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Abstract The problem of the optimal duration of a burn-in experiment is considered
in the case of simultaneous testing n components with the conditionally independent
time-transformed exponential life-times, given an unknown parameter. The explicit
solution is derived by reformulation of the problem considered to an optimal stopping
problem for a suitable defined three-dimensional Markov process and reduction to
a free-boundary problem.

Keywords Burn-in · Free-boundary method · Optimal stopping · Time-transformed
exponential distribution

1 Introduction

Burn-in is widely used in engineering reliability, statistical simulations, and medical
sensitivity testing. Traditionally, it is used to consume a product’s life until it reaches
the first change-point where the failure rate of the product is reduced to a low level. Var-
ious criteria of optimality are used in practice. Cost minimization is mostly considered,
especially in the case of decreasing failure rate of the life-times. Reward maximiza-
tion is considered by Aven and Jensen (1999), where a semimartingale approach for
solving a burn-in problem is applied. Mi (1995) has shown that if the component has
a bathtub failure rate function, then the mean residual life (MRL) of the component
has an upside-down bathtub shape. Therefore, another approach for an optimal burn-in
policy is to maximize the MRL for the bathtub-shaped failure rate function. The case
when lifetime distributions have a unimodal failure rate function (where the failure
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266 A. Giniewicz, A. Jokiel-Rokita

rate function increases to attain its maximum at a critical time, and then decreases) was
considered by Chang (2000). For detailed reviews of burn-in models and methods we
refer, for example, to Leemis and Beneke (1990), Kececioglu and Sun (1997), Block
and Savits (1997) and Lai and Xie (2006).

In this paper the optimal burn-in time is derived under the criterion of cost minimiza-
tion in testing n items I1, . . . , In . To save time, all items are tested simultaneously and
the experiment can be stopped at any time. Let T1, . . . , Tn denote the lifetimes of the
items I1, . . . , In , respectively. If the observation process is stopped at time t, the values
of T1, . . . , Tn not exceeding t are exactly known, whereas the other Ti are only known
to be larger than t. The observations available in this way are sometimes called in liter-
ature as longitudinal observational data (see Arjas 1989). If the component fails during
the test it is discarded, otherwise—it is delivered to operations. We fix a cost c > 0 to
be paid for each component that fails during the test, and a cost C(r), r ∈ [0,∞), for
each component that is put into operation and has an operative lifetime r . We assume
that the function C(r) is a right continuous, non-increasing and bounded function such
that

lim
r→∞ C(r) < c

and

lim
r→0+ C(r) > c.

Let T(1), . . . , T(n) be the order statistics of T1, . . . , Tn , and, for each t ≥ 0, let

Ht : =
n∑

i=1

1[0,t](Ti ) (1)

be the number of components that have failed up to time t . Then, if the process is
stopped at time σ (possibly depending on the outcome of the experiment), one expects
to pay a cost

J (σ ) : = E

⎡

⎣cHσ + 1{Hσ≤n−1}
n∑

j=Hσ+1

C(T( j) − σ)

⎤

⎦ . (2)

We will denote by

Ft : = σ(T1 ∧ t, . . . , Tn ∧ t),

and by T the set of all stopping times relative to (Ft )t≥0. By the burn-in problem we
mean the problem of choosing a stopping time σ ∗ ∈ T such that

J (σ ∗) = inf
σ∈T

J (σ ).
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Burn-in for a time-transformed exponential model 267

The burn-in problem is often considered under the assumption that the lifetimes are
independent, identically distributed (i.i.d.) random variables, what implies that they
are exchangeable, infinitely extendible. In this paper we solve the burn-in problem
under the assumption that the random variables T1, . . . , Tn are conditionally indepen-
dent time-transformed exponential distributed, given an unknown parameter λ, i.e. the
conditional distribution of the lifetimes is given by the density

f (t |λ) : = λs′(t) exp{−λs(t)}1(0,∞)(t), (3)

where s(t) is a known, strictly increasing and differentiable function with s(0) = 0
and limt→∞ s(t) = ∞. It is assumed that the parameter λ is a realization of a random
variable from a distribution π0 on [0,∞) which, taking a Bayesian viewpoint, can be
seen as a prior knowledge about the unknown parameter λ. By de Finetti’s theorem
(de Finetti 1937) conditionally i.i.d. random variables given some parameter are also
exchangeable, infinitely extendible. The assumption of exchangeability for the life-
times of the units in a production line adequately expresses the idea that the production
is under statistical control (see Barlow and Irony 1993).

For longitudinal observational data, non-trivial sufficient statistics exist only in
the class of time-transformed exponential distributions (Barlow and Proschan 1988),
which is considered in this paper. This subclass of exponential family covers many
distributions serving as lifetime distributions in reliability models. The exponential,
Weibull, Gompertz and Pareto distributions are some of the important members of this
family.

The family of time-transformed exponential distributions was considered by
Spizzichino (1993) in context of the optimal design of life-testing and burn-in. How-
ever the explicit solution of the problem considered is not derived in his paper, but only
some monotonicity properties of a cost function and of the observed process are given,
which may be of considerable help for obtaining relevant information on a stopping
region. This family was also considered by Runggaldier (1993), who developed numer-
ical approach to finding approximate solution of burn-in problem based on stochastic
control concepts using a subset of Weibull family of distributions as an example.

