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Abstract We consider a semiparametric method to estimate logistic regression
models with missing both covariates and an outcome variable, and propose two new
estimators. The first, which is based solely on the validation set, is an extension of
the validation likelihood estimator of Breslow and Cain (Biometrika 75:11-20, 1988).
The second is a joint conditional likelihood estimator based on the validation and non-
validation data sets. Both estimators are semiparametric as they do not require any
model assumptions regarding the missing data mechanism nor the specification of the
conditional distribution of the missing covariates given the observed covariates. The
asymptotic distribution theory is developed under the assumption that all covariate
variables are categorical. The finite-sample properties of the proposed estimators are
investigated through simulation studies showing that the joint conditional likelihood
estimator is the most efficient. A cable TV survey data set from Taiwan is used to
illustrate the practical use of the proposed methodology.
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1 Introduction

Missing values inevitably occur in medical and other scientific studies due to several
reasons (e.g., study design or conditions). A common approach to dealing with missing
values is the complete-case analysis that simply ignores the observations with missing
values. Such method may cause a loss of efficiency and a biased estimation when the
occurrence of the missing values is seldom completely at random (MCAR). The same
observation is made for other types of missingness such as missing at random (MAR)
or not missing at random (NMAR). See Rubin (1976) for further insights into the
types of missing data mechanism. It is then important to develop techniques that can
account for the missingness in these situations.

Analysis of medical studies typically includes estimation of the association between
an outcome variable and a set of covariates or risk factors. Sometimes, it is possible
to obtain a crude outcome measure on a large sample, but the true outcome can be
ascertained only for a subsample. For example, Pepe et al. (1994) described a setting
where patients who received allogeneic bone marrow transplant for aplastic anemia
may develop graft versus host disease (GVHD). Measuring chronic GVHD requires
longitudinal follow-up, but acute GVHD can be readily ascertained when patients
are still being treated at the hospital. Because of high cost, it is sometimes difficult
to make a diagnosis of the chronic disease outcome. Variables like acute GVHD are
often called surrogate outcomes. Several methods have been proposed to handle the
problem resulting in the substitution of the surrogate outcome for the true outcome to
make scientific inference (e.g., Pepe 1992; Pepe et al. 1994; Chu and Halloran 2004;
Chen and Breslow 2004). In a different situation, Albert et al. (1997) and Bollinger
and David (1997) gave examples showing that the binary true outcome of interest
may also be misclassified.

Logistic regression is the most popular form of binary regression; see, e.g.,
Cox (1970) and Pregibon (1981). The model assumes that the logarithm of the
odds of the outcome is a linear function of covariates. The topic of a logistic
regression with missing covariates has been recently studied by Reilly and Pepe
(1995), and Wang et al. (2002), among others. Both Pepe (1992) and Cheng and
Hsueh (1999) discussed bias corrections in the estimation of parameters of a logistic
regression model when the binary outcome is subject to missing values and mis-
classification. Cheng and Hsueh (2003) proposed estimation methods for a logistic
regression model when the binary outcome and covariate values are both subject
to measurement errors. Note, they assumed the complete data set consists of a
primary sample plus a smaller validation subsample, which is obtained by double
sampling scheme. We analyze missing data for both covariates and an outcome var-
iable. However, when the surrogate covariates and outcome are always observed,
it may be more accurate to characterize it as a measurement error problem. Many
researchers have proposed methods to adjust for error in measurement. Two related
methods have been referred in the literature to as regression calibration. Rosner et al.
(1989) and Ronser et al. (1990) proposed to correct the regression coefficient esti-
mates when covariates are measured with error, utilizing a separate validation study
where the relation between true covariates value and observed surrogate can be esti-
mated using linear regression; and Carroll and Stefanski (1990) proposed a general
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Semiparametric estimation of logistic regression model 623

model for quasi-likelihood estimation methods when covariates are measured with
erTor.

Assuming that all covariate variables are categorical, we use two semiparametric
methods to estimate logistic regression models that are missing both covariates and an
outcome variable, and where the missing data possibly depends on the observed data.
The first method is an extension of validation likelihood approach of Breslow and
Cain (1988). The second is a joint conditional likelihood based-method that uses the
validation and non-validation data sets. For both methods, it is unnecessary to make
any model assumptions for the probability of missingness and specification of the con-
ditional distribution of the missing covariates given the observed covariates. To the
best of our knowledge, no one has proposed semiparametric methods for estimation
of a logistic regression model that is missing both covariates and an outcome variable
and in which the type of missingness is MAR. We organize the paper as follows. In
Sect. 2, we describe the proposed estimators. Section 3 studies the asymptotic prop-
erties and relative efficiencies of these estimators. In Sect. 4, we review some existing
estimates. In Sect. 5, we conduct a simulation study to investigate their finite-sample
performance. In Sect. 6, the proposed methodology and other existing methodology
are applied to a cable TV survey data set from Taiwan. Finally, some concluding
remarks are provided in Sect. 7.

2 The proposed estimators

Let Y be a binary outcome and X a vector of covariates, which may be missing on
some subjects. Assume that Y* and W are surrogate variables for ¥ and X, respec-
tively. Suppose that the binary surrogate outcome Y, the surrogate variable W, and
a covariate vector Z are always observed. Then, we consider the following logistic
regression model:

P =1|X.2) =H(ﬁo+ﬁfx+ﬂ§z),

where H(u) = [1 + exp(—u)]’l. The term of auxiliary data refers to data not in
the regression model, but thought to be informative about the Y and X, which are of
interest.

For subject i,i = 1,2,...,n, let §; indicate whether ¥; and X; are observed
(6i = 1) or not (§; = 0). The validation data set (§; = 1) consists of
(Yi, Y2, Xi, Zi, W;), and the non-validation data set (§; = 0) consists of (Yio, Zi, W;).
To deal with the missingness, we assume the selection probability of observing Y; and
X; as follows:

P(si=1v. v x zi W) == (¥ 2. W) == (v Vi),

where V; = (ZZT , WI-T)T. Under assumption (1), ¥; and X; are MAR as described in
Rubin (1976). Here (Yio, V,-) is an unknown nuisance parameter although it may be
prespecified at design stage in some other applications.
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624 S.-M. Lee et al.

Under the assumption that all covariate variables are categorical, let vy, va, ..., vg
denote the distinct values of the V;’s, the nonparametric estimator of & ( yo, v) is then
given by

(yo v) _Xsil (=)0 Vi=v)

ﬁ ’
il (Yio =)0, Vi = v)

2)
where v € (vl, V2, ..., vg) and yo =0,1.

2.1 Validation likelihood estimator

When Y is binary and observable, Breslow and Cain (1988) proposed a semiparamet-

ric estimator of B = (Bo, BT, B )T based on conditional likelihood of ¥ given X, Z,
and § = 1. When X and Y are MAR, it can be shown that

P =11X;.Z;,6; =1)
P(Y;=1,8 =1|X;,Z;)
P (& = 11X, Zi)

P@=11Y;=1,X;,Z;) P(Y; =1|X;, Z;)
P@=1Y;=1,X;,Z;) P(Y;=1|X;, Z;) + P (§; =11Y; =0, X;, Z;) P (Y; =01X;, Z;)
1
P(8;=1Y;=0,X;,V;) P(¥;=01X;,V;)
P(6;=11Y;=1.X;.V;) P(Y;=11X;.V;)
1

~(Bo+BT Xi+672:) -1

1+

o PGi=1Y=1.%,.V;)
P(8;=1%;=0,X;,V;)

P& =11Y; =1,X;, Vi):|
P& =1Y; =0,X;, Vp)

(1, V)1 —0(X;, V)]+m (0, V)O(X;, Vi) ]

7(1, Vi)g(X;, Vi)+m (0, V)1 — ¢(X;, V)]

= Hy(X;, Vis B), (3)

I+e
_ Ty. T,
_H|:;30+,31X1+ﬁ221+ln

=H [ﬁ0+ﬁfx,-+ﬁ§z,-+1n

where

1
PG =1Y=1XV)=> P(8s=11 =" =1X.V)
y0=0

x P (Yio =Y =1, X;, Vi)
=, V) [1 =0 (Xi, VDl +7(0, V)o(X;, Vi)

for0(x,v) =P (¥) =0Y; =1, X; =x, V; = v), and
PG =1Y; =0,X;,V)) =n(1, Vo (Xi, Vi) + (0, V) [1 — ¢(X;, Vi)]

forg(x,v) = P (Yio =11Y=0,X; =x,V;, = v).Itisnotedthat@(x, v)and ¢ (x, v)
are defined by misclassification probability functions. Based on the distribution of
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Y given (X, Z,8 = 1), we consider the validation likelihood L(Y|X, Z,§ = 1) by
taking the production of the probability of P(Y = 1|X, Z, § = 1), where L(-) denotes
the likelihood function of a specified random variable. To estimate 8, we employ the
following estimating function:

1 n
Uin(®) = —= D 86X [Yi — Hy(Xi, Vis B)] @
i=1

for X; = (1, XlT Zl.T)T. The validation likelihood estimator of B is the solution to
U1,(B) = 0. It can be shown with some algebra that Uy, (f) is an unbiased esti-
mating function for 8 when n(YiO, Vi), 0(X;, V), and ¢ (X;, V;) are known. How-
ever, when these quantities are unknown, they need to be estimated first before
solving the equation Uy,(B) = O for the parameter vector 8. Suppose that X has
m categories. For X € (x1,x2,...,x,),V € (vl, v, ..., vg), and Y%e 0, 1), let
A(x,y00) =P (Y°=)%8=1,Y=0,X=x,V=v) and B (x,y’,v) =P(¥Y°=
y08=1,Y=1,X=x, V=v).One can then express 6 (x, v) as follows:

e(x,v)=P(Y,.°=0|Y,-=1,X,-=x,v,-=v)

PY'=0Y =1,X;,=x,Vi=v)
PYi=1X,=x,Vi=v)
r(L,vr O, P (Y’ =0,Y =1, X, =x,V; =)
T (L urO, )P (Y =1, X =x,V; = v)
w(l,v)B(x,0,v)

