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Abstract Dey and Midha (Biometrika 83(2):484–489, 1996) constructed optimal
block designs for complete diallel cross experiment using triangular partially bal-
anced incomplete block designs with two associate classes. They listed optimal block
designs for the lines in the range from 5 ≤ v ≤ 10. In this paper, we are also pro-
posing additional optimal block designs for complete diallel cross experiment using
two associate class partially balanced block designs for some additional values of v.
Our method yields designs for proper and non-proper settings for complete diallel
cross experiments. The proper and non proper designs are optimal in the sense of
Kempthorne (Genetics 41:451–459, 1956) and non-proper designs are universally
optimal in the sense of Kiefer (A survey of statistical design and linear models, North
Holland, Amsterdam, 1975). The list of practically important designs is also given.

Keywords Partially balanced incomplete block design · Complete diallel cross ·
General combining ability · Mating–environment design · Auxiliary design ·
Efficiency

1 Introduction

A diallel cross consists of all possible crosses between a numbers of varieties. Recip-
rocal crosses and the selfed parents may or may not be omitted. Diallel crosses as a
mating design is used to study the genetic properties of inbred lines in plant breeding
experiments.
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Among the four types of diallels discussed by Griffing (1956), system IV is the
most commonly used in plant breeding. Suppose there are v lines and let us consider
a cross of the form i × j with i < j = 1, . . . , v. With all possible nc = v(v − 1)/2
crosses. This is sometimes referred to as the modified or half-diallel. We shall refer to
it as a complete diallel cross (CDC).

The common practice with diallel cross experiment is to evaluate the crosses in
completely randomized designs or randomized complete block designs as environ-
ment designs, e.g. Kempthorne and Curnow (1961). Due to limitation of homogeneous
experimental units in a block to accommodate all the chosen crosses, the estimate of
genetic parameters would not be precise enough if a complete block design was adopted
for large number of crosses. To overcome this problem, many researchers used bal-
anced incomplete block (BIB) designs, partially balanced incomplete block (PBIB)
designs with two associate classes etc. by treating the crosses as treatments. These
designs have interesting optimality properties when making inferences on a complete
set of orthonormalised treatment contrasts. However, in diallel cross experiments the
interest of the experimenter is in making comparisons among general combining abil-
ity (gca) effects of lines and not crosses and therefore, using these designs as mating
designs may result into poor precision of the comparison among lines. Further, the
analysis of a diallel cross experiment in incomplete block depends on the incidence of
lines rather than the incidence of the crosses as treatments with in a block. It is there-
fore apparent that special techniques are required to obtain good designs for diallel
crosses experiments.

Several authors such as Gupta and Kageyama (1994), Dey and Midha (1996),
Mukerjee (1997), Das et al. (1998), Parsad et al. (1999) and Sharma (2004) addressed
the problem of finding optimal designs by using nested incomplete block designs
(NBIB), triangular PBIB designs, nested balanced block (NBB) designs, GD PBIB
designs and circular designs, etc. Gupta and Kageyama (1994) and Sharma (2004)
reported optimal designs in which every cross is replicated once but their designs dif-
fer in their parametric values with proposed designs. Das et al. (1998) and Parsad et al.
(1999) reported optimal designs for single as well more replications. Dey and Midha
(1996) reported optimal and efficient designs in which the crosses are replicated in
the range 3 ≤ r ≤ 10. These designs also differ in parametric values of our proposed
designs.

We, in this paper, derive additional incomplete block designs for the same mat-
ing designs, using two associate class PBIB designs such that none of the λ’s is
zero. We have also listed these designs for reasonable practically usable values along
with designs reported by these authors. The model considered involves only the
gca effects .The specific combining ability (sca) effects being excluded from the
model because the derived designs are not connected for cross effects. The paper
is structured as: (1) the method of construction of designs is presented in Sect. 2,
(2) in Sect. 3 analysis and optimality of the designs is considered and we show that
the non-proper designs have strong optimality properties, (3) in Sect. 4, the effi-
ciency factor of both designs (proper and non-proper) as compared to randomized
block designs is considered. For definition and properties of PBIB design, see Dey
(1986)
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2 Method of construction

The method is simply stated as: from tables of Clatworthy (1973), take for v lines
under evaluation and numbered randomly, a two associate PBIB design with param-
eters v = b, r = k, λ1, λ2, n1, n2, pi

jk (i, j, k = 1, 2) having none of the λ’s equal
to zero and also with the property that any pair of treatments does not occur more
than once in any column of the design when we consider block size k as a blocks. We
call this design as an auxiliary design. This feature of the auxiliary design helps us to
construct a block design for CDC.