In this paper we derive the explicit solution of the burn-in problem. The result
obtained generalizes the result of Costantini and Spizzichino (1997), who considered
the burn-in problem in the case of conditionally exponential life-times. We follow
closely the approach of Costantini and Spizzichino (1997). Namely, the problem con-
sidered is reformulated to an optimal stopping problem for a suitable defined Markov
process and it is reduced to a free-boundary problem. In our, more general case, we
have to consider tree-dimensional homogeneous strong Markov process. In the paper
of Costantini and Spizzichino (1997) it is sufficient to consider, as a result of the lack
of memory of the exponential distribution, a two-dimensional Markov process. To
obtain the explicit solution of the problem considered, we use a different description
of the evolution of observation than in the paper of Costantini and Spizzichino (1997).
Our choice enables us to study the suitable monotonicity properties of some auxiliary
functions in a simplified way and to obtain a simpler form of the stopping region.

This paper is organized as follows. In Sect. 2 we describe the model and the prob-
lem considered is reformulated as the optimal stopping problem for a Markov process.
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268 A. Giniewicz, A. Jokiel-Rokita

In Sect. 3 the optimal stopping problem is solved using the free-boundary method.
Section 4 contains a numerical example. At the last Sect. 5 we discuss some aspects
of the obtained results.

2 Model formulation and preliminaries

We observe n identical components lifetimes with T1, T2, . . . , Tn that are condition-
ally i.i.d. random variables given� = λ, where� is a random variable with a known
distribution π0. We assume that the conditional distribution of the lifetimes is given
by (3). Thus the joint probability density of the vector (T1, . . . , Tn) on the positive
orthant is given by

fn(t1, . . . , tn) =
∞∫

0

λn

(
n∏

i=1

s′(ti )
)

exp

{
−λ

n∑

i=1

s(ti )

}
dπ0(λ). (4)

The distribution π0 can be seen as a prior distribution for an unknown parameter �.
We assume that π0 has finite nth moment, is not degenerate, and that π0([0, λ]) > 0
for each λ > 0.

The conditional failure rate function of the lifetimes is of the form

r(t |� = λ) = λs′(t)1(0,∞)(t),

and it is non-increasing if the function s is concave.

Lemma 1 If the function s is concave, the unconditional distribution of T1, . . . , Tn

has one-dimensional marginals with decreasing failure rate.

Proof It is a well known fact that in the exponential case, i.e. when s(t) = t , the
failure rate r0(t) is a decreasing function. In the general case considered, it can be
shown that the failure rate r(t) is equal to

r(t) = s′(t)r0(s(t)).

Because s′′(t) ≤ 0, r0(t) ≥ 0 and r ′
0(t) < 0, we have

r ′(t) = s′′(t)r0(s(t))+ (s′(t))2r ′
0(s(t)) < 0,

which completes the proof. 
�
From Lemma 1 we have that under the assumptions concerning the conditional

distribution of the lifetimes, the burn-in experiment is meaningful (Clarotti and
Spizzichino 1990). Let

Kt = n − Ht ,

t ∈ [0,∞), be the number of components still working at time t , where Ht is given
by (1), and let
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Burn-in for a time-transformed exponential model 269

Yt =
n−Kt∑

i=1

s(T(i))+ s(t)Kt , (5)

t ∈ [0,∞). For every t > 0, (Yt , Kt ) is a sufficient statistic of (Kt , T(1), . . . , T(n−Kt ))

for �, i.e. the conditional distribution of � given Ft coincides with the conditional
distribution of� given (Yt , Kt ) (Barlow and Proschan 1988). In the case of condition-
ally independent exponential lifetimes, i.e. s(t) = t , it has been shown in the paper
of Costantini and Spizzichino (1997) that (Y, K ) := {(Yt , Kt )}t≥0, is a homogeneous
Markov process and that the burn-in problem reduces to an optimal stopping prob-
lem for (Y, K ). In this case J (σ ) = E(g(Yσ , Kσ )) for some function g. If s(t) �= t ,
then the process (Y, K ), is not homogeneous. Moreover, J (σ ) is the expectation of a
function of Yσ , Kσ and σ , what will be shown in Lemma 3. Denote

Ut : =
Ht∑

i=1

s(T(i)) = Yt − s(t)(n − Ht ). (6)

For every t > 0, (Ut , Ht , t) is a sufficient statistic of (Ht , T(1), . . . , T(Ht )) for �,
i.e. the conditional distribution of � given Ft coincides with the conditional distri-
bution of � given (Ut , Ht , t). We show in this section that, under (4), (U, H, t) :=
{(Ut , Ht , t)}t≥0 is a homogeneous Markov process and that the burn-in problem con-
sidered reduces to an optimal stopping problem for (U, H, t). To apply the theory of
optimal stopping of continuous time Markov processes to solving the burn-in problem
considered, the life-testing experiment can be described by the homogeneous process
(Y, K , t) := {(Yt , Kt , t)}t≥0. We use the process (U, H, t) instead of the process
(Y, K , t) to describe the evolution of observation because {Ut }t≥0 is a pure jump pro-
cess, whereas {Yt }t≥0 has continuous trajectories. Our choice enables us to study the
suitable monotonicity properties of some auxiliary functions in a simplified way and
to obtain a simpler form of the stopping region.