~ 7(1, 0B, 0,v) + 70, B, L,v)’ ©)

where the following fact has been used
a(l,v)r(O0,v)P Y, =1,X; =x,V; =v)
=7l vrO [P (¥ =0Y =1.X =x,V =v)
+P(Yi0:1,Y,- —1LX;=x.V =v)]
= 7(1, 1)7(0, V) P (Y,.O =0Y,=1,X;=x,V; = v)
41, v)7(0, v) P (Y,O 1Y, =1, X, =x, V= v)
= [n(l, V)P (Y,.O —0s =1,V =1,X;=x,V = v)

+ 7 (0,v)P (Yio =115 =1LY=1Xi=x,Vi= U)]
xP@=1Y=1,X;=x,Vi=v)
=[7(1,v)B(x,0,v) + 70, V)B(x, 1, V)] P& =1,Y; =1, X;i = x, Vi = v).
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Similarly, ¢ (x, v) can be expressed as

p0rv) =P (¥ =11 =0.X; = x, Vi = v)
(0, v)A(x, 1, v)

= . 6
7(0,v)A(x,1,v) +7(1,v)A(x,0,v) (6)
Because the probabilities A (x, y%, v) and B (x, y°, v) can be estimated by
Z(x 30 v) . D6l (YiO:yO,Yi =0, X; =x,\/i=v) 0
Y, Z?ﬂSil(Yi:O’Xi:JC,Vi:v) ,
and
B (x.)" v)_Z?=15i1(yi0:yo,)’,»=1,x,-=x,vl.zv) ©
o D&l Yi=1,X;=x,V;=v) ’

we can estimate ¢ (x, v) and 6(x, v) by plugging (2), (7), and (8) into (6) and (5),
respectively. Therefore, the resulting estimated score function is given by

~ 1 < _
Uin(B) = ﬁzamm — Hy (X, Vis B, )
i=l

where

Hy (X, Vi; B)

(1, VIl — 8 (X;, V)l + 70, VO (X, m]
(1L, Vg (Xi, Vi) +7(0, VIl — d (Xi, V)l ]
(10)

EH[ﬂo+ﬂ1TX,-+ﬁ2TZ,-+ln

The validg\tion estimate of f8, denoted by EV, is defined as the solution to the score
equation U1, (B) = 0 and obtained by the Newton-Raphson algorithm.

2.2 Joint conditional likelihood estimator

In this subsection, we develop a joint conditional estimator based on the validation
and non-validation data sets. First, proceeding as Wang et al. (2002) did, we can have

P =11Vi) = H o+ I Zi + R (Vii ). (an
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where R (Vi; B1) = In [E (eﬂlTX|Yi =0, V,)] We can furthermore show from (11)
that

P (v =1v)
=P(X =1 =1v)+P (¥ =17 =0V})
=P (Y =1¥=1V)PE=1V)+P (Y =11¥ =0, V) P(X; = 0|V

1 e~ [Bo+B Zi+R(Vi: )]

Vi
1+ e—[ﬁ0+/32TZi+R(Vi;/31)] + o (Vi) 1+ e—[ﬁ0+ﬁ2TZ,-+R(Vi:ﬁ1)]

=[1 —6,(Vi)] , (12)

where 0,(V;) = P (Y) = 0]Y; = 1, V;) and ¢, (V;) = P (Y = 1]¥; =0, V). Using
(12) and calculations similar to those in (3), one can have

P (Yio = 1|V;, & :0)

_P()q0=1,5i=0|vi)
PG =0[W)
P& =0Y)=1V) P (Y= 1V;)
P =0y =1V)P ¥ =1V;))+P (8 =0]Y"=0,V;) P (Y) =0|V)
H|:ln1_n(1’vi) lnP()/[0=1|‘/i):|
1-7(0,V)) — P(Y?=0lV;)

o L= v = 6]+ gy (Ve Iz )
= n n
1—m(0,V;) 0,(Vi) + [1 _ ¢0(Vi)] e*[ﬂo+ﬂgzi+R(Vi§f31)]
= H_(Vi; B). (13)

It is clear that Uy, (B) in (4) is the estimating score obtained from the likelihood of
Y given (X, Z,6 = 1). To have higher efficient estimators, we consider the joint
conditional likelihood L° Y|X,Z,6=1) L= (Y0|V, § = 0), which is developed
by conditioning on the missingness status §. Therefore, based on Hy (X;, V;; B) and
H_ (V;; B), we define the score function as follows:

Unus)z% Z‘, {5 [vi = He X0 Vi O]+ =) TB [ - H- Vi ]}

T
where T(B) = [Hi(Vii )= Hy (Vii B)] (1. RE, (V). Z])  for Hi (Vi) =
H[o+BIZi+R (Vii p1)+1n 00| Hy(Vi: B) = H o+ BT Zi + R(Viz 1) +
0 1

0, (Vi) dR(Vi:
In W], and Rg, (V;) = W. Because (YI.O, V,-) , R (Vi; B1),6,(Vi), and

@, (V;) are usually unknown, they must be estimated before solving U, () = 0.
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628 S.-M. Lee et al.

To estimate these quantities 7 (Y, Vi), R (V;; B1) . 6,(V;), and ¢, (V;), we first let
A, (00) =P06=1Y=0Y"=yV=0),B,(y\v) = P6 =LY =1,

YO = yv = v), Yo (yo, v, ,31) = E (eﬁlTX|Y =0,Y0=y0,v = v), and
r(v, B1)=eRWA) = E (eﬁITX|Y =0,V = v). By using the following fact
(1, V)70, V)P (Y; =1,V; =v)
= 7(1. v)7 (0, v) [P (Y,Q =0, =1V = v) Ty (Yio —1LYi=1,V = v)]
— 7(1, v)7(0, v) P (Y}’ —0,Y, =1,V = v)
(1, v)7(0, v) P (Y,.O =LY, =1,V = v)
- [n(l, )P (ai =17 =0.v; = 1|V, = v)
+70, VPG =10 =1, = 1|V, = v)] PV =v)
= [ (1, ) B,(0, v) + 7(0, v) B, (1, v)] P(V; = v),

we can have

6,(v) = P (Yl-o —0)Y; =1,V = v)
P =0Y,=1,V, =)
n PY,=1,Vi=v)
(L), )P (Y)=0,Y =1,V =v)
n 7(1, V)70, )P (Y; =1, V; = v)
1,v)B
(1, v)B,(0, v) . (14)
7(1,v)B,(0,v) + (0, v) By (1, v)

Similarly, we can obtain

By = P (Y0 = 11% =0,V =) 70, 94,1, )

= . (15
7(0,v)A,(1,v) + (1, v)A,(0, v)

In addition, r (v; B1) can be expressed as follows:

r; p1) = E (P X01Y; =0, V; = v)
E[E (eﬂlTXf ‘Y,- =0,Vi=v, Yio)‘ Y, =0,V; = v]
=B (eM1Xi1y; =0, Vi = v, ¥0 = 0) P (Y2 = 01%; =0, V; =)

+E (eﬁlTXin =0,V =0 Y= 1) P (Yio — 1Y, =0,V = v)

=150, v; B1) [1 = @, ()] + 1 (1, v3 B1) py (V). (16)
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We estimate the probabilities A, (y°,v), B, (%, v), and r, (%, v; B1), respec-
tively, by

- nosI(Y0=y0Y, =0,V,=v
Ao(yoyv):Zz_ll(z Yoo L i )

, (17)
i I (Vi=v)
~ 70 SELSGI(YY =)0 Y =1,V =v)
B, (y ) = A : (18)
2= 1 Vi=v)
and
Ty.
~ (.0 2 8PN (¥ = 0,70 =)0 Vi = v)
To (y , Vs ﬁl) = 7 0 _ 0 (19)
Sl (Yi =0, =)0V, =v)

The R (V;; B1), 6,(V;),and ¢, (V;) can then be easily estimated by simply plugging (2),
(17), (18) and (19) into (14), (15) and (16), respectively. Let Ife\(v; B1) = In[r(v; B1)]
denote the estimate of R(v; B1). Then, the resulting estimated score function for 8 is
defined as follows:

~ J— . ~ -
On(B) = = > {300 = e (X1, Vis 1+ (=30 T @) 1Y) = AV 1.
i=1

Here ﬁ+ (Xi, Vi; B) is given in (10).

H_(Vi;B)=H|I

R ~ —~ B T BV
N 1—-7 (1, Vi) n [1—6,(V)]+d,(Vi)e [Bo+By ZiAR(Vi; B1)]
1-7(0, V) é:)(vi) + 11— a;o(Vl.)]e*lﬂoJrﬁzTZﬁR(Vi;ﬂ])J '

~ ~ ~ T ~
T:(B) = L (Vis ) — By (Vi: )1 (1. B}, (V). 2]') for Hy (Viz B)

[ 5 1-6,V)7 #
=H TZi R (V;; In ——2—"= , H is
_/30-1-,32 + R (Vi; B1) +1n ¢0(Vi):| > (Vi; B)
_ Ty | By 8, (Vi) ]
_H_ﬂ0+/322l+R(‘/ls,31)+ln—l_$0(‘/i) , and
Ro (Vi) = 78, (0, Vis B [1 —?\0 (V1 +7p, (1, Vi; ﬂlld’o(vi)
7o (0, Vis B [1 — ¢y (VD1 +7, (1, Vs B1) ¢, (Vi)
with

_ ar, (Y2, Vi B
g, (YiO,Vi;,Bl) =—O( la,sll )

R s X (Y= 0,70 = Y2, Vi = Vi)
S 851 (Yj =0.Y0 =10V, = V,~)
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- o AT
Let B, = (,3 JOs ,8}1, ﬂ}z) denote the joint conditional estimator of 8, which is the
root of the score equation ﬁn (B) = 0 and obtained by the Newton-Raphson algorithm.