Now in auxiliary design, take all possible distinct pair of combinations of treatments
in each block, starting from the first treatment of the block. These give k(k − 1)/2
pairs per block. Thus we get resulting design in which bk(k − 1)/2 pairs arranged in
b blocks, each containing k(k − 1)/2 pairs. Now in resulting block design identify
these pairs of treatments as crosses by treating treatments of the original design as
lines. Now we consider in resulting design, the number of plots (= k(k − 1)/2) as
blocks and number of blocks (b = v) as the block size of each k(k − 1)/2 blocks.
We call this arrangement as mating design and denote it as d. Since λ’s are unequal,
it leads to unequal repetition of the crosses in design d. The total number of crosses
in mating design d, is bk(k − 1)/2 and out of these vni/2 crosses are appearing in
niλi/2 blocks (i = 1, 2). Since replications of crosses are unequal, it makes mating
design unbalanced for CDC experiment. To make the design balanced for CDC exper-
iment, we will have to make the replications of the crosses equal because in balanced
designs each elementary contrast among gca effects is estimated with equal precision
under the assumptions of homogeneous error variance across all blocks. To do this, if
λ1 > λ2 we delete 1

2 [n1(λ1 − λ2)] blocks, (or, if λ2 > λ1 then 1
2 [n2(λ2 − λ1)]) from

k(k − 1)/2 blocks in design d.
In some auxiliary designs, for v even lines, if (λ1 −λ2) (or (λ2 −λ1)) is odd, then n1

(or n2) is also odd, then the expression of number of blocks to be deleted, will not be
a positive integer but it will be equal to some positive integer ±0.5. So in this case we
will have to delete blocks equal to some value of positive integer and 0.5 fraction of
one of the block which contains repeated crosses i.e. number of crosses to be deleted
are equal to v× (value of the integer ± v/2). The process of deletion of blocks will
be done with the help of association schemes of auxiliary designs (i.e PBIB designs).
Now we may classify our auxiliary designs into two classes (1) where [n1(λ1 − λ2)]
and [n2(λ2 − λ1)] are both positive even integers and (2) where [n1(λ1 − λ2)] and
[n2(λ2 − λ1)] are both odd positive integers. We denote both these auxiliary designs
as d(1) and d(2).

Thus the process of deletion of blocks of repeated crosses will yield two types
of mating–environment designs (proper and non-proper) for CDC experiments with
parameters.

(i) v1 = v(v − 1)/2, b1 = λ2(v − 1) if λ1 > λ2 (or λ1(v − 1) if λ2 > λ1), r1 = λ2
(or λ1), k1 = v

(ii) v2 = v(v − 1)/2, b2 = λ2(v − 1) if λ1 > λ2(or λ1(v − 1) if λ2 > λ1), r2 = λ2
(or λ1), k2 = (v, v/2)
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Plan (auxiliary design d(1)) Treatment First associate Second associate
B1 1 2 4 1 2, 5 3, 4

B2 2 3 5 2 1, 3 4, 5

B3 3 4 1 3 2, 4 1, 5

B4 4 5 2 4 3, 5 1, 2

B5 5 1 3 5 1, 4 2, 3

Design d Design d1 (mating–environment design)
B1 B2 B3 B1 B2

1 × 2 1 × 4 2 × 4 1 × 2 1 × 4

2 × 3 2 × 5 3 × 5 2 × 3 2 × 5

3 × 4 3 × 1 4 × 1 3 × 4 3 × 1

4 × 5 4 × 2 5 × 2 4 × 5 4 × 2

5 × 1 5 × 3 1 × 3 5 × 1 5 × 3

Plan (auxiliary design d(2)) Treatment First associate Second associate
B1 1 2 4 1 4 2, 3, 5, 6