Denote E = [0,∞)×{0, 1, . . . , n}×[0,∞) the state space of the process (U, H, t).
The family of probability measures {πu,h,t },

dπu,h,t (λ) ∝ λh exp{−λ(u + (n − h)s(t))} dπ0(λ)

is the family of the conditional laws of � given (Ut , Ht , t) = (u, h, t). Denote

p(u, h, t) : = (n − h)s′(t)λ̂(u, h, t), (7)

where

λ̂(u, h, t) : =
∞∫

0

λ dπu,h,t (λ) = E[�|(Ut , Ht , t) = (u, h, t)]. (8)

Lemma 2 The process (U, H, t) has the strong Markov property and its infinitesimal
operator for f ∈ DA ={ f : f (·, n, t), f (u, n, ·)∈Cb, f (u, h, ·)∈C 1

b } is of the form
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A f (u, h, t) =

⎧
⎪⎨

⎪⎩

p(u, h, t)
[

f (u + s(t), h + 1, t)− f (u, h, t)
]

+ ∂ f
∂t (u, h, t), for h < n,

0, for h = n,

(9)

where the function p(u, h, t) is given by (7).

Proof We begin by the analysis of the process {Ht }t≥0. It is a counting process with
{Ft ∨σ(�)}-intensity {(n − Ht )s′(t)�}t≥0 and hence (Bremaud 1981, Theorem T14)
with {Ft }-intensity {p(Ut , Ht , t)}t≥0, where p(u, h, t) is given by (7). By the Doob-
Meyer decomposition

d Ht = p(Ut , Ht , t) dt + d Mt ,

where Mt is a uniquely determined martingale. It follows that for every bounded
measurable f

M f
t : =

t∫

0

[
f (Uu− + s(u), Hu− + 1, u−)− f (Uu−, Hu−, u−)] d Mu

=
∑

u≤t

[
f (Uu, Hu, u)− f (Uu−, Hu−, u−)]−

t∫

0

[
f (Uu + s(u), Hu + 1, u)

− f (Uu, Hu, u)
]

p(Uu, Hu, u) du (10)

is also a martingale for every bounded, measurable f .
On the other hand, from Ito’s Lemma

f (Ut , Ht , t) = f (0, 0, 0)+
t∫

0

∂ f

∂t
(Uu, Hu, u) du

+
∑

u≤t

[
f (Uu, Hu, u)− f (Uu−, Hu−, u−)] . (11)

Combining (10) with (11) and applying notation (9), we get

f (Ut , Ht , t) = f (0, 0, 0)+
t∫

0

[
f (Uu + s(u), Hu + 1, u)− f (Uu, Hu, u)

]

×(n − Hu)s
′(u)λ̂(Uu, Hu, u) du +

t∫

0

∂ f

∂t
(Uu, Hu, u) du + M f

t

= f (0, 0, 0)+ M f
t +

t∫

0

A (Uu, Hu, u) du.
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Burn-in for a time-transformed exponential model 271

Thus, it is easy to see, that the equation above describes a martingale problem,
whose solution has the strong Markov property, and the infinitesimal operator A of
the process (U, H, t) is of the form (9). 
�

For every w ∈ L1(π0), let

ŵ(u, h, t) =
∞∫

0

w(λ, t) dπu,h,t (λ) = E [w(�, t)|(Ut , Ht , t) = (u, h, t)] . (12)

We will denote by

ρ(λ, t) : = E [C(T − t)|� = λ, T > t] , (13)

where for a given λ, the density of T is given by (3).

Lemma 3 For every stopping time σ ∈ T , the expected loss function given by (2)
can be represented as

J (σ ) = E [g(Uσ , Hσ , σ )] ,

where

g(u, h, t) : = ch + (n − h)ρ̂(u, h, t), (14)

and ρ̂ is defined by (13) and (12). Moreover, for all (u, h, t) ∈ E

A g(u, h, t) = p(u, h, t)
[
c − γ̂ (u + s(t), h + 1, t)

]
, (15)

where γ̂ is defined by (12) and

γ (λ, t) : = ρ(λ, t)−
∂ρ
∂t (λ, t)

s′(t)λ
, (16)

and p(u, h, t) is given by (7).

Proof For every σ ∈ T , we have

J (σ ) = E
[
cHσ + 1{Hσ<n}

n∑

j=Hσ+1

C(T( j) − σ)
]

= E
[

E
[
cHσ + 1{Hσ<n}

n∑

j=Hσ+1

C(T( j) − σ)|Fσ

]]
,
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and

E

⎡

⎣
n∑

j=Hσ+1

C(T( j) − σ)|Fσ

⎤

⎦ = E

⎡

⎣
+∞∫

σ+
C(r − σ)d K (r)|Fσ

⎤

⎦ .

Since the process (U, H, t) has the strong Markov property, and

E

⎡

⎣
n∑

j=Ht +1

C(T( j) − t)|Ft

⎤

⎦ = E

⎡

⎣
n∑

j=Ht +1

C(T( j) − t)|(Ut , Ht , t)

⎤

⎦

= (n − Ht )E
[

E [C(T − t)|�, T > t] |(Ut , Ht , t)
]
,

and applying notation (13) and (14), we have

J (σ ) = E
[
cHσ + (n − Hσ )ρ̂(Uσ , Hσ , σ )

] = E [g(Uσ , Hσ , σ )] .