3 Asymptotic theory

To derive the asymptotic properties of the proposed estimator under the assumptions
that X and Y are MAR and (X7, W7, ZT) are discrete, the following regularity con-
ditions are required:

(A1) Let supp(V) denote the support of V. For any y = 0, 1 and v € supp(V), the
selection probability 7 (%, v) > 0.

(A2) Forany y? =0, 1 and v € supp(V), the selection probability 7 (yo, v) < 1.

(A3) Foranyv € supp(V),E (eﬁlTX|Y =0,V = v) exists in a neighborhood of the
true 8.

(A4) ERBXXTH (X, V;B)+ (1 —)TBTBTHY (V; B)lis positive definite
in a neighborhood of the true B, where H'" (X, V; B) = H, (X, V; B)[1 —
Hi (X, V; B)land H (V; B) = H-(V; B)[1 — H-(V; B)].

(AS) The first derivatives of U, (f) with respect to 8 exist almost surely in a neigh-

borhood of the true 8. Further, in such a neighborhood, the second derivatives
are bounded above by a function of (Y 0Y, X, V).

Using the estimated nonparametrlc selection probability, one can show that U 1n(B)
in (9) and Uzn(ﬂ) = [ > =6 )T(ﬂ) YO H_ (Vi; B)] can be expressed
as the sum of independent random variables, which are stated in Lemmas 1 and 2,
respectively, as follow.

Lemma 1 Under the condition (Al),
1 n
O =—73 [ (Y Y0, X0, Vis B) +ec (¥ Y2, Xi Vi B) | + 0, (1),
i=1

Here S (Y;, Y2, X;, Vi3 B) = 8; X;[Y;—H,. (X;, Vi; B)]. Thedefinitionof e (¥;, Y,
Xi, Vis ﬁ) and the proof of Lemma 1 are given in the Appendix. Note that the &.(-)
stands for the approximation error from the complete data score S, (-), which is due
to the estimation of nuisance parameters 7 (Yo, V) ,0(X,V),and ¢ (X, V).

We linearize l72,, (B) in the following Lemma.

Lemma 2 Under the conditions (A2)—(A3),
1 n
Ou® =723 [ (Y0, Vis B) + em (Y2, Y2, X Viz B) ] + 0,1,

Here Sy, (Y2, Vi; B) = (1 — &) T(B)[Y)—H_ (V;; B)]. The definition of &, (¥;, Y7,
Xi, Vis ﬂ) and the proof of Lemma 2 are given in the Appendix. Note that the S, (-)
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Semiparametric estimation of logistic regression model 631

stands for the score from the case with missing covariates, and ¢&,,(-) stands for the
approximation error from Sy, (-), which is due to the estimation of nuisance parameters
7 (YO, V), R(V; B1),6,(V), and ¢, (V). R

Concerning the asymptotic properties of 8 ;, we are able to show the following.

Theorem 1 Under conditions (A1)—(AS5), the joint conditional likelihood estimator
ﬂ ; is a consistent estimate of B, and /n (ﬁ j — B) has an asymptotic normal distri-
bution with mean 0 and covariance matrix A; = G~ (B)M (B)[G~'(B)]T. Here

GB) =E [(SXXTHS)(X, )
+(1=OTBT B H Vi p)].

M@B) = E [ [5c (v, X, Vi B) + S (Y. Vi B) 420 (V. Y0, X, V: B)
tem (V. Y0, X, V; ﬂ)]®2} ,

®2 T

where, for any vector a, a®” = aa’.

The proof of Theorem 1 and a consistent estimator of A ; are given in the Appendix.

4 Some other estimators

In this section, we review two existing estimators, namely, the complete-case (CC)
estimator and the weighted (WE) estimator.

4.1 Complete-case estimator
The complete-case analysis is a naive method that ignores the missing data and uses

data in the validation set only. The resulting estimator, denoted by ﬁc, is the solution
of the following estimating equation:

Uen(B) = % ;&Xi [Y,- —H (ﬂ%)] -

It is known that ﬁc is guaranteed to be unbiased only when the verification sample is a
simple random sample of subjects in the study. If, for example, those at higher risk of

disease are more likely to be selected for verification, then ﬁc will be biased upwards.

4.2 Weighted estimator

The weighted estimation approach with a class of estimators has been motivated by
Horvitz and Thompson (1952). When Y is MAR, Chen and Breslow (2004) showed
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632 S.-M. Lee et al.

that a semiparametric efficient estimator may also be obtained by optimizing a class of
Horvitz and Thompson’s estimator with estimated weights. When X and Y are MAR,
we compute the weighted estimator, denoted by ﬁw, which is defined as the solution
to the following equation:

Uun(B) = % g %;ﬁ [Y,- H (.BT-Xi)] o

It is not difficult to see that when the 7 (YZ.O, V,-)’s are known, E{W?@[Yi

- H (,BTX[)]} = 0 and the above estimating equation is unbiased. When the (Y Z.O,

Vi ) s are unknown, the weighted estimator of 8 is now B\W’ which solves ﬁwn B) =0,

where ﬂW is defined s1m11arly to that which is the solution to Uy, (B) = 0, but with

7 (Y2, Vi) replaced by 7 (Y?, V;). The By is consistent. /i (,BW B) has an asymp-
totic normality with mean O and covariance matrix Ay that can be obtained by the
sandwich method and consistently estimated by

o [2 £ [y [1-setm] ) ety [1-sekn] ] ]

where G = ’]1 i IA(YO )XXT (33‘,/’\3) [I—H(’ﬁ\;%)],@ = X Yi—

T
H(Bh)], and & = Blaartvi] = a0 (=107, = Vi)
>80 (YO =Y, Vy = V;). Note that X; and ¥; are not observed, and the average
score ¢ is obtained from the validation set.

5 Simulation study

In this section, we present Monte Carlo results to investigate the finite-sample perfor-
mances of the four estimators including the maximum likelihood estimator from full
data ﬂ F» Which is used to provide a useful comparison benchmark, the CC estimator
ﬂ ¢ the validation likelihood (VAL) estimator ,BV, the joint conditional likelihood
(JCL) estimator ,B 7, and the WE estimator ﬂW For each configuration of the exper-
iments, 1000 replications were conducted. The sample sizes are n = 500 and 1000.
For each estimator, we computed bias, asymptotic standard error (ASE), standard
deviation (SD), and coverage probabilities (CP) of a 95% confidence interval.

We consider the case of univariate covariate X. First, U’s and ¢’s were gener-
ated independently from normal distribution N (0, 1) and N (0, 1), respectively. Given
U, a binary covariate was defined by X = I (U > 0). Given U and ¢, a binary
surrogate covariate was defined by W = I(U + oe > 0). When o = 0.25, the
correlation coefficient of X and W, denoted by corr(X, W), was about 0.84. The
response Y was generated as a binary with P(Y = 1|X) = H (Bo + f1X), where
B = (Bo, B1) = (In(2), In(3))T. The surrogate outcome Y0 was a misclassified
version of Y such that P (YO =17, X) = 0.2 + pY, where 0 < p < 0.8. When
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Table 1 Simulation results (univariate covariate X)
mr n Br Bc By By Bw RE| RE;
34% 500 Bo  bias 0.0016 ~ 0.1327  0.0011  0.0017  0.0010
SD 0.1376  0.1703  0.1490  0.1486  0.1509
ASE  0.1347  0.1660  0.1448  0.1434  0.1455 1.020  1.030
Cp 0.9450  0.8750  0.9440  0.9440 0.9410
B1 bias 0.0019  0.0499  0.0070  0.0048  0.0068
SD 0.2276 03054  0.2679  0.2620  0.2682
ASE  0.2267 0.2998 0.2618  0.2538  0.2620 1.064  1.066
Cp 0.9510  0.9400  0.9500  0.9500  0.9490
1000 Bo  bias 0.0006  0.1348  0.0010  0.0017  0.0009
SD 0.0930  0.1156  0.0987  0.0993  0.0993
ASE  0.0950 0.1171  0.1021  0.1011  0.1025 1.020  1.028
CP 0.9560  0.8090  0.9560  0.9550  0.9590
B1 bias 0.0018  0.0398  0.0001 —0.0020  0.0001
SD 0.1554  0.2146  0.1823  0.1791  0.1829
ASE  0.1598  0.2101 0.1835 0.1784  0.1836  1.059 1.059
Cp 0.9570  0.9420 0.9480  0.9500  0.9520
58% 500 Bo  bias 0.0016  0.2278  0.0031  0.0072  0.0021
SD 0.1376  0.2088  0.1636  0.1625  0.1677
ASE  0.1347  0.2094  0.1596  0.1530 0.1619  1.088 1.120
CP 0.9450  0.8190  0.9480  0.9320  0.9470
B1 bias 0.0019  0.0714  0.0121  0.0009  0.0140
SD 0.2276  0.3895  0.3111  0.2888  0.3107
ASE  0.2267 0.3989  0.3139  0.2823  0.3135 1.236 1.233
Cp 0.9510 09730  0.9460  0.9400  0.9440
1000 Bo  bias 0.0006  0.2231 0.0042  0.0058  0.0045
SD 0.0930  0.1484 0.1112  0.1118  0.1133
ASE  0.0950 0.1469  0.1124  0.1079  0.1142  1.085 1.120
CP 0.9560  0.6790  0.9550  0.9410  0.9510
B1 bias 0.0018  0.0469  0.0070  0.0020  0.0056
SD 0.1554  0.2729  0.2100  0.1981  0.2104
ASE  0.1598 0.2768  0.2188  0.1970  0.2191 1.234  1.237
Cp 0.9570  0.9540 0.9580  0.9540  0.9640