B2 2 3 5 2 5 1, 3, 4, 6

B3 3 4 6 3 6 1, 2, 4, 5

B4 4 5 1 4 1 2, 3, 5, 6

B5 5 6 2 5 2 1, 3, 4, 6

B6 6 1 3 6 3 1, 2, 4, 6

Design d Design d2 (mating–environment design)
B1 B2 B3 B1 B2 B3
1 × 2 1 × 4 2 × 4 1 × 2 1 × 4 2 × 4
2 × 3 2 × 5 3 × 5 2 × 3 2 × 5 3 × 5
3 × 4 3 × 6 4 × 6 3 × 4 3 × 6 4 × 6
4 × 5 4 × 1 5 × 1 4 × 5 5 × 1
5 × 6 5 × 2 6 × 2 5 × 6 6 × 2
6 × 1 6 × 3 1 × 3 6 × 1 1 × 3

We denote both designs as d1 and d2. The method of construction is illustrated
below by two examples.

Example 1 For illustration, we consider design C12 (Clatworthy 1973) with param-
eters v = b = 5, r = k = 3, n1 = n2 = 2, λ1 = 1 and λ2 = 2. The plan and
association scheme of the design is given below:

Since λ2 = 2, the crosses (1 × 3), (1 × 4), (2 × 4), (2 × 5) and (3 × 5) appeared
in both blocks 2 and 3 of design d. So we will delete one of the blocks to obtain M–E
design d1.

Example 2 For second type of design, we consider design R 42 (Clatworthy 1973)
with parameters v = 6, r = 3, k = 3, b = 6, m = 3, n = 2, λ1 = 2 and λ2 = 1.

Since λ1 = 2, the crosses (1×4), (2×5), and (3×6) appeared repeatedly in block
2 of design d. So we will delete these crosses from block 2 to keep the replication
same for all crosses. Thus we obtain d2.
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3 Analysis and optimality

For convenience in further discussion, we will denote both designs d1 and d2 as d∗.The
data obtained from the design d∗, we take the following model:

Y = µ1n + �1g + �2β + e (3.1)

where Y is the n × 1 observational vector, µ is the general mean, 1n denotes an n-
component vector of 1’s, g =(g1, . . . , gv)

′ and β = (β1, . . . , βb) are the vector of v

gca effects and b(= b1 = b2) block effects respectively. �1 and �2 are the corre-
sponding design matrices of of n × v and n × b, respectively; that is (s, i)th element
of �1 is 1 if the cross in the sth experimental unit has one parent i and is 0 otherwise.
Similarly (s, u)th element of �2 is 1 if the cross in the sth experimental unit comes
from uth block and 0 otherwise. e is a random vector of error components and takes
care of specific combining ability as well as unassignable variation and distributed
with mean 0 and constant variance σ 2.

For 1 ≤ i < j ≤ v, let gd∗i j is the number of times cross (i × j) occurs in d∗. Let
sd∗i be the number of times the i th line occurs in design d∗.

Following Gupta and Kageyama (1994), it can be shown that the information matrix
for g under d∗ is

Cd∗ = Gd∗ − v−1Nd∗Nd∗ (3.2)

where �′
1�1 = Gd∗ = (gd∗i j ), gd∗i i = sd∗i and �′

1�2 = Nd∗ = (nd∗i j ) is the v × b
matrix of parental lines versus blocks, nd∗i j is the number of times line i occurs in
block u.

Under the model, the reduced normal equations for gca, using design d∗, are

Cd∗ ĝ = Q (3.3)

where Q = T−v−1Nd∗B. Here T is the vector of line total and B is the vector of block
totals. Following Dey and Midha (1996) we now have the following results which will
help in obtaining Cd∗-matrix for both types designs i.e. d∗.

Lemma 3.1 For the design d∗, the following are true.

(i)
b∑

u=1

nil = λ1(n1 + n2) = λ1(v − 1) if λ2 > λ1

= λ2(n1 + n2) = λ2(v − 1) if λ1 > λ2

v∑

i=1

nil = 2v
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(ii)
b∑

u=1

n2
il = 2λ1(n1 + n2) = 2λ1(v − 1) if λ2 > λ1

= 2λ2(n1 + n2) = 2λ2(v − 1) if λ1 > λ2

(iii)
b∑

u=1

nil ni ′l = 2λ1(n1 + n2) = 2λ1(v − 1) if λ2 > λ1

= 2λ2(n1 + n2) = 2λ2(v − 1) if λ1 > λ2

The proofs of all identities are easy are omitted.