By Lemma 2

A g(u, h, t) = p(u, h, t)
[
g(u + s(t), h + 1, t)− g(u, h, t)

]+ ∂g

∂t
(u, h, t)

+p(u, h, t)
[
c + (n−h−1)ρ̂(u + s(t), h + 1, t)−(n−h)ρ̂(u, h, t)

]

+(n − h)
∂ρ̂

∂t
(u, h, t).

But

∂ρ̂

∂t
(u, h, t) = ∂̂ρ

∂t
(u, h, t)+ p(u, h, t)

[
ρ̂(u, h, t)− ρ̂(u + s(t), h + 1, t)

]
,

therefore

A g(u, h, t) = p(u, h, t)

[
c − ρ(u + s(t), h + 1, t)+

∂̂ρ
∂t (u, h, t)

s′(t)λ̂(u, h, t)

]
.

Notice, that

∂̂ρ
∂t (u, h, t)

λ̂(u, h, t)
= ̂∂ρ

∂t

1

λ
(u + s(t), h + 1, t).

After applying the result above and notation (16), we obtain formula (15), and the
proof is complete. 
�
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3 Solution of the burn-in optimal stopping problem

By Lemmas 2 and 3, the burn-in problem considered reduces to the optimal stopping
problem for the Markov process (U, H, t), namely, to finding σ ∗ ∈ T such that

E
[
g(Uσ ∗ , Hσ ∗ , σ ∗)

] = inf
σ∈T

E [g(Uσ , Hσ , σ )] .

Under the assumptions concerning the function C

E

[
sup
σ∈T

|g(Ut , Ht , t)|
]
< ∞,

therefore such the optimal stopping time σ ∗ exists in our problem.
By the general theory of optimal stopping of continuous-time Markov processes

(see Peskir and Shiryaev 2006), the optimal stopping time

σ ∗ = inf {t ≥ 0 : (Ut , Ht , t) ∈ 	} ,

where

	 = {(u, h, t) : g(u, h, t) = v(u, h, t)} ,

and

v(u, h, t) = inf
σ∈T ,σ≥t

E [g(Uσ , Hσ , σ )|Ut = u, Ht = h] .

Consider the free-boundary problem

g∗(u, h, t) = g(u, h, t), when (u, h, t) ∈ 	∗,

A g∗(u, h, t) = 0, when (u, h, t) ∈ 	̄∗,
(17)

where 	̄∗ denotes the complement of 	∗ in E. It follows from the regular characteriza-
tion of the value function (see Peskir and Shiryaev 2006) that if there exists a solution
(	∗, g∗) of (17) that is smooth enough, and that also satisfies

g∗(u, h, t) < g(u, h, t), when (u, h, t) ∈ 	̄∗,

A g∗(u, h, t) ≥ 0, when (u, h, t) ∈ 	∗,
(18)

then this solution must be (	, v).
To solve the burn-in problem we should find the form of the set 	 or the form of the

value function v. The following lemma will be useful for determining the monotonic-
ity properties of a function which will be used to describe a solution of the problem
considered.

123



274 A. Giniewicz, A. Jokiel-Rokita

Lemma 4 If the function w(λ, t) is an increasing function of λ for each t and a non-
increasing function of t for each λ, then the function ŵ(u, h, t) is a decreasing function
of u for each h and t, an increasing function of h for each u and t, and a decreasing
function of t for each u and h.

Proof Let us first prove that ŵ(u, h, t) is a decreasing function of u. For fixed h and t ,
the family dπu,h,t (λ) parametrized by u, has a monotone likelihood ratio in −λ. Thus
for any increasing function 
(λ),

∫∞
0 
(λ) dπu,h,t (λ) is a decreasing function of u.

It immediately follows, that ŵ(u, h, t) is a decreasing function of u.
Using the same reasoning and a reparametrization of the family dπu,h,t (λ) as

dπ ′
y,h(λ) ∝ λhe−λyπ0(λ) with y = u + (n − h)s(t), it can be shown that

E [w(�, t)|Yt = y, Ht = h] < E [w(�, t)|Yt = y, Ht = h + 1] ,

and equivalently

ŵ(u, h, t) < ŵ(u + s(t), h + 1, t). (19)

Because ŵ(u, h, t) is a decreasing function of u, we have ŵ(u, h, t) < ŵ(u, h +1, t).
It remains to show, that ŵ(u, h, t) is a decreasing function of t . We have

∂ŵ

∂t
(u, h, t) = ∂̂w

∂t
(u, h, t)+ p(u, h, t)

[
ŵ(u, h, t)− ŵ(u + s(t), h + 1, t)

]
,

where p(u, h, t) is given by (7). By inequality (19) and the fact, that p(u, h, t) > 0
for each t , we have

∂ŵ

∂t
(u, h, t) <

∂̂w

∂t
(u, h, t).

By the assumption that w(λ, t) is a non-increasing function of t , we obtain inequality
∂w
∂t (λ, t) ≤ 0, which implies that both ∂̂w

∂t (u, h, t) and ∂ŵ
∂t (u, h, t) < 0, and completes

the proof. 
�
Corollary 1 The function p(u, h, t) given by (7) is a decreasing function of u for
each h and t.

Corollary 2 Assume, that the function γ (λ, t) given by (16) satisfies the following
conditions

(i) it is an increasing function of λ and a non-increasing function of t ,
(ii) limt→∞ γ̂ (s(t), n, t) < c.

