′Az)2]
= (Δ − 4ρ)(1 + ρ)2

· [((n + 2a − 2b − 2)(1 + ρ) + 2)2 − 4ρ2] ≥ 0.

Subcase 3.2 X = [x, y, z] ∈ C3.2. From Hadamard’s inequality and Lemma 4, we
see that

det(X′AX) ≤ (x′Ax)(y′Ay)(z′Az) ≤ Δ(Δ − 8ρ)2.

Hence

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X) − Δ(Δ − 8ρ)2

= 4ρ
[

Δ(Δ − 8ρ) − ρ(1 + ρ)2(Δ − 4ρ)
]

≥ 4ρ
[

(Δ − 4ρ)(Δ − 8ρ) − ρ(1 + ρ)2(Δ − 4ρ)
]

= 4ρ(Δ − 4ρ)
[

(n − 2 − ρ)(1 + ρ)2 + 2 − 6ρ
]

.

Since n = 4, 8, . . . and ρ ∈ (0, 1), we obtain

(n − 2−ρ)(1+ρ)2 + 2 − 6ρ ≥(4 − 2 − ρ)(1 + ρ)2 + 2 − 6ρ = 4 − 3ρ − ρ3 > 0.

Therefore det(˜X′A˜X) > det(X′AX).
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Subcase 3.3 X = [x, y, z] ∈ C3.3. Similarly, we conclude from Hadamard’s inequal-
ity and Lemma 4 that

det(X′AX) ≤ (x′Ax)(y′Ay)(z′Az) ≤ Δ(Δ − 4ρ)(Δ − 12ρ).

Therefore

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X) − Δ(Δ − 4ρ)(Δ − 12ρ)

= 4ρ(1 + ρ)(Δ − 4ρ)
[

n − ρ2 + (n − 3)ρ
]

> 0,

since ρ ∈ (0, 1). The proof is complete. �
Proof of Theorem 2 The D-optimality of the design with the design matrix ˜X given
by (3), when ρ = 0, follows by the same argument as in the beginning of the proof
of Theorem 1. So, we assume that ρ ∈ (0, 1/(n − 2)] and (by Lemma 3) the first row
of X contains all ones. Therefore, we can consider the class of the design matrices
C1 ∪ C2 ∪ C3 ∪ C4, where C1, C2, C3 are described in Theorem 1 and

C4 = {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) = 1} . (13)

The proof is similar to that in Theorem 1. From that theorem, it follows that

det(˜X′A˜X) ≥ det(X′AX) if X = [x, y, z] ∈ C1∪C2∪C3. Assume that X = [x, y, z] ∈
C4. Without loss of generality we can suppose that fcons(y) = a > b = fcons(z).
From Lemmas 5(a), (c) and 4, we obtain

det(X′AX) = det

⎡

⎣

Δ Ψ1 Ψ2
Ψ1 Δ − 4ρ Ψ3
Ψ2 Ψ3 Δ − 4ρ

⎤

⎦ ,

where

Ψ1 = (2a − n)(1 + ρ)2,

Ψ2 = (2b − n)(1 + ρ)2,

Ψ3 = (n − 2a + 2b − 2)(1 + ρ)2 + 2(1 + ρ).

We must divide the proof into two cases.

Case 1 If a �= n
2 , then from Fischer’s inequality, it follows that

det(X′AX)≤(Δ − 4ρ)
[

Δ(Δ − 4ρ) − Ψ 2
1

]

≤ (Δ − 4ρ)
[

Δ(Δ − 4ρ) − 4(1 + ρ)4
]

and

det(˜X′A˜X) − det(X′AX) ≥ det(˜X′A˜X) − (Δ − 4ρ)
[

Δ(Δ − 4ρ) − 4(1 + ρ)4
]

= (Δ − 4ρ)
[

−4ρΔ − 4ρ2(1 + ρ)2 + 4(1 + ρ)4
]

.
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It is clear that Δ ≤ n(1 + ρ)2. Consequently

det(˜X′A˜X) − det(X′AX) ≥ (Δ − 4ρ)
[

−4ρn(1 + ρ)2 − 4ρ2(1 + ρ)2 + 4(1 + ρ)4
]

= 4(Δ − 4ρ)(1 + ρ)2 [1 + ρ(2 − n)] ≥ 0,

because ρ ∈ (0, 1/(n − 2)].
Case 2 If a = n

2 , then b �= n
2 . From Lemma 3, we have

det(X′AX) = det([x, y, z]′A[x, y, z]) = det([x, z, y]′A[x, z, y])

and from Fischer’s inequality, we conclude that

det(X′AX)≤(Δ − 4ρ)
[

Δ(Δ − 4ρ)−Ψ 2
2

]

≤ (Δ − 4ρ)
[

Δ(Δ − 4ρ)−4(1 + ρ)4
]

.

According to Case 1 we have det(˜X′A˜X) ≥ det(X′AX) and the proof is complete.
�

Proof of Theorem 3 If ρ = 0, then the theorem is true by Hadamard (1893). So,
assume that ρ ∈ (0, 1/(n − 2)).

(⇐) It is clear, because det(X′∗AX∗) = det(˜X′A˜X), where ˜X is given by (3) and it
is a D-optimal design by Theorem 2.

(⇒) Let X∗ = [x∗, y∗, z∗] be D-optimal design in Mn×3(±1). Thus from Theorem
2, we obtain det(X′∗AX∗) = Δ(Δ − 4ρ)(Δ − 8ρ) − 4ρ2(1 + ρ)2(Δ − 4ρ). From the
proofs of Theorems 1 and 2, we have det(X′∗AX∗) > det(X′AX) for each X belonging
to

Mn×3(±1)\ {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) = 2}.