About 58% of X are missing in 1000 replications
The true parameter vector = (S, ,Bl)T = (In(2), 1n(3))T
corr(X, W) =A0.84(U = QZS), corr(YO, Y)= O/.\87(p = 0.8)
RE| = ASV(By)/ASV(B ;) and RE; = ASV(Byw)/ASV(B )

p = 0.8, the correlation coefficient of ¥ and Y°, denoted by corr (Y Y 0), resulted
in about 0.86. Given W and Y, the binary indicator § was with the probability
P(8=1Y" W) = H (a0 + o1 Y° + a; W), where the values of & = (g, a1, 002) "
were set at (0.5, 0.5, —0.5) and (—0.5, 0.5, —0.5), which resulted in about 0.34 and
0.58 of missing rate (mr), respectively.
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Table 1 shows that the efficiencies of all estimators increase as the sample size
increases. The maximum likelihood estimator from full data ﬁ r outperforms the other
estimators and is used to provide a useful comparison benchmark, but it is of limited
practical value because its use requires full simulated data without missing values.
The CC estimator was seriously biased. The VAL and WE estimators had similar per-
formances because both methods are based on the complete dataset accounting for
the probability of being observed. When the sample size is n = 500 with a missing
rate of about 58%, the empirical coverage probability of JCL estimator is slightly
lower than the nominal coverage 0.95, but increasing sample size always improves
the coverage probability. The asymptotic standard errors (ASE) of JCL estimators are
smaller than standard deviations (SD) of JCL estimators. We computed the ratio of
the asymptotic variances (ASV) of ,B y and ,B w to that of ﬁ ;- The relative efficiencies
were defined by RE; = ASV (By) /ASV (B,) and RE, = ASV (By) /ASV (B,).
Both the RE; and RE; were bigger than one, which implies that the ,B 7 outperformed
the two estimators By and By, Moreover, when the missing rate is higher (0.58), the
B ; was more efficient than the B v and ﬁW

We also investigate the efficiencies of the three estimators ﬁv ﬁ J»and ﬁW under
various values of corr(X, W) and corr (Y Y O) Tables 2 and 3 present the Monte Carlo
results under the case in which n = 500, @ = (—0.5, 0.5, —0.5) and mr = 0.58. As
shown in Table 2, the p = 0.8 is fixed, which implies that corr (Y Y O) was about
0.87. We selected various values of o so that corr(X, W) ranged from 0.24 to 0.8A4.
When the W was highly informative about 2( (ie., Lhe cor(X, W) was large), the
was more efficient than the two estimators 8, and By .

As seen in Table 3, the o = 0.25 is fixed, which implies that corr(X, W) resulted in
about 0.84. We selected various p values so that corr (Y Y O) ranged from 0.26 to 0.86.
Note that the mlssmg rate increased as the p decreased. When the cor (Y YO) was
not large, the ,B ; still performed slightly better than both the estimators ﬂV and BW
Overall, the efficiency of the JCL estimator increased as the missing rate, corr(X, W),
and corr (Y Y 0) increased.

6 Example

We apply the proposed methods to the data from a cable TV survey study in Tai-
wan, 2004. The 1793 respondents in the survey study are residents of three cities in
Taiwan. The binary outcome variable Y is the response (1 = Yes; 0=No) to the ques-
tion “Have you been given a discount on cable TV?”. The covariates are the types of
living places, denoted by X (1. building or apartment with management committee;
2. house or condo with management committee; 3. apartment or condo without man-
agement committee) and the city of residence, denoted by Z (1 =Taipei; 2 = Yunlin;
3 =Taichung). In this study, due to item non-response, ¥ and X are not available for
some respondents. Therefore, there are 1455 respondents in the validation data set
and the missing rate of ¥ and X is 19%. The surrogate variable of ¥ is ¥°, which
is the response of payment methods (1. six months or a year of payment; 0. one
month or three months of payment). The surrogate variable of X is W, which is the
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Table 2 Simulation results for various values of corr(X, W) (n = 500)
corr(X, W) & mr Br Bc By By Bw RE| RE
0.84 0.25 0.58 pBp bias 0.0016 0.2278 0.0031 0.0072 0.0021
SD  0.1376 0.2088 0.1636 0.1625 0.1677
ASE 0.1347 0.2094 0.1596 0.1530 0.1619 1.088 1.120
Cp 0.9450 0.8190 0.9480 0.9320 0.9470
B1 bias  0.0019 0.0714 0.0121 0.0009 0.0140
SD  0.2276 0.3895 0.3111 0.2888 0.3107
ASE 0.2267 0.3989 0.3139 0.2823 0.3135 1.236 1.233
CP 0.9510 0.9730 0.9460 0.9400 0.9440
0.66 0.6 0.58 pBp bias 0.0016 0.2309 0.0031 0.0088 0.0020
SD  0.1376 0.2119 0.1709 0.1721 0.1756
ASE 0.1347 0.2122 0.1680 0.1628 0.1716 1.065 1.111
Cp 0.9450 0.8210 0.9390 0.9330 0.9440
B1 bias  0.0019 0.0603 0.0172 0.0006 0.0164
SD  0.2276 0.3856 0.3461 0.3201 0.3455
ASE 0.2267 0.3945 0.3523 0.3228 0.3537 1.191 1.201
Cp 0.9510 0.9700 0.9620 0.9540 0.9650
0.50 1 0.58 pBp bias 0.0016 0.2341 0.0028 0.0140 0.0015
SD  0.1376 0.2144 0.1767 0.1784 0.1820
ASE 0.1347 0.2145 0.1734 0.1695 0.1771 1.047 1.092
Cp 0.9450 0.8220 0.9450 0.9360 0.9380
B1 bias  0.0019 0.0489 0.0219 —0.0033 0.0216
SD  0.2276 0.3809 0.3657 0.3413 0.3663
ASE 0.2267 0.3907 0.3705 0.3507 0.3735 1.116 1.134
Cp 0.9510 0.9630 0.9620 0.9490 0.9620
0.24 25 058 pp bias 0.0016 0.2407 0.0023 0.0229 0.0025
SD  0.1376 0.2203 0.1842 0.1843 0.1884
ASE 0.1347 0.2188 0.1805 0.1777 0.1828 1.032 1.058
Cp 0.9450 0.8240 0.9400 0.9450 0.9430
B1  bias  0.0019 0.0326 0.0257 —0.0139 0.0238
SD  0.2276 0.3764 0.3834 0.3659 0.3847
ASE 0.2267 0.3868 0.3850 0.3807 0.3896 1.023 1.047
Cp 0.9510 0.9650 0.9610 0.9580 0.9650

About 58% of X are missing in 1000 replications
The true parameter vector = (8, ,BI)T = (In(2), lr1(3))T

corr(Y?, Y) = 0.87(p = 0.8)

RE| = ASV(By)/ASV(B) and RE; = ASV(Byy)/ASV(B )

response (1 = Yes; 0=No) to the question “Would you pay extra money for additional

channels?”. We consider the following logistic regression model

P =11X;,Z;,W;) = H(Bo+ B1DXy; + B2 DXy + B3DZy; + BaDZy;)
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Table 3 Simulation results for various values of corr(YO, Y) (n = 500)
cor(¥0,Y) p  mr Br Bc Bv By Bw RE; RE;
0.87 0.8 0.58 pBp bias 0.0016 0.2278 0.0031 0.0072 0.0021
SD 0.1376  0.2088 0.1636 0.1625 0.1677
ASE  0.1347 0.2094 0.1596 0.1530 0.1619 1.088 1.120
CP 0.9450 0.8190 0.9480 0.9320 0.9470
B1 Dbias 0.0019 0.0714 0.0121 0.0009 0.0140
SD 0.2276  0.3895 0.3111 0.2888 0.3107
ASE  0.2267 0.3989 0.3139 0.2823 0.3135 1.236 1.233
Cp 0.9510 0.9730 0.9460 0.9400 0.9440
0.68 0.7 059 Bop bias 0.0100 0.2109 0.0106 0.0117 0.0107
SD 0.1325 0.2078 0.1797 0.1826 0.1812
ASE  0.1348 0.2103 0.1808 0.1811 0.1826 0.997 1.017
CP 0.9560 0.8590 0.9460 0.9490 0.9470
B1 bias —0.0013 0.0663 0.0208 0.0116 0.0208
SD 0.2243  0.4098 0.3713 0.3696 0.3726
ASE  0.2271 0.4010 0.3634 0.3578 0.3647 1.032 1.039
Cp 0.9540 0.9520 0.9410 0.9400 0.9450
0.54 0.6 0.60 pBo bias 0.0100 0.1839 0.0108 0.0122 0.0108
SD 0.1325 0.2095 0.1941 0.1960 0.1952
ASE  0.1348 0.2111 0.1930 0.1931 0.1944 0.999 1.014
CP 0.9560 0.8880 0.9430 0.9390 0.9460
B1  bias —0.0013 0.0632 0.0266 0.0174 0.0272
SD 0.2243  0.4103 0.3926 0.3907 0.3940
ASE  0.2271 0.4018 0.3827 0.3799 0.3841 1.015 1.022
CP 0.9540 0.9510 0.9470 0.9460 0.9490
0.26 0.3 063 pBo bias 0.0100 0.1020 0.0126 0.0134 0.0138
SD 0.1325 0.2109 0.2073 0.2077 0.2077
ASE  0.1348 0.2137 0.2113 0.2112 0.2122 1.001 1.009
CP 0.9560 0.9370 0.9500 0.9540 0.9480
B1 bias —0.0013 0.0531 0.0341 0.0314 0.0339
SD 0.2243 0.4131 0.4113 0.4095 0.4121
ASE  0.2271 0.4048 0.4050 0.4045 0.4066 1.002 1.010
CP 0.9540 0.9520 0.9520 0.9560 0.9540

About 58% of X are missing in 1000 replications
The true parameter vector 8 = (B, ,Bl)T = (In(2), ln(3))T
corr(X, W) = 0.84(c = 0.25) R R
RE| = ASV(By)/ASV(B ;) and RE; = ASV(Byw)/ASV(B )

fori =1,2,...,1793. Here DX and D X, are dummy variables for the type of living
place X, DX} = 1if X = k and 0 otherwise. DZ; and D Z, are dummy variables for
the city of residence Z, DZy = 1 if Z = k and 0 otherwise.
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Table 4 Results of cable TV survey data analysis (mr = 19%)

Variable Parameter By Bc Bw By
Intercept Bo —1.7087 —1.7431 —1.6911 —1.7082
(0.1850) (0.1837) (0.1853) (0.1850)
DX, B1 0.7398 0.7404 0.6889 0.7402
(0.1517) (0.1513) (0.1518) (0.1518)
DX; B 1.1542 1.1058 1.1691 1.1555
(0.3191) (0.3149) (0.3235) (0.3197)
DZ; B3 0.6409 0.6795 0.6417 0.6410
(0.1838) (0.1825) (0.1834) (0.1839)
DZ; Ba 0.2936 0.2852 0.2768 0.2944
(0.2223) (0.2217) (0.2224) (0.2241)

Values in parentheses, (.), are the asymptotic standard error (ASE) of the estimates. DX and DX, are
dummy variable for type of living place X (1 =building or apartment with management committee; 2 =house
or condo with management committee; 3 = apartment or condo without management committee), DXy = 1
if X = kand 0 otherwise. D Z1 and D Z, are dummy variables for city of residence Z (1 = Taipei; 2 = Yunlin;
3=Taichung), DZ; = 1if Z = k and 0 otherwise

To examine the missingness mechanism of the cable TV survey data, we con-
duct a logistic regression model with outcome variable § and the covariate vector
(YO, W, DZ, DZz). The estimate of the corresponding regression coefficient vec-
tor is (—0.371, —0.260, 0.691, 1.022) with asymptotic standard error (0.125, 0.141,
0.145, 0.183). This result suggests that the non-response of ¥ and X are related to
Y, W, and Z, indicating that MAR missingness mechanism may be plausible.