Then γ̂ (u, h, t) is a decreasing function of u for each h and t, an increasing function
of h for each u and t, and a decreasing function of t for each u and h. Moreover for
each h and u,

lim
t→∞ γ̂ (u + s(t), h + 1, t) < c. (20)
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Remark 1 The assumptions of Corollary 2 are usually easy to verify in specific cases
(see Sect. 4 for example). If the assumptions concerning the cost function C are sat-
isfied, the function s is concave and s′′(t)

s′(t) is a non-decreasing function of t , then the
function γ (λ, t) satisfies the assumption (i) of Corollary 2.

Motivated by the monotonicity properties of the function γ̂ (u, h, t), given in Cor-
ollary 2, and formula (15), we suggest that the set 	 is of the form

	 = 	0 ∪ 	1 ∪ · · · ∪ 	n,

where 	h = {(u, h, t) : t ≥ th(u), u ≥ 0} for h ≤ n, and tn(u) = 0. Furthermore, the
function v satisfies the following conditions.

Lemma 5 For (u, h, t) ∈ 	

A v(u, h, t) = p(u, h, t)q(u, h, t),

where

q(u, h, t) : = c − γ̂ (u + s(t), h + 1, t)+ (v − g)(u + s(t), h + 1, t), (21)

and p(u, h, t) is given by (7). For (u, h, t) ∈ 	̄
∂(v − g)

∂t
(u, h, t) = p(u, h, t)[(v − g)(u, h, t)− q(u, h, t)]. (22)

Proof By Lemma 2 and the fact, that v(u, h, t) = g(u, h, t) for (u, h, t) ∈ 	, we
obtain

A v(u, h, t) = p(u, h, t)
[
v(u + s(t), h + 1, t)− v(u, h, t)

]+ ∂v

∂t
(u, h, t)

= p(u, h, t)
[
v(u + s(t), h + 1, t)− g(u, h, t)

]+ ∂g

∂t
(u, h, t)

= A g(u, h, t)+ p(u, h, t)(v − g)(u + s(t), h + 1, t).

Using formula (15)

A v(u, h, t) = p(u, h, t)
[
c − γ̂ (u + s(t), h + 1, t)+ (v − g)(u + s(t), h + 1, t)

]

= p(u, h, t)q(u, h, t),

which completes the first part of the lemma.
Applying formula (9) to the function v − g we have

A (v − g)(u, h, t) = p(u, h, t)
[
(v − g)(u + s(t), h + 1, t)− (v − g)(u, h, t)

]

+∂(v − g)

∂t
(u, h, t). (23)
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From the linearity of the operator A , and the fact that A v(u, h, t) = 0 for (u, h, t) ∈
	̄, we get

A (v − g)(u, h, t) = −A g(u, h, t) = p(u, h, t)
[
c − γ̂ (u + s(t), h + 1, t)

]
. (24)

Comparing the right hand sides of Eqs. (23) and (24), and using notation (21), we
obtain formula (22), which completes the proof. 
�
Theorem 1 Assume that the conditions of Corollary 2 hold. Then, the solution v to
the free-boundary problem given by (17) and (18) can be derived recursively from the
following equations

v(u, n, t) = g(u, n, t)

for all u ≥ 0 and t ≥ 0, and for h < n

v(u, h, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g(u, h, t), for t ≥ th(u),

g(u, h, t)+
th(u)∫

t
p(u, h, z)q(u, h, z)

× exp

{
−

z∫
t

p(u, h, x) dx

}
dz, for t < th(u),

(25)

where for a given h and u, th(u) is the unique solution to the equation

q(u, h, t) = 0 (26)

or th(u) = 0, if Eq. (26) has no solution in [0,∞), where the function p and q are
given by (7) and (21), respectively.

Proof The proof will be carried out by backward induction with respect to h. For h = n
we have v(u, n, t) = g(u, n, t) and A v(u, n, t) = 0 (by Lemma 2) for all u ≥ 0, t ≥
0. Therefore the conditions (17) and (18) are satisfied with

	n = {(u, n, t) : u ≥ 0, t ≥ 0}.

For h = n − 1, we have v(u, n − 1, t) = g(u, n − 1, t), when t ≥ tn−1(u), and

v(u, n − 1, t) = g(u, n − 1, t)+
tn−1(u)∫

t

p(u, n − 1, z)q(u, n − 1, z)

× exp

⎧
⎨

⎩−
z∫

t

p(u, n − 1, x) dx

⎫
⎬

⎭ dz,
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when t < tn−1(u), where p(u, n − 1, t) is given by (7) and

q(u, n − 1, t) = c − γ̂ (u + s(t), n, t).

By the monotonicity properties of the function γ̂ , given in Corollary 2, we have that
the function q(u, n − 1, t) is an increasing function of u for each t , and an increasing
function of t for each u. Moreover, for every given u, it changes sign from negative
to positive exactly once at the point tn−1(u) or it is positive for all t , and then we put
tn−1(u) = 0. Therefore, for each u ≥ 0

v(u, n − 1, t) = g(u, n − 1, t), when t ≥ tn−1(u),

v(u, n − 1, t) < g(u, n − 1, t), when t < tn−1(u),

because p(u, h, t) > 0 for all u, h and t . By Lemma 5 the function v also satis-
fies the conditions imposed on the infinitesimal operator A v(u, n − 1, t). Namely,
A v(u, n−1, t) ≥ 0, when (u, n−1, t) ∈ 	n−1 = {(u, n−1, t) : t ≥ tn−1(u)}. More-
over, the function v is a solution to the differential equation (22), which was derived
under the condition A v(u, h, t) = 0 for (u, h, t) ∈ 	̄h . Therefore A v(u, n −1, t) =
0, when (u, n − 1, t) ∈ 	̄n−1.

