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Abstract We consider the classical problem of nonparametrically estimating a
star-shaped distribution, i.e., a distribution function F on [0,∞) with the property
that F(u)/u is nondecreasing on the set {u : F(u) < 1}. This problem is intriguing
because of the fact that a well defined maximum likelihood estimator (MLE) exists, but
this MLE is inconsistent. In this paper, we argue that the likelihood that is commonly
used in this context is somewhat unnatural and propose another, so called ‘smoothed
likelihood’. However, also the resulting MLE turns out to be inconsistent. We show that
more serious smoothing of the likelihood yields consistent estimators in this model.

Keywords Asymptotics · Censoring · Inverse problem · Maximum (smoothed)
likelihood · Nonparametric · Shape constrained estimation

1 Introduction

The method of maximum likelihood goes back a long time. The name ‘maximum
likelihood’ is usually credited to Fisher (1925), but opinions on who was the first to
use the method differ (Le Cam 1990). Consider the context of estimating a distribution
with density function f belonging to a class F of densities w.r.t. some dominating
measure, based on an i.i.d. sample X1, . . . , Xn . Denote the ordered realized data points
by x1 ≤ x2 ≤ · · · ≤ xn . The MLE is then formally defined as the maximizer of the
log likelihood function

�( f ) =
n∑

i=1

log f (xi ) (1)
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266 G. Jongbloed

over the function class F . In case the dominating measure is discrete, this quantity
reflects the probability of observing x1, . . . , xn if f were the underlying density. The
MLE can therefore be seen as the f ∈ F for which this probability is maximal. If
the dominating measure is not discrete, there can be some trickiness in definition (1),
due to the fact that densities are only defined up to sets of (dominating) measure zero.
However, assuming the densities to have some continuity properties, (1) often works
to define a proper MLE.

In the parametric context, where F is a class of densities that is smoothly parame-
terized by a parameter set Θ ⊂ R

k , there are results showing that under fairly general
conditions the MLE is consistent and asymptotically normally distributed with rate
of convergence

√
n (see, e.g., van der Vaart 1998, Chapter 5). That assumptions are

really needed, also in the parametric context, is clear from the following example of
Quandt and Ramsey (1978), where φ denotes the standard normal density:

F = {
fµ,σ : (µ, σ ) ∈ R × (0,∞)

}

where fµ,σ (x) = 1

2
φ(x) + 1

2σ
φ

(
x − µ

σ

)
, x ∈ R.

Indeed, taking µ = xi for some i and σ ↓ 0, shows that the corresponding log like-
lihood is unbounded; the MLE does not exist. In Ferguson (1982), a nice parametric
example is given with parameter space [0, 1], where the MLE is well defined but
almost always converges to 1, no matter which parameter is used to generate the data.

In the nonparametric setting, the situation is more complicated, already starting
with the definition of the likelihood function. In order to define a (nonparametric)
MLE in a specific i.i.d. context, one usually starts off with the formal definition,
where the likelihood is defined as the product of the density (w.r.t. some dominating
σ -finite measure) evaluated at the observed data points. For example, if one consid-
ers the problem of estimating an increasing density (w.r.t. Lebesgue measure) on an
interval [0, a] ⊂ [0, 1] based on an i.i.d. sample, this definition makes sense and one
can derive the maximum likelihood estimator (MLE) (related to the Grenander esti-
mator, after Grenander 1956) as the nondecreasing density maximizing this objective
function. This estimator is consistent. If one considers the problem of estimating a
general distribution function on the real line, the formal definition of the likelihood
does not make sense anymore, since not all these distributions have a density with
respect to one single σ -finite dominating measure. Restricting the maximization to
those distributions that do have a density w.r.t. Lebesgue measure, does not do the
trick either. Using a basic kernel estimator with bandwidth tending to zero, shows that
the likelihood is unbounded on this set and its maximizer is not well defined. The
way out of this problem that is usually taken, is to leave the classical definition of
the likelihood for continuous random variables and consider distributions that have a
density w.r.t. counting measure on the observed data points (see Kiefer and Wolfowitz
1950). The log likelihood function is then defined as