We analyze the data by assuming MAR missingness mechanism. The analysis
results are given in Table 4. Recall that CC estimators are inconsistent and the analy-
sis results from the CC regression can be misleading. The results of testing 81 = 0,
B2 = 0, and B3 = 0 each based on all the methods are statistically significant. Note
that the estimates of 81 and S, are statistically significantly different from zero and
positive, which indicates that discount was more likely to occur when the living place
is a building or apartment with management committee or a house or condo with
management committee. The results of testing 84 = 0 based on all the JCL, VL and
WE methods are statistically insignificant, meaning that there was no difference in
discount on the cable TV between the Taichung customers and Yunlin customers.
Finally, the analysis results based on the JCL, VL and WE methods are close to each
other, which are consistent with the results of the simulation study in Sect. 5 when the
missing rate is low.

7 Conclusion

We have proposed a semiparametric approach to estimate the logistic regression model
with missing both covariates and an outcome variable. As demonstrated in the simu-
lation studies, the JCL estimator based on both validation and non-validation data sets
performs slightly better than the other estimators except the maximum likelihood
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estimator from full data. When the missing rate is high, and corr(X, W) and
corr(Y O, Y) are not low, the JCL estimator can be much more efficient than both
the VL and WE estimators. However, when corr(X, W) or corr (Y 0, Y ) is low, the
JCL estimator performs slightly better than both the VL and WE estimators. Note that
the performances of the VL and WE estimators are similar. The advantage of our esti-
mation is that it is unnecessary to make any assumptions of nuisance components such
as the selection probability, misclassification probability, and conditional probability
density of X given (Y, V).

Although the main results are presented for the case where V and X are discrete,
it can be extended to the continuous case by using the approach of Wang and Wang
(1997). Nonparametric kernel techniques are required for extending our approach
because the nuisance components involve the estimators of selection probabilities,

misclassification probability, and the relative risk E (e’ngX Y =0, V). Moreover, we

remark that the proposed semiparametric estimation method generalizes the methods
of Wang et al. (2002) and Pepe (1992). When ¥ = Y with probability one, all the mis-
classification probabilities, i.e., 6(-), ¢ (-), 6,(-), and ¢, (-), are zero, which reduces to
the case considered by Wang et al. (2002). On the other hand, if X = W is observable
and the missing mechanism of ¥ is MCAR, this reduces to the case considered by
Pepe (1992).
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Appendix

We assume that the regularity Conditions (A1)—(AS) of Sect. 3 hold. In this appendix
we prove Lemmas 1 and 2, and Theorem 1. Note that Conditions (A1) and (A2) are
common assumptions for the existence of logarithmic transformations of selection
probabilities. Condition (A3) is a usual assumption for the existence of expectation.
Condition (A4) is a usual assumption for the unique solution of estimating equation.
Condition (AS5) is a usual assumption for the proof of consistency in estimating equa-
tion theory.

Proof of Lemma 1 ByaTaylorexpansionofﬁln(ﬁ) atm (0, Vi), 7 (1, Vi), A(X;, 0,
Vi), A(X;, 1, Vi), B(X;,0,V;),and B (X;, 1, V;), we can express Ui, (B) as

- 1 <& .
Uin(B) — Unn(B) = 7 > 86X [Hy (Xi, Vi: B) — Hy (X, Vi: B)]
i=1
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= - % ;&%Hi” (Xi, Vi B KT (X, Vi L€ (X, Vi)
x [7 (1, Vi) — 7 (1, V)]
+C2 (X, V) [7 (0, Vi) — 7 (0, V)]
+C (X, VO [AXi, 1L, V) — A (X, 1, V)]
+Ca (X, Vi) [A(X1,0, Vi) — A(X:, 0, V)]

+Cs (X;, V) [B(Xi, 1, Vi) — B(X;, 1, Vi)]

+Co (Xi, Vi) [B (X:,0, Vi) — B (X1, 0, Vi)] + 0, (%)] :

Here
o (L V)= 60X, V)l + (0, Vi)O (X, Vi)
’CI(X”V’)_n(l,vi)¢(xi,vi>+n<0,vi>[1—¢<xi,v,->]’
C1 (Ks. Vi) = (0, V)OIl — 6 (X, Vi) — ¢ (Xi, Vi)] 2
{m (1, V)¢ (X, Vi) + 7 (0, Vi) [1 — ¢ (Xi, Vi)]}
B [ (1, V;) — 7 (0, V)16 (Xi, Vi) [1 — 6 (X, V)]
7 (L, V) {m (1, Vi) ¢ (X, Vi) + 7 (0, Vi) [1 — ¢ (Xi, VD))
[ (1, V;) — (0, Vp)lg (Xi, Vi) [1 — ¢ (Xi, V)IK1 (Xi, Vi)
(1, Vi) [ (1, V) (X, Vi) + (0, V)l — ¢ (X;, VDI}
Cy (s, Vi) = — (1, VoIl — 6 (X, Vi) — ¢ (X, Vi)] i
{m (1, Vi) ¢ (X;, Vi) + (0, VL1 — ¢ (X;, Vi)]}
[7(1, Vi) — (0, V)10 (X;, Vi) [1 — 6 (X;, Vi)]
(0, Vi) {r (1, Vi) ¢ (Xi, Vi) + (0, V)1 — ¢ (X, V1)
w1, Vi) =m0, V)l (Xi, Vi) [1 — ¢ (Xi, VOIK: (X3, Vi)
(0, Vi) i (1, Vi) ¢(X;, Vi) + (0, V)[1 — ¢(X;, V1)
Oy Vi) = — [ (1, Vi) — (0, V)l (X, VDIl — ¢ (Xi, VIK1(Xi, Vi)
PO TT AL, V) {r (1, Vi) ¢(Xi, Vi) + 700, VLT — ¢ (Xi, VDl
Ca Ky, Vi) = (1, Vi) — (0, Vi)lg (Xi, Vi) [1 — ¢ (X;, VD)IK1 (Xi, Vi)
PR A XG0, Vi (o (1, Vi)  (Xi, Vi) + 720, VDI — ¢ (X1, VLY
Cs Xy, V) = (1, V;) — (0, V)16 (X;, Vi) [1 — 6 (X;, Vi)]
PR T B X L V) (t (L Vi) ¢ (X3, Vi) + (0, VDI — ¢ (X1, VDI
and
Co (X1, Vi) = [(1, V;) — (0, V)10 (X;, Vi) [1 — 6 (X;, Vi)]

T B(X:,0, V) {m (1, Vi) ¢ (X, Vi) + 7 (0, Vi) [1 — ¢ (Xi, VI}
For simplicity, we express 171,,(/3) — U1, (B) as follows:

Uin(B) = Uin(B)
= - [Rln (.B) + R2n(ﬂ) + RSn(ﬁ) + R4n(ﬂ) + RSn(ﬁ) + Rﬁn(ﬁ)] + 0[7(1)-
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First of all, the Ry, (f) can be expressed as

1 < ~
Ru(B) = = > s HY (Xi Vii By KT (X0, Vi) Cr (X0, Vi) [R (L Vi) — 7 (1, Vi)
i=1

- _
= ﬁzamﬂi” (Xi. Vi BY KT (X Vi) €1 (X, Vi)
i=1

X

T S8 = LVl (Y =1,V = V) |
PO=1LV=V) +0’”(W)

Bl

1 &1 B

= =SS s HD (X Vi BT (X0 V) €1 (X Vi)

Gl R

1(Vi=Vy)18; =7 (1, Voll (Y9 =1)

X +o0,(1
PYO=1V=V) p(D)

Lo 18— m (v (v =1)
vheoop (Yo=1v=yv
<E [7 (0, V) XD X Vi BT X VICX, IV = Vj] 40, (1.