From Lemma (3.1), it follows that, for the design d∗, Cd∗ is given by

Cd∗ = θ
(

Iv − v−11v1′
v

)
(3.4)

where θ = λ1(v − 2) or λ2(v − 2), Iv is the identity matrix of order v and 1v is the v

component vector of all 1’s.
From (3.4) it is easy to see that generalized inverse of Cd∗ is.

C−
d∗ = θ−1Iv (3.5)

It is obvious from (3.5) that d∗ is a variance balanced and therefore all elementary
contrasts among gca effects are estimated under the assumption of homogeneous error
variance across all blocks with a variance 2σ 2/θ . Hence design d∗ is connected and
has rank equal to v − 1. Since design d(2) has blocks of unequal block sizes, therefore
the error variance of d(2) will not be the same as of design d(1). Let σ 2

1 and σ 2
2 be

the error variances of designs d(1) and d(2), respectively. Now we can interpret that
all elementary contrasts among gca effects in designs d(1) and d(2) are estimated with

a variances
2σ 2

1
θ

and
2σ 2

2
θ

, respectively. Further the adjusted sum of squares due to
gca effects is simply θ−1Q′Q = θ−1(Q2

1+ . . . +Q2
v), where i = 1, 2 . . . v, Qi is the

adjusted total of the i th line; that is Qi is the i th component of the vector Q, defined
in (3.3). We thus have the following result.

Theorem 3.1 The design d∗ (i.e. d1 and d2) is variance—balanced for general com-
bining ability effects.

Now we take the optimality aspects. The optimality criterion is the minimization of
average variance of the best linear unbiased estimators of all elementary comparisons
between gca effects.

Let D (v, b, k1, . . ., kb) denote the class of all connected block designs d∗ with v

lines, b blocks such that j th block is of size k j . Similarly D0 (v, b, n) denote the class
of all connected block designs d∗ with v lines, b blocks and n experimental units. Here
the block sizes are arbitrary but for a given design d∗εD0(v, b, n), the block sizes are
equal.

Now using the following theorem (Parsad et al. 1999, page 41).
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Theorem 3.2 Let d∗ ∈ D(v, b, k1, . . ., kb)[D0(v, b, n)] be a block design for diallel
crosses and suppose that d∗ satisfies

(i) Trace (Cd∗) = 2
∑b

j=1 k j −∑b
j=1

1
k j

[2k j (2x j + 1)− vx j (x j + 1)] if and only
if nd∗i j = x j or x j + 1 for all i = 1, . . ., v; j = 1, . . ., b, where x j is a positive
integer. And for nd∗i j = 0 or 1, this reduces to [Trace (Cd∗) = 2(n −b)], where
n and b are total number of experimental units and number of blocks in diallel
cross design [D0(v, b, n)], respectively.

(ii) Cd∗ is completely symmetric.

Then d∗ is universally optimal over D(v, b, k1, . . ., kb)[D0(v, b, n)]
For any member of D(v, b,k1, . . ., kb) [D0(v, b, n)], we have Trace (Cd∗) = λ2(v−

1)(v−2) if λ1 > λ2 or λ1(v−1)(v−2) if λ2 > λ1 and for any member D0(v, b, n) to
be universally optimal, the Trace (Cd∗) must be equal to 2(n − b), where 2(n − b) =
λ2(v − 1)2 if λ1 > λ2 (or λ1(v − 1)2 if λ2 > λ1). The equality of Trace (Cd∗) follows
for any member of D (v, b, k1, . . ., kb) but for any member of [D0(v, b, n)], the Trace
(Cd∗) is less than 2(n − b).

Hence we have the following theorem.

Theorem 3.3 The designs d2 obtained from d(2), a two associate PBIB designs, where
none of the λ’s is zero, are universally optimal over D(v, b,k1, . . ., kb).