Let us assume that for a given h the function q(u, h, t), given by (21), is an increas-
ing function of u for each t , and an increasing function of t for each u. Therefore,
by Corollary 2, for every given u it changes sign from negative to positive exactly
once at the point th(u) or it is positive for all t , and then we put th(u) = 0. These
monotonicity properties suffice to show, in the analogous way as for h = n − 1, that
the function v(u, h, t) satisfies the conditions (17) and (18).

We show that q(u, h − 1, t) has the same monotonicity properties as q(u, h, t).
First we show that

(v−g)(u, h, t)=
{∫ th(u)

t p(u, h, z)q(u, h, z) exp{− ∫ z
t p(u, h, x) dx} dz, for t< th(u),

0, for t ≥ th(u),

is an increasing function of u for each t , where th(u) is the unique solution to Eq. (26)
or th(u) = 0, if Eq. (26) has no solution. Let us note that

fuht (z) : =
{

0, for z ≤ t ,

p(u, h, z) exp{− ∫ z
t p(u, h, x) dx}, for z > t ,

is a density function of a random variable, say Zuht , with a reliability function

F̄uht (z) = exp

⎧
⎨

⎩−
z∫

t

p(u, h, x) dx

⎫
⎬

⎭ 1(t,∞)(z).

Let u1 < u2 and Zu1ht , Zu2ht be the random variables with density func-
tions fu1ht , fu2ht , respectively. By Corollary 1, F̄u1ht (z) ≤ F̄u2ht (z) what implies
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Zu1ht ≤st Zu2ht . From the assumption that q(u, h, t) is an increasing function of u
we have th(u1) < th(u2) or th(u2) = 0. In the first case

(v − g)(u1, h, t) =
th(u1)∫

−∞
q(u1, h, z) fu1ht (z) dz

<

th(u2)∫

−∞
q(u2, h, z) fu1ht (z) dz = E φ(Zu1ht ),

where

φ(z) : = q(u2, h, z)1(∞,th(u2))(z)

is an increasing function of z from the inductive assumption that q(u, h, t) is an
increasing function of t for each u. Since that Zu1ht ≤st Zu2ht we have

Eψ(Zu1ht ) ≤ Eψ(Zu2ht )

for each non-decreasing function ψ such that the above expectations exist. In the
special case ψ = φ

(v − g)(u1, h, t) < E φ(Zu1ht ) ≤ E φ(Zu2ht ) = (v − g)(u2, h, t).

In the case when th(u2) = 0 we have (v − g)(u2, h, t) = 0 for each t and there-
fore (v − g)(u1, h, t) < (v − g)(u2, h, t) trivially. Therefore, (v − g)(u, h, t) is an
increasing function of u for each t .

Now we show that (v − g)(u, h, t) is an increasing function of t for each given u.
Let G(u, h, t) be a function for which

∂

∂t
G(u, h, t) = p(u, h, t).

The function

(v − g)(u, h, t) = exp{G(u, h, t)}
th(u)∫

t

p(u, h, z)q(u, h, z) exp{−G(u, h, z)} dz

= − exp{G(u, h, t)}
th(u)∫

t

q(u, h, z)
∂

∂z
exp{−G(u, h, z)} dz.
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Applying integration by parts, we have

(v−g)(u, h, t)=q(u, h, t)+ exp{G(u, h, t)}
th(u)∫

t

∂

∂z
q(u, h, z) exp{−G(u, h, z)} dz.

Therefore

∂

∂t
(v − g)(u, h, t) = exp{G(u, h, t)}p(u, h, t)

th(u)∫

t

∂

∂z
q(u, h, z)

× exp{−G(u, h, z)} dz, (27)

and from the assumption that ∂
∂t q(u, h, t) > 0 we have ∂

∂t (v − g)(u, h, t) > 0. We
have showed that (v − g)(u, h, t) is an increasing function of u for each t , and an
increasing function of t for each u. Therefore, by Corollary 2 and the monotonicity
properties of the function (v − g)(u, h, t),

q(u, h − 1, t) = c − γ̂ (u + s(t), h, t)+ (v − g)(u + s(t), h, t)

is an increasing function of u for each t , an increasing function of t for each u, and for
every given u it changes sign from negative to positive exactly once at the point th−1(u)
or it is positive for all t , and then we put th−1(u) = 0.

To complete the proof we need to show that v ∈ DA . By the form (25) of the func-
tion v and since g ∈ DA it suffices to show that the function v(u, h, ·) is differentiable
at the points th(u) for h = 0, 1, · · · , n − 1 and u ∈ [0,∞). But it is easily seen from
the formula (27). 
�
Corollary 3 The optimal burn-in time is of the form

σ ∗ = inf{t : t ≥ th(u), where h = Ht , u = Ut },

where th(u) is the solution to Eq. (26) or th(u) = 0, if Eq. (26) has no solution.