Likewise, we can express Rz, (B), R3,(B), Ran(B), R5,(B), and Rg, (B) as follows:

l - -
Ru(B) = 7= > o HD (Xi, Vi BYKT (X3, Vi) Co (Xi, Vi) [R (0, Vi) — 7 (0, Vi)]
i=1

Lo [ajfn(O,Vj)]I(Yf)zo)

TV P=ov=v)

xE [n (v, V) XHOX, Vi BIKT (X, V)X, VIV = V_,} +op(1),

1 n B N
Ron(B) = = SaxHY (Xi, Vi BYKT (X4, Vi) C3 (X, Vi) [A (X4 1, Vi) — A (X3, 1, Vi)
i=1

1 n 1 n B
=7 2. ‘ S B HLY (X, Vi B) KT (X)) G (X))
j=1 i=1

—

1(Y0=1) = A (X, L V)] 80 (¥ = 0) 1 (Xi = X;, Vi = V)

I
x PO=1.Y=0X=X; V=V, +op)

w82 H (X, Vi BT (X5, V) € (X5, V) [1(¥0 = 1) = a (X 1, v) [ 1 (v = 0)
P3=1Y=0X=X,;V=V))

X
1
S| =
H'M: [N
g
~
—
2
Il

Xj. Vi = v.f)] +op(1)
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Lo s HD (X5, Vi B) KT (X, V) G (X, V) [1 (Y" ) (Xj,l,vj)}l(yjzo)
f PY=08=1,X=X;,V=V))P(=1,X=X;,V=V))
x [P (5—1 X=X;,V=V;)+o0,(D]+0,(1)

1 SR HD (X, Vi B) KT (X Vi) G (X, Vi) [T (Y = 1) = A (x5, 1, v) [ 1 (v, =0)

V= P(Y=08=1,X=X;,V=V)
+0p(1)a
] n
Rin(B) = = D s X H (Xi, Vis BYKT (X, Vi) Ca (X2, Vi) [A (X1, 0, Vi) — A (X4, 0, V)]
i=1

- -
-7 D s HY (Xi, Vis BYKT (X3, Vi) Gy (X, Vi)
i=1

|:n1 (- [1 (Y}O :0) — A(X,0, V,)]&,I (Y; =0,X; = X;, V; = V)
X

Pl=1Y=0X=X;,V=V)
1
+0p ﬁ

1 S HY (X Vi B KT (X5, V) € (X, Vi) [ (Y0 =0) =4 (X, 0,v) [ 1 (v, = 0)
Vo P(Y=0=1X=X;V=V)

+op(1),

1 < -
Rsu(B) = 7= > aixH (Xi, Vis KT (X3, Vi) Cs (X0, Vi) [B (X4 1, Vi) = B (Xi, 1, V)]
i=1

l n
= > sxH" X0, Vi B KT (XL Vi) Cs (Xi, Vi)
N

X

n S [0 =) - BOG L ]8T (Y = LX) = XV = V)
PO=1Y=1X=X.V=V)

1
()]
Y 8 HD (X, v B) KT (X, V) Cs (X5, V) [1( 1) - (x,-,l,v,-)]l(yj=1)
5 P(Y_1|5_1X X, V=V)P(=LX=X; V=V

x[P(8=1X=X;.V=V))+o0,(D]+0,(1)

1 S HY (X Vi B KT (X5, V) s (%, Vi) [1 (Y0 = 1) = B (X L v) 1 (v = 1)
PY=13=1X=X,,V=V)

1 < -
Ron (B) = —= > 5iXH (Xi, Vis KT (X0, Vi) Co (Xi, Vi) [B (X,,0, Vi) — B (X:.0,Vy)]
i=1

I _
= = DO (X Vi KT (X0 V) Co (X, V)
i=1
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D [1 (YJO :o) — B(X;,0, v,-)] 51 (Y, =1.X; =X, V; = V) .
x PO=1LY=1X=X;,V=V) +0"(ﬁ)
L L SGHY (X, Vi B K (X5, V) Co (X5, V) [1(r?=0) - B(x;.0.v))]1(r; =)
_ﬁj:l PY=18=1,X=X;,V=V))
+0]7(1)s

It can then be shown that

- [Rln(ﬂ) + RZn(ﬂ) + R3n(ﬂ) + R4n(ﬁ) + RSn(ﬁ) + Ren (ﬁ)]

1 n
-7 Zec(yj, Y. X, Vi B) + 0p(1)
j:]

and, hence,

U1 (B) = % >3 [Sc (Y Y0 X0, Vi) e (Y Y2, X0 Vi B) |+ 0, (1),

i=1

where S, (Y, Y2, Xi, Vi B) = 8; Xi[Y; — Hy (X;, Vi; B)] and

e (Y Y0, X0, Vis B) = =8 4B (X, Vi BT (X0, Vi)

G X V)1 (¥ =1) - AXi L VD] (Y =0)
x PY=0=1X=X;,V=V)

Cya(Xi, V)L (Y;i =0) — A(X;,0, V)] (Y; =0)
PY=0=1,X=X;,V=V)

Cs(Xi, VO (Y =1) —B(X;, L, VDI (¥; = 1)
PY=1=1,X=X;,V=1V)

Ce (Xi, V) [1(Y)=0) = B(X;,0, V]I (¥; =1)
+ PY=18=1,X=X;,V=V)

E [7‘[ . VY XHD (X, Vi BIKT (X, VICH (X, V)|V = V,-]
P(YO=1V =V

+

x[8; — (1, V)l (Y,.O = 1)

E [n(Y, VIXHY (X, Vi HIKTHX, V)C2 (X, V)V = V,-]
P(YO=0V=V)

x[8; — 7(0, V)II (Yio - 0) .

+
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The proof is completed. O

Proof of Lemma 2 We first express Uan (B) as follows:
~ _ " o 0B .
Un(B) = ﬁ;}(l SHT(BIYY — H-(Vi; B)]
I T P y
= ﬁZa SHT(BLY, — H-(Vi; B)]
IZ(I ST (B)H-(Vi; B) — H-(Vi; B)]
+—= > (1= )IT(B) = TBIY, — H-(Vi; B
ﬁg‘( WTi(B) — Ti(B) (Vi: B)

1 — = _
~ 7 ;ﬂ —5)IT:(B) — TBIA-(Vi: f) — H-(Vi: B)]
= Uy (B) + Q12(B) + 02:(B) + 03,.(B).

Here

1 < .

Q1. (B) = -7 ;u — )T (B)H-(Vi; B) — H-(Vi; B)].
R ~ PO 0_ .

02.(B) = ﬁ;(l $HIT(B) — T(BIYY — H_(Vi; B)1.

1 < ~ ~
03 (B) = = D (= )ITi(B) — Ti(B)ILH-(Vi; B) — H-(Vi; B)].

i=l1

Because V; has a fine support, we can show f(ﬂ) —T;(B) = op(1). \/Lﬁ > =

Si)[YiO—H_(‘/i; B)] = 0,(1),s0,itcanbe shownthat Q,,, (B) = 0,(1),m = 2,3.By
a Taylor expansion of Q1,(B) at (0, V;), (1, V;), A,(0, Vi), A (1, V;), B, (0, V;),
B,(1, Vi), r,(0, Vi; B1), and r, (1, V;; B1), one can show that

1 < _
Q) = - Z(l — )T (BILH-(Vi: B) — H-(V;: B)]
= IZu—a)T(ﬁ)H(”(v BYD1; (BT (0. V;) — 7 (0. V)]

[Z(I—S)T(ﬂ)H(])(V B)D2 (BT (1, V;) — (1, V;)]
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[Z(l — ) Ti(BYH (Vi B)D3i (B) A, (0. Vi) — A, (0. V)]
IZG—“T(/*)H( )(Vi: BYD4i (B Ay (1. Vi) — Ay(1, V)]

- ﬁ ;a — )T (BYH' (Vi B)Ds; (BB, (0. Vi) — B, (0, V;)]

- % ana — )T (BYH" (Vi: B)Dei BBy (1. V) — By(1, V)]
f 2(1 50T (BYHY (Vi B) D7: (B)7, 0. Vi: 1) — 140, V. )]

—ﬁ Z,(l — )T (BYHY (Vi: B)Dsi (B)IF, (1. Vi B1)—ry (1, Vi: B)1+0p(1).

Here

Dy;(B) =

1 +[H1 (Vi; B +H2(Vi§ﬂ)i|90(vi)[1_90(vi)]
1 =m0, V) [1-6,V) 6, (Vi) 7(0, Vi)
H\(Vi; B) — Ha(Vi B) [ry (1, Vis B1) — 1,0, Vi BD]gy (VD[ — ¢, (Vi)]
r(Vi; B1) 7(0, Vi)
|:H1(Vi§ B H(Vi; ﬁ)j| @, (VOIL — ¢, (Vi)] —[ﬁ0+ﬁzz +R(Vip],
1=6,(Vi) 0, (Vi) 7(0, Vi)
-1 _ |:H1(Vi§ B) N Hy (Vi ﬂ)} 6 (V1 — 6,(Vi)]
I—n(, Vi) L1—=6,(Vi) 0, (Vi) 7(1, Vi)
_Hi(Vis B) — Ha(Vis B) [ry (1, Vi B1) — 10, Vis B1)1epy (Vi1 — ¢, (Vi)]
r(Vi: By) (1, V)
_ |:H1(Vi§ B) i H(V;; ﬂ)i| ¢0(V)[1 ¢0(V)] *[ﬁ(ﬁﬂzz +R(V;: ﬁl)
1=6,(Vi) 0, (Vi) 7(l, Vi)
Hi(Vi; B) — Ha(Vi; B) [y (1, Vis B1) — 1y (0, Vi BI@, (VDI — ¢ (Vi)]

Dy (B) =

DB = = Wiy 4,0, Vi)
_[Hmvl-;ﬂ) Hz(vi;m} B VDL =8V 13167, 4Revi)

1 —6,(Vi) 0, (Vi) Ay (0, Vi)

H(Vi; B) — Ha(Vis B) [r, (1, Vis By) — 1, (0, Vi By (V)1 — ¢, (Vi)]

r(Vi; B1) Ay(1, V)

+ |: H(V;; B) H>(V;; ﬂ):| ¢0(V)[1 ¢0(V)] 67[130+f522 +R(V; [51)
1 —6,(Vi) 0, (Vi) A, (1, Vi)
Hi(Vi; B) | Ha(Vi; ﬂ)} 0, (Vi)[1 — 6,(Vi)]

1 —6,(Vi) 0, (Vi) B, (0, Vi)

H(Vi; B) n Hy (Vi ﬂ)] 0, (V)[l —6,(V)]

1 —6,(Vi) 0, (Vi) B,(1,V))

Dyi(B) =

Ds;(B) = — [

D¢ (B) = |:
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[H1(Vi; B) — Ha(Vi; B)I[1 — ¢, (V)]