4 Efficiency factor

Now we will show that the designs d(1) and d(2) are optimal in the sense of Kempthorne
(1956). If instead of the designs d(1) and d(2), one adopts a randomized complete block
design with r1(r2) blocks, each block having all the v(v − 1)/2 crosses , the C matrix
of the randomized block design i.e. CR-matrix can easily shown to be, see Dey and
Midha (1996).

CR = ri (v − 2)(Iv − v−11v1′
v) where i = 1 or 2 (4.1)

Hence the variance of the best linear unbiased estimator of any elementary contrast
among gca effects in the case of randomized block experiment is 2σ 2/ri (v−2), where
σ 2 is the per observation variance. Thus the efficiency factors e1 and e2, respectively
of the design d(1) and d(2), relative to randomized complete block designs under the
assumption of equal intrablock variances is given by

e1 = θ/r1(v − 2) = r1(v − 2)/r1(v − 2) = 1 (4.2)

and

e2 = r2(v − 2)/r2(v − 2) = 1 (4.3)

where θ = r1(v − 2) (or r2(v − 2)) for design d(1) (or d(2)).
We are also giving the list of practicable useful designs for 5 ≤ v ≤ 30 in Table 1.
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Table 1

Sl. no. Ref. no. No. of No. of No. of No of Total no. of Design names
of the lines blocks crosses replication experimental reported by
design to be to be of the units different

deleted deleted crosses (r ) authors

1 S2 6 1 3 2 30 F2, Parsad et al.
(1999) and Das
et al. (1998,
Th. 4.1)

2 S19 8 1 4 4 112 N

3 S23 9 3 9 3 108 F2, Parsad et al.
(1999)

4 S29 12 4 12 2 132 N

5 S33 14 2 7 2 182 N

6 S42 21 5 21 1 210 Ser. 1, Gupta and
Kageyama (1994)
and Sharma
(2004)

7a S44 26 2.5 13 1 325 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

8 S52 10 1 5 6 270 N

9 S60 14 2 7 4 364 N

10 S68 20 9 30 2 380 N

11 S72 26 3 13 2 650 N

12 S90 21 6 21 3 630 F2, Parsad et al.
(1999)

13 S93 30 7 30 2 870 N

14 S99 12 1 6 8 528 N

15 S104 15 10 30 5 525 F2, Parsad et al.
(1999)

16a S105 18 2.5 9 5 765 F2, Parsad et al.
(1999)

17 S111 22 3 11 4 924 F2, Parsad et al.
(1999)

18 S115 30 3 60 2 870 N

19 SR9 9 3 27 3 108 F2, Parsad et al.
(1999)

20 SR68 12 4 48 2 132 N

21a R42 6 0.5 3 1 15 Ser.2, Gupta and
Kageyama (1994)
and Sharma
(2004)

22 R94 6 1 6 2 30 F2, Parsad et al.
(1999)

23 R104 9 2 9 1 36 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)
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Table 1 continued

Sl. no. Ref. no. No. of No. of No. of No of Total no. of Design names
of the lines blocks crosses replication experimental reported by
design to be to be of the units different

deleted deleted crosses (r ) authors

24a R109 12 0.5 6 1 66 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

25 R133 8 3 12 2 56 N

26 R134 8 3 24 2 56 N

27 R137 9 2 9 2 72 F4, Das et al.
(1998)

28 R139 10 1 5 2 90 F2, Parsad et al.
(1999)

29a R145 12 4.5 54 1 66 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

30 R166 10 6 20 2 90 F2, Parsad et al.
(1999)

31 R168 15 8 30 1 105 F1, Gupta and
Kageyama (1994)
and Sharma
(2004)

32 R170 27 2 27 1 351 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

33a R171 28 1.5 42 1 378 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

34 R172 9 1 9 5 180 F2, Parsad et al.
(1999)

35 R173 12 10 30 5 330 F2, Parsad et al.
(1999)

36a R174 12 4.5 54 3 198 F2, Parsad et al.
(1999)

37 R175 12 10 30 2 132 F2, Parsad et al.
(1999)

38a R176 12 4.5 54 3 198 N

39a R177 14 1.5 7 3 273 N

40a R178 18 12.5 45 1 153 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

41 R179 20 2 40 2 380 N

42 R180 20 2 10 2 380 N

43a R186 12 0.5 6 5 330 F2, Parsad et al.
(1999)
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Table 1 continued