Remark 2 From the fact that, under the conditions of Corollary 2, for a given h and t
the function q(u, h, t) is an increasing function of u, for all h ∈ {0, 1, . . . , n − 1}, if
u1 < u2, then th(u1) > th(u2), when th(u1) > 0 or th(u1) = th(u2) = 0, otherwise.

Remark 3 From the fact that, under the conditions of Corollary 2, the function
γ̂ (u, h, t) is an increasing function of h for each u and t , and q(u, h, t) is an increasing
function of t for each u and h, for all h ∈ {0, 1, . . . , n − 2}, and for all u ≥ 0

q(u, h, th+1(u)) = c − γ̂ (u + s(th+1(u)), h + 1, th+1(u))

> c − γ̂ (u + s(th+1(u)), h + 2, th+1(u))

≥ c − γ̂ (u + s(th+1(u)), h + 2, th+1(u))

+(v − g)(u + s(th+1(u)), h + 2, th+1(u))

= q(u, h + 1, th+1(u)) = 0,
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which implies th(u) < th+1(u), when th+1(u) > 0 or th(u) = th+1(u) = 0, otherwise.

Remark 4 Using the process (Y, H, t) instead of the process (U, H, t) for a description
of the evolution of observation would lead to the stopping region given by a sequence
of functions, say vh(y), of the argument y instead of the functions th(u) of the argument
u. The optimal burn-in time would be of the form

τ ∗ = inf{t : t ≥ vh(y), where h = Ht , y = Yt }.

Because of the process Yt , t ≥ 0, has continuous trajectories, this solution would be
more difficult to apply in practice. Moreover, to obtain the form of the value func-
tion a partial differential equation would have to be solved instead of the ordinary
differential equation given by (22).

4 Example

Let us assume that the prior distribution π0 of the parameter λ is the gamma distribu-
tion G (α0, β0) with density

	(α0)
−1β

α0
0 ϑ

α0−1 exp(−β0ϑ)1(0,∞)(ϑ),

where α0, β0 > 0 are known parameters. It is easy to show that the family of gamma
distributions is the conjugate one to the family of distributions given by (3), and the
posterior distribution πt is the gamma distribution G (αt , βt ), where αt = α0 +h, βt =
β0 + u + (n − h)s(t).

We further assume, that the function s(t) is concave, s′′(t)
s′(t) is a non-decreasing

function of t and the function C(r) is of the form

C(r) : =
{

c0, for r ≤ W ,

c1, for r > W ,

where W > 0 and c1 < c < c0.
We have

γ (λ, t) = c0 − (c0 − c1)
s′(t + W )

s′(t)
exp {−λ(s(t + W )− s(t))} ,

and

γ̂ (u, h, t)=c0−(c0 − c1)
s′(t + W )

s′(t)

(
β0 + u + (n − h)s(t)

β0 + u + (n − h − 1)s(t)+ s(t + W )

)α0+h

.

Because s(t) is an increasing function of t and c0 > c1, γ (λ, t) is an increasing
function of λ. From the assumption that s(t) is concave, exp {−λ(s(t + W )− s(t))} is
a non-decreasing function of t . Moreover, by assumption that s′′(t)

s′(t) is a non-decreasing
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function, we have s′′(t+W )
s′(t+W )

≥ s′′(t)
s′(t) and s′′(t + W )s′(t)− s′(t + W )s′′(t) ≥ 0. Above

leads to

∂

∂t

s′(t + W )

s′(t)
= s′′(t + W )s′(t)− s′(t + W )s′′(t)

(s′(t))2
≥ 0,

and proves that γ (λ, t) is an increasing function of λ for each t and a non-increasing
function of t for each λ. Finally,

lim
t→∞ γ̂ (s(t), n, t) = lim

t→∞

[
c0 − (c0 − c1)

s′(t + W )

s′(t)

(
β0 + s(t)

β0 + s(t + W )

)α0+n
]
< c

(28)

if and only if

lim
t→∞

s′(t + W )

s′(t)
<

(
c0 − c1

c0 − c

) 1
α0+n−1

. (29)

From the assumption that s(t) is concave and s′′(t)
s′(t) is a non-decreasing function

of t, s′(t+W )
s′(t) < 1 and is non-decreasing function of t , and thus there exists

lim
t→∞

s′(t + W )

s′(t)
≤ 1.

On the other hand, because c1 < c < c0,
(

c0−c1
c0−c

) 1
α0+n−1

> 1, and conditions (28)

and (29) hold.
By Corollary 2, the γ̂ (u, h, t) is a decreasing function of u for each h and t , an

increasing function of h for each u and t and a decreasing function of t for each u
and h. Moreover, for each u and h,

lim
t→∞ γ̂ (u + s(t), h + 1, t) < c.

In the case considered, the assumptions concerning function γ are satisfied. It is easy
to obtain that

λ̂(u, h, t) = α0 + h

β0 + u + (n − h)s(t)
,
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and

(v − g)(u, h, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, for t ≥ th(u),

(α0 + h)(β0 + u + (n − h)s(t))α0+h

·
th(u)∫

t

(n − h)s′(z)q(u, h, z)

(β0 + u + (n − h)s(z))α0+h+1 dz, for t < th(u).