Dri(B) = r(Vii B) ’
and
[H(Vi; B) — Ha(Vi; B)1d, (Vi)
Dg; =
i (B) r(Vis B1)
with
o T, o ROV 1=6,(V)
H1<v,,ﬂ>—H[ﬂo+ﬂzzt+R(V“ﬂ‘)““ ¢ (V) ]
and
o T ) 6V
Hz(%,ﬂ)—H[ﬁwﬂzzz+R(Vl’ﬁ1)““1—¢0(Vi)]'

For simplicity, we express Q1,(f) as follows:

an(ﬁ) = Gln(ﬂ) + GZn(ﬂ) + G3n(ﬂ) + G4n(ﬂ)

+Gs5,(B) + Gen(B) + G7,(B) + Gsu(B) + Op(l)'

With some algebra, we can express G, (B)’s,t = 1,2, ..., 8, as follows:

Gin(B) = IZ(I 50T (BYHY (Vii B)D1: (BF(0. Vi) — (0, Vi)

= ﬁ Z(l ~ )T (BHY (Vi: B)D1; (B)
i=1

n SR — O VU (YD =0,V = V) 1
h PO =0,V = V) Tor (ﬁ)

L Z {z(y,? =0 T(B)H (Vi B) D1 (B[S — (0, Vkﬂ}

PYO =01V =W)
i i (=001 (Vi = Vi)

POV = V) +op(1)
_ly 170 =0T BHY (Vs BYDI (B — 70, V)]
IR s PO =0V =Vp)

XE[1— (Y%, V)|V = Vi]+0,(1)
=7 meH“’(vk BE[ — (YO V)|V = ViID1(B)

I(YO = 0)[8 — 7 (0, V)]
PYO =01V =W

+op(l),
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1 n
Cn(B) === > (1= )T (BYH (Vi B Do (BT (1. Vi) — (1, V)]
i=1

1 n
=== 2 TBHY Vi D(B)
k=1

1) = DI —7(1, VOIE[L =2 (Y, V)|V = V]
) PYO =1V =V

+op(D),

1
Gan(B) = IZ(I—S)T(ﬂ)H“)(V B)D3; (B)LA, (0, Vi) — Ay (0, Vi)]

Z[ Z (1 =) TBHY (Vi BYD3 (B (V; = Vi)

P PV = V)

x [5e1 70 = 0.¥i = 0) = 4,0, Vi) | ’ + op(D)

= IZ [T(ﬂ)H( (Vi BID3k(B) 811 () = 0. ¥y = 0) = 4,0, V)|

1 n
w2 (L =381 (Vi = Vy)
X POV =V + op(D)

1 n
— _ﬁ,; {ﬁ(ﬂ)Hﬁl)(Vk; B)D3(B) [8kI(Y,? =0, =0) — A, (O, Vk)]
ElL =7 (%, VIV = Vol} +op(D,

1 < -
CanB) = ——= > (=T B HY (Vi YDy BIA,(1. Vi) — Ay(1, V)]
i=l1

1 n
= == > BB Vi Dy BB (X = 1, Y = 0) = 4,1, V)]
ﬁk:l
% E[1 — (Y0, V)|V = Vk]] +op(1),

1 < _
Gsn(B) = 7 Za — )T (BYH" (Vi: B)Ds; (B)[B, (0. V) — B, (0, V;)]

A =s)TB®HY (Vi; BYDsi (B (Vi = V)
A Z[ Z P(V = Vg)

x [5k1(y,? —0,Y=1) - B, (0, Vk)] + op(1)

__l3 Dy, 0_0y—1)
- ﬁ’;[mw_ (Vi B)Dsic(B) [1 (Y = 0. ¥ = 1) = By (0, Vi) |
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LS A =8)1(V; = V)
PV =V

+ op(1)

1 < 1
= —ﬁ; [7BHD Vi BDs(B) 81 (7 = 0.¥i = 1) = B, 0, Vi)

« E[1—7(YO, V)|V = vk>1} + op(1),

1 <& _
Gon(B) = == > (1= 6)Ti(BHY (Vi: B)Dei (BB, (1. V) — By(1. V)]
i=1

1 n
= —ﬁ; [7BHD Vi BDoB) [0 (V) = 1. ¥i = 1) = By(1, Vi)

x E[1 — 2 (Y°, V)|V = Vk)]} + op(1),

1

G (B) = NV

n
> (=T B HY (Vi: BD7: (BIF 0. Vi: B1) — ry (0, Vi B1)]
i=1

R U ~ PR My ,
= ﬁ;)(l sHT(BYHY (Vi ByD7; (B)

T
x 'n_l St 8lePTXE — 1y (0. Vi BN (Y = 0.¥0 = 0.V = Vi)

70, VH)PY =0,Y0=0,V =V;)
1
o (5)]

S Lyl is 50T (B (Vi: B)D7i (BY5K[eB1 X — 1y (0. Vi B1)]
- Vi 7O, VHOPY =0,Y0=0,V =V))

i=1

X 1(Yp=0,Y) =0,V = vi)] + op(1)

_ b Zn: Te(B)H'D (Vi:: BYD7y(B)I (Y =0, Y,?:O)ak[eﬂnTXk —ro (0, Vi: B1)]
- ﬁk:l 7(0, Vi) P(Y =0, Y0=0|V=Vk)

1 n
7 2t (L =81 (Vi = Vy)

T
1 & 1V =0, Y2 =0)8[eP1 Xk —r 0, Vi:; B

=—— S {npa"wv:pp
ﬁ](:l | (B k> B)D71(B)

7(0, Vi) P(Y=0,Y0=0|V =V})

x E[1 — 7Y%, V)|V = Vk]] + o0p(1),
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and

1 < ~
Gsn(B) = ——= > (=T BHY (Vi: B)Dsi BIF, (1. Vi B1) — ry (1. Vi: )]
i=1

T
L S Dy, (Y =0, Ylg)zl)‘sk[eﬂlx"—ro(l, Vis BD]
\/ﬁ;|7}((ﬂ)H (Vi B)Dgi.(B) (1, Vi)P(Y =0, Y0:1|V=Vk)

x E[1 —n(Y%, V)|V = Vk]] +o0p(1).
We can then show that

8 n
1
Q1n(B) =D Gru(B) +0p(1) = NG > en(¥i. Y, Xi, Viz B) + 0, (1)
i=1

k=1

and, hence,
Usn(B) = Usu(B) + Q1a(B) + 0, (1)
1 n 0 /. w0 v 1.
= ﬁé[sm(yl > ‘/l’ B) +5m(Yl, Yl 7le ‘/l’ ﬂ)] +0p(1)’

where S, (Y?, Vi; B) = (1 = )T ()Y — H_(V;; B)], and

em (Y, Y2, Xi, Vis B) = —Ti(BYH (Vi; BYP(G = 0|V = Vj)

1(Y? =0)[8 — 7 (0, V)]

x 1 D1i(B) PYO =0V =V)

1(Y? =1 [8 — (1, V)]
P(YO =1V =V)
+D3:(B) [8:1(Y? =0,7; =0) — A, (0, Vi)

+Dy; (B)

+Dy(B) [8 1Y) = 1,%: = 0) — 4,1, V)]

+Dsi(B)|8:1(Y? =0,Y; = 1) — B,(0, Vi)

+D6i (B) [8:1 (Y) = 1, ¥i = 1) = By(1, Vy)]

1(r? =0, ¥ = 008 [A% = 1,0, Vi )]
70, V)H)PY =0,Y9 =0V =V))

10 =1,%; = 008 [P — 1,1, Vis )]
n(1,V)H)PY =0,Y0 =1V =V;)

+D7;(B)

+Dgi (B)
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The proof is completed. O

Proof of Theorem 1 To show that B ;7 1s a consistent estimator of 8, we consider

1 [ a0,
l n R . - >
=;Zﬁmﬂﬂﬂhwmnn—wzmﬁwmwmm]
+- 2(1—8>[Y° H (Vs B)l—7 ﬂT 7, (B)
] 1
1 — ~ ~ ~ ~
= >[5 XT B G v B + (=T BT BA Vi )|
j=1
l — ~ - _
—= D (U= 8pIY) — H (Vi HUH" (Vi ) = Hy (Vi B)]
j=1
1 (v,) Z]T.
x R,gl(V)Rﬂl(V,)Rﬂl(V,)Rﬁl(V VZ] ——2(1—5)
Z; Z; m("/) Z; ZT j=1
o of of
x[Y]) — H-(V;; B [Hi(V}; B) — Ha(V}; B)] 3 E,;?ﬂ(vu 3 :
where

0
PP Vii Br) = ﬁrﬁ.(Y Vi B1)

S XXX = 0.Y0 = Y2 Vi = Vi)
SISV =0,Y) =)0, Vi = V)

and
32

9} 8p1

_ T O, Vi BT — 8 (VD1 +757 (1, Vis 1y (V)
70(0, Vit BOLL — o (Vi1 +7, (1, Vi BB, (Vi)

RY (Vi) = R(Vi: B1)

— [Rp, (V)12

It can then be shown that G, (8) LS G (B). By Condition (AS5), the convergence of
G, (B) to G(B) is uniform in a neighborhood of the true 8. By the Inverse Function
Theorem of Foutz (1977), along with Condition (A4), one can show that a unique
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consistent solution exists for the estimating equation 17 (B) = 0 in a neighborhood
of the true B. Consequently it follows that 8 ; is a consistent estimator of B.

Next, we derive the asymptotic distribution of Jn (ﬂ 7 — B). By a Taylor expansion
of U, (B) at B, we can have

0=U0U,8))

_ a0,

i B —B) +o,(1)
= Up(B) — Gu(B)Vn(By — B) + 0,(1).