Sl. no. Ref. no. No. of No. of No. of No of Total no. of Design names
of the lines blocks crosses replication experimental reported by
design to be to be of the units different

deleted deleted crosses (r ) authors

44 R187 14 15 42 2 210 N

45 R188 21 18 63 1 210 Ser. 1, Gupta and
Kageyama (1994)
and Sharma
(2004)

46 R189 24 5 60 2 552 N

47 R193 12 3 18 6 396 N

48 R194 15 8 30 4 420 F2, Parsad et al.
(1999)

49 R195 16 21 56 2 240 F2, Parsad et al.
(1999)

50 R196 18 2 9 4 612 N

51 R196 18 2 9 4 612 N

52a R198 24 24.5 84 1 276 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

53 R200 28 9 84 2 756 F2, Parsad et al.
(1999)

54 R204 14 6 42 6 546 F2, Parsad et al.
(1999)

55 R205 14 6 84 6 546 F2, Parsad et al.
(1999)

56 R206 18 28 81 2 756 F2, Parsad et al.
(1999)

57 R207 27 32 108 1 351 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

58a T33 10 1.5 15 1 45 Ser. 2, Gupta and
Kageyama (1994)
and Sharma
(2004)

59 T58 10 3 45 2 90 F2, Parsad et al.
(1999)

60a T60 10 1.5 15 3 135 N

61 T61 15 8 60 1 105 Ser. 1, Gupta and
Kageyama (1994)
and Sharma
(2004)

62 T71 10 3 15 4 180 N

63 T84 15 8 60 4 420 F2, Parsad et al.
(1999)

64 T94 21 15 105 3 630 F2, Parsad et al.
(1999)

123



Optimal block designs for diallel crosses 371

Table 1 continued

Sl. no. Ref. no. No. of No. of No. of No of Total no. of Design names
of the lines blocks crosses replication experimental reported by
design to be to be of the units different

deleted deleted crosses (r ) authors

65 T95 21 5 105 4 820 N

66 LS26 9 2 18 1 36 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

67 LS49 9 2 18 2 72 F4, Das et al.
(1998)

68 LS72 9 2 18 2 72 F4, Das et al.
(1998)

69 LS83 16 6 48 2 240 F2, Parsad et al.
(1999)

70 LS99 16 9 72 3 360 F2, Parsad et al.
(1999)

71 LS100 16 6 48 3 360 F2, Parsad et al.
(1999)

72 LS101 25 4 100 2 600 N

73 LS116 16 6 48 4 480 N

74 LS117 25 12 100 2 600 N

75 C12 5 1 5 1 10 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

76 C23 13 3 39 2 156 N

77 C24 13 3 39 3 234 N

78 C25 29 7 203 1 406 F1, Parsad et al.
(1999) and F4,
Das et al. (1998)

79 C26 17 4 68 3 408 F2, Parsad et al.
(1999)

80 C27 29 7 203 1 406 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

81 C28 17 4 68 4 544 N

82 C29 13 3 39 7 468 F2, Parsad et al.
(1999)

83 M34 16 6 48 4 480 N

84a M38 26 7.5 195 3 975 F2, Parsad et al.
(1999)

85 M39 27 32 216 1 351 F1, Parsad et al.
(1999) and F5,
Das et al. (1998)

N new, Ser. series, F family
aUniversally optimal designs
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5 Conclusion

Optimal block designs with proper and non-proper settings have been proposed for
CDC system IV using some PBIB designs. The non-proper setting designs found to
be universally optimal in the sense of Kiefer (1975) and proper and non-proper setting
designs are optimal in the sense of Kempthorne (1956). These designs retain full effi-
ciency for the estimation of the contrast of interest. We investigated 85 PBIB designs
(Clatworthy 1973). Out of which 20 and 29 PBIB designs gave block designs for CDC
experiment in which each cross is replicated once and twice, respectively and in rest
of the designs each cross is replicated more than twice. These designs are in the range
of 5 ≤ v ≤ 30, except for v = 11, 17, 19, 22, and 23.
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