Now, let X∗ ∈ {[α,β, γ ] ∈ Mn×3(±1) : cons(α) = 0, cons(β) = 1, cons(γ ) = 2}.
Then from Lemma 4, it follows that x′∗Ax∗ = Δ, y′∗Ay∗ = Δ−4ρ, z′∗Az∗ = Δ−8ρ.
By Lemma 3, we obtain

det(X′∗AX∗) = det([x∗, z∗, y∗]′A[x∗, z∗, y∗]). (14)

Applying Fischer’s inequality, Lemmas 5(b) and 6, we can write

det(X′∗AX∗) ≤ (Δ − 4ρ)[Δ(Δ − 8ρ) − (x′∗Az∗)2] (15)

≤ (Δ − 4ρ)[Δ(Δ − 8ρ) − 4ρ2(1 + ρ)2]. (16)

By assumption, X∗ is D-optimal design, so in inequalities (15) and (16) must hold
equalities. From Fischer’s inequality, it follows that the equality in (15) holds if and
only if x′∗Ay∗ = y′∗Az∗ = 0. In (16), the equality holds if and only if x′∗Az∗ =
±2ρ(1 + ρ). So the matrix X′∗AX∗ has the form (4). �
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Proof of Theorem 4 (⇐) By Lemmas 4 and 5, the matrix X′∗AX∗ has the form (4).
Therefore, from Theorem 3 the design X∗ is D-optimal.

(⇒) By the assumption and Theorem 3 the matrix X′∗AX∗ has the form (4). From
Lemma 4, it follows that x′∗Ax∗ = Δ ⇔ cons(x∗) = 0, y′∗Ay∗ = Δ − 4ρ ⇔
cons(y∗) = 1, z′∗Az∗ = Δ − 8ρ ⇔ cons(z∗) = 2. Let a = fcons(y∗), b =
fcons(z∗), c = scons(z∗). By Lemma 5(c), we obtain x′∗Ay∗ = ±(2a−n)(1+ρ)2 = 0
and hence a = n

2 . Therefore, from Lemma 5(b), (d), we conclude that x′∗Az∗ =
±(1 + ρ)((n + 2b − 2c − 2)(1 + ρ) + 2) = ±2ρ(1 + ρ) ⇒ c − b = n

2 , and
y′∗Az∗ = ±2(b + c − n)(1 + ρ)2 = 0 ⇒ b + c = n. Hence b = n

4 , c = 3n
4 . The

theorem is proved. �

Proof of Theorem 5 (Sketch) Assume that X∗ = [x∗, y∗, z∗] is the matrix of the
D-optimal weighing design for three objects. By Theorem 4, it follows that cons(x∗) =
0, cons(y∗) = 1, cons(z∗) = 2 and fcons(y∗) = n

2 , fcons(z∗) = n
4 , scons(z∗) = 3n

4
exact to permuting columns of the matrix X∗. It is easy to calculate that 1′A1 =
(n − 2)(1 − ρ)2 + 2(1 − ρ), 1′Ax∗ = 0, 1′Ay∗ = ±2ρ(1 − ρ), 1′Az∗ = 0. Hence
and from Theorem 3, we obtain

[1, X∗]′A[1, X∗] =

⎡

⎢

⎢

⎣

1′A1 0 ±2ρ(1 − ρ) 0
0 Δ 0 ±2ρ(1 + ρ)

±2ρ(1 − ρ) 0 Δ − 4ρ 0
0 ±2ρ(1 + ρ) 0 Δ − 8ρ

⎤

⎥

⎥

⎦

(17)

For D-optimal factorial design with 3 two-level factors with a first-order autore-
gressive errors, analogous result as that in Lemma 1 is true. So to prove D-optimality
of the design [1, X∗], we show (similar as in the proofs of Theorems 1 and 2) that the
determinant of the matrix given by (17) is greater or equal than det([1, X]′A[1, X])
for all X ∈ Mn×3(±1). If n = 4, then by Cauchy theorem and equality (17), it follows
that

det([1, X∗]′A[1, X∗]) = det([1, X∗]′) det(A) det([1, X∗]) (18)

= det([1, X∗]′[1, X∗]) det(A) (19)

= 44 det(A). (20)

Hence and by Hadamard (1893) the design [1, X∗] is D-optimal. Let n ≥ 8. Now, we
must consider the same cases and subcases as in proofs of Theorems 1 and 2. In each
case and subcase, we use the same inequality, but calculations are longer and more com-
plicated. As an example, we show the proof in Subcase 3.1. Let X = [x, y, z] ∈ C3.1.
It is clear that

det([1, X]′A[1, X]) = det([1, x, y, z]′A[1, x, y, z]) (21)

= det([1, y, x, z]′A[1, y, x, z]). (22)
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Hence and by Fischer’s inequality, it follows that

det([1, X]′A[1, X]) ≤ [1′A1(Δ − 4ρ) − (1′Ay)2][Δ(Δ − 8ρ) − (x′Az)2].

By the assumption that cons(y) = 1, the inequality (1′Ay)2 ≥ 4ρ2(1 − ρ)2 holds.
From inequality (12), we have (x′Az)2 ≥ 4ρ2(1 + ρ)2. Therefore

det([1, X]′A[1, X]) ≤ [1′A1(Δ − 4ρ) − 4ρ2(1 − ρ)2] (23)

·[Δ(Δ − 8ρ) − 4ρ2(1 + ρ)2] (24)

= det([1, X∗]′A[1, X∗]). (25)

The proof is complete. �
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