Because G, () LS G(B), it can be shown that \/ﬁ(ﬁj - B) = G_l(ﬁ)al(ﬂ) +
0p(1). By Lemmas 1 and 2, one can have Cov{ﬁn (B)} = M(B) as defined in Theo-
rem 1. Itisknown that Sc(Y;, Y2, X;, Vis B)+ec(Yi, Y2, Xi, Vis B)+Sn (Y2, Vis B)+
em (Yi, Yio, X;, Vi; B) are independent variables fori = 1, 2, ..., n, so, the ﬁ(ﬁj —
B) is asymptotically normally distributed with mean O and covariance matrix Aj =
G 'BMP) [G‘l(ﬂ)]T . Therefore, the proof is completed. O

InApractice, we need a consistent estimator of A ;. For this purpose, let G,, (ﬁ 7) and
M, (B ;) be an estimator of G(B) and M (B), respectively, as follows:

~ 1w ~ - o~ s o -
GuBp=- > [0 A X vis B + (1 =80T BT BHAY (Vi: B)) |

i=1

and
l n
MaBy) =~ 3 [SeHi Y0 X, Vi By + 50, Vi B
i=1
—~ 0 ~ — 0 ~ ®2
FE Vi Y0, X0, Vis By + 8 (Vi Y0, X1, Vis B
Here

Se(Vi, Y0, X, Vis B) = 8: 6[Y; — Hy(X;, Vis B)).

S (¥, Vii By = (1= 80T BHIYY — H-(Vi; B ).

BV YO Xi Vi By) = — X8 HY (Xi, Vis BHKT (X4, Vi)
[c;(x,, VOLL(Y? = 1) — A(X;, 1, V) (Y; = 0)

PY=0=1,X=X;,V=V)
Ca(X, VO (Y =0) — A(X;,0, V)l (Y; = 0)
PY=08=1,X=X;,V=V)
Cs(X;, VU (Y? = 1) — B(X;, 1, VDI (Y; = 1)
PY=1=1,X=X;,V=V,)
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Co(Xi, VUL (Y? = 0) — B(X;,0, V)L (Y; = 1)
PY=1s=1,X=X;,V=V))
LS (8 AL (G Vi BORT O VGG VI (V) = Vo)
PYO'=1,V=V)

+

x[8 — (1, VU (Y = 1)
LS [52 A X Vi BORT (G VG, VT, = Vo)
x[8; — 7 (0, V)L (Y = 0)

for

D 8 IYs =y, Xs =X, Vs = V)
D18 1(X; =X, V; = Vi)

PY=y5=1,X=X;,V=V) =
and

_ I <
P(Y():yo,v: Vi) = ;Z[(YSO:)’O, Vs = Vi).
s=1

T (Y, YO, X0, Vi B)) = T (BHH (Vi; BHPGE =0V = Vi)

1(Y? =0)[8 — 70, V)]
P(YO=0|V = V)

X Eli(ﬁj)

~ ~ IXY'=D[s; —7(,V;

+D2i (B ) ( lﬁ(YO)=[lj|V=(V,-) )
+D3;(B) [5i1(Y) = 0,Y; =0) — A,(0, V)]
+Dy(B) [51(Y = 1,Y; = 0) — A, (1, V)]
+Ds;(B) [5i1(Y? =0.Y; = 1) — B,(0, Vi)]
+D6i (B [8:1(¥Y =1,Y; = 1) = B,(1, V)]

12 =0, %, = 0)8; [F1% ~ 7,0, Viz o) |

+D7i(B,) S 8, 1(Y9=0.Y;=0,V;=V,)
D [(Vs=Vi)
L =Y =008 [P 70V B
+Ds; (B)

j sjl(yfzo,yjzl,vj:w)
Do 1 (Vs=V))
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for

Do (I=8)I(V; = V)
2 (Vs =Vi)

PG=0|V=V)=

’

and
S I =)0 v, =V)
ST I(Ve= Vi)
1 H(Vi; B))  H:(Vi; B)) | 8,(Voll =8, (V)]
1—70. Vi) | 1-8,(V) 0, (Vi) 7(0. V)
+ﬁ1(v,~;ﬁj) — Hy(Vi; By) [7y (1, Vis Br1) — 70, Vis By, (VI — 6, (Vi)]
7(Vis Br1) 7(0, V;)
[ﬁm;ﬁ» ﬁz(Vi;En] G0 (VDU = 8Vl (7,071,714 Rvi B

P’ =)Ylv=v)=

51i(ﬁj) =

1=0,(V)  6,(Vp) 70, Vi)
for
L _ PO 1—6,(Vi)
H\(Vi:B)=H [ﬂjo +BlaZi + R(Vi; ) +1n A—"}
¢, (Vi)
and
S S A &}
H2(V"ﬂ-’)_H[ﬁJO+6“Zl+R(Vl’ﬂ“)+lnl—q?o(v,-) )
S =1 [ HW5By) | Ha(i B | 8,(vol = 6,(V)]
D21(.B])_ l—ﬁ(lsz) |:1_@:)(Vl.) + é:)(\/’) :| ﬁ(l, Vt)
_H\(ViiBy) = Ba(Vii By) R (1 Vit Br) = 750 Vi By g, (VDIL = 8, (V0]
(Vi B (L)

1—6,(V) — 6,(V) 7L, V)
_H(Vis By) = Ha(Vis B) [y (1, Vis Brn) = 70, Vi Byl (VLT — 6, (V)]

- {ﬁm;ﬁ,) ﬁz(v,-;ﬁj)} G0 VO = 8 (VD1 (7,047,704 RV

Dy (B)) =

(Vi B ) 4,00, V)
— ﬁl(‘ﬁ; EJ) + 1/‘1\2/(\‘/[;?,) ¢0(%2[1 — ¢ (V)] e_[EJO+EIZZi+§(W1§JI)].
1_9()(‘4) 9()(‘/[) AO(O, Vi)
BBy MV By) = Br(Vii By 7y (1 Vi Br) =70 0. Vi Bl (VUL = 6, (V)]
R (Vi By RA)

Hi(ViiB)) | B(ViiB)) | @V = 8Vl (75,0471, 7.+ Revisfon)
1—6,(Vi) 0, (Vi) Ay(1, Vi)

551,(31):_[111(%;/%1) Hz(v,-;ﬂ»}eo(vu[l—eo(v,-)y

1-8,(Vi) b,(V) B,(0, V;)
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BB H(Vi: B  Ha(Vi; By) | 6,(Voll —8,(Vi)]

6i (By) = =~ = — .
1 —=0,(Vi) 0, (Vi) B,(1, Vi)

S~ o Wi By) = B (Vi BN — 6y (V)]

D) = (Vi Br1) '

~ o HW(Vii By) = Ha(Vii BI (Vi)

DuiB) = F(Vis B1) ’

As shown in the proof of Theorem 1, E J LS B. Moreover, because G, (-) is the
sum of iid random variables, so, we can have G, (ﬁ,) - Gn(B) £ 0. By weak law
of large numbers, it can be shown that G, (8) LS G (B). Therefore, it can be justified
with Slutsky’s theorem that Gn(ﬁ 7) S G (B). Using the same arguments as above,

one can shovl M, (ﬁ Q 2 M (@ . Therefore, a consistent estimator of A is given by
Ay =G BHMBPIG BT o

References

Albert PS, Hunsberger SA, Bird FM (1997) Modeling repeated measures with monotonic ordinal responses
and misclassification, with applications to studying maturation. J Am Stat Assoc 92:1304-1311
Bollinger CR, David MH (1997) Modeling discrete choice with response error: food stamp participation.
J Am Stat Assoc 92:827-835

Breslow NE, Cain KC (1988) Logistic regression for two-stage case-control data. Biometrika 75:11-20

Carroll RJ, Stefanski LA (1990) Approximate quasi-likelihood estimation in models with surrogate predic-
tors. J Am Stat Asso 85:652-663

Chen J, Breslow NE (2004) Semiparametric efficient estimation for the auxiliary outcome problem with
the conditional mean model. Can J Stat 32:359-372

Cheng KF, Hsueh HM (1999) Correcting bias due to misclassification in the estimation of logistic regression
models. Stat Probab Lett 44:229-240

Cheng KF, Hsueh HM (2003) Estimation of a logistic regression model with mismeasured observations.
Statistica Sinica 13:111-127

Chu H, Halloran ME (2004) Estimating vaccine efficacy using auxiliary outcome data and a small validation
sample. Stat Med 23:2697-2711

Cox DR (1970) The analysis of binary data. Chapman and Hall, London

FoutzRV (1977) On the unique consistent solution to the likelihood equations. J Am Stat Assoc 72:147-148

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe.
J Am Stat Assoc 47:663-685

Pepe MS (1992) Inference using surrogate outcome data and a validation sample. Biometrika 79:355-365

Pepe MS, Reilly M, Fleming TR (1994) Auxiliary outcome data and the mean-score method. J Stat Plan
Inference 42:137-160

Pregibon D (1981) Logistic regression diagnostics. Ann Stat 9:705-724

Reilly M, Pepe MS (1995) A mean-score method for missing and auxiliary covariate data in regression
models. Biometrika 82:299-314

Rosner B, Willett WC, Spiegelman DP (1989) Correction of logistic regression relative risk estimates and
confidence intervals for systemtic within-person measurement error. Stat Med 8:1051-1069

Ronser B, Spiegelman D, Willett WC (1990) Correction of logistic regression relative risk estimates and
confidence intervals for measurement error: the case of multiple covariates measured with error. Am
J Epidemiol 132:734-745

Rubin DB (1976) Inference and missing data. Biometrika 63:581-592

Wang CY, Wang S (1997) Semiparametric methods in logistic regression with measurement error. Statistica
Sinica 7:1103-1120

Wang CY, Chen JC, Lee SM, Ou ST (2002) Joint conditional likelihood estimator in logistic regression
with missing covariate data. Statistica Sinica 12:555-574

@ Springer



	Semiparametric estimation of logistic regression model with missing covariates and outcome
	Abstract
	1 Introduction
	2 The proposed estimators
	2.1 Validation likelihood estimator
	2.2 Joint conditional likelihood estimator

	3 Asymptotic theory
	4 Some other estimators
	4.1 Complete-case estimator
	4.2 Weighted estimator

	5 Simulation study
	6 Example
	7 Conclusion
	Acknowledgments
	Appendix
	References