Consider the case when n = 2. By Theorem 1, v(u, 2, t) = g(u, 2, t), and t2(u) =
0. To obtain t1(u), and consequently v(u, 1, t), we have to solve the equation

q(u, 1, t) = (c − c0)+ (c0 − c1)
s′(t + W )

s′(t)

(
β0 + u + s(t)

β0 + u + s(t + W )

)α0+2

= 0 (30)

with respect to t for each u ≥ 0. Let t1(u) be the solution to Eq. (30) in [0,∞) or
t1(u) = 0 if Eq. (30) has no solution in [0,∞).

The function q(u, 0, t) for t ∈ (0, t ′1(u)), where t ′1(u) = inf{t : t ≥ t1(u + s(t))}
is of the form

q(u, 0, t) = c − γ̂ (u + s(t), 1, t)+ (v − g)(u + s(t), 1, t) = c − γ̂ (u + s(t), 1, t)

+(α0 + 1)(β0 + u + 2s(t))α0+1

t1(u+s(t))∫

t

s′(z)q(u + s(t), 1, z)

(β0 + u + s(t)+ s(z))α0+2 dz.

But

(α0 + 1)

t1(u+s(t))∫

t

s′(z)q(u + s(t), 1, z)

[β0 + u + 2s(z)]α0+2 dz

= (c − c0)

{
1

[β0 + u + 2s(t)]α0+1 − 1

[β0 + u + s(t)+ s(t1(u + s(t)))]α0+1

}

+(c0−c1)

{
1

[β0+u+s(t)+s(t+W )]α0+1 − 1

[β0+u+s(t)+s(t1(u+s(t))+W )]α0+1

}
.

Finally, for any t

q(u, 0, t) = (c − c0)+ (c0 − c1)
s′(t + W )

s′(t)

( β0 + u + 2s(t)

β0 + u + s(t)+ s(t + W )

)α0+1

+1{t<t1(u+s(t))}
{
(c − c0)

[
1 −

( β0 + u + 2s(t)

β0 + u + s(t)+ s(t1(u + s(t)))

)α0+1]

+(c0 − c1)(β0 + u + 2s(t))α0+1
[ 1

(β0 + u + s(t)+ s(t + W ))α0+1

− 1

(β0 + u + s(t)+ s(t1(u + s(t))+ W ))α0+1

]}
.
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(a)

(c) (d)

(b)

Fig. 1 In all above cases the parameters of the cost function and the a priori family are equal c =
250, c0 = 260, c1 = −500,W = 365.25, α0 = 3.4 × 10−6 and β0 = 0.1. a Exponential distribution,
s(t) = t, t0 = 4.04944. b (Shifted) Pareto distribution, s(t) = log(t + 1), t0 = 8.15055. c Weibull

distribution, s(t) = √
t, t0 = 3.05799. d Gompertz distribution, s(t) = 200(1 − e− t

200 ), t0 = 10.299

Let t0 be the solution to the equation q(0, 0, t) = 0. Since Ut = 0 when Ht = 0, to
describe the stopping region 	0, we need only t0. Finally, the sets 	i , i = 0, 1, 2, are
of the following form

	0 = {(0, 0, t) : t ≥ t0} ,
	1 = {(u, 1, t) : 0 ≤ u ≤ s(t0), t ≥ t1(u)}
	2 = {(u, 2, t) : u ≥ 0, t ≥ 0} .

Figure 1 shows the plots of the functions t1(u) for four different lifetime distributions.
In the description of the plot, the value t0, the numerical solution to the equation
q(0, 0, t0) = 0, is also given.

5 Final remarks

We have presented a generalization of the results obtained by Costantini and
Spizzichino (1997). Our approach has allowed to solve the burn-in problem for a
wider family of lifetime distributions. Considering the three-dimensional process in
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our model has led to more complicated value function. In the paper of Costantini
and Spizzichino (1997) to obtain the solution, it was sufficient to derive the form
of the value function of two arguments: h ∈ {0, 1, . . . , n} and y ∈ [0,∞). In the
general case considered, we had to derive the value function of three arguments:
h ∈ {0, 1, . . . , n}, u ∈ [0,∞) and t ∈ [0,∞). Consequently, by the monotonic-
ity property of the problem considered, in the paper of Costantini and Spizzichino
(1997) the stopping region is represented by a sequence of n numbers yh for each
h ∈ {0, 1, . . . , n − 1}. In our general case it is represented by a sequence of n func-
tions th(u) for each h ∈ {0, 1, . . . , n − 1}. Applying our approach to the exponential
case leads to the solution given by n linear functions instead of n numbers. There is
a direct relation between our solution and the solution presented in Costantini and
Spizzichino (1997). It can be verified that in the case of s(t) = t , we get

th(u) = yn−h − u

n − h
.

From the above equation we can also see there is a slight difference in the interpreta-
tion of the results. Using the solution given in the paper of Costantini and Spizzichino
(1997) we should stop the burn-in process if the total time on test y = Yt given by (5)
exceeds the value yh , where h is the number of failures at time t . Taking advantage of
our solution, we should stop the burn-in process if time t exceeds th(u), where h is the
number of failures at time t and u is the total time to failure u = Ut given by (6), which
is constant for a given h. Therefore, the description of the evolution of observation by
the process (U, H, t) leads to the solution of the problem considered which is simple
to apply.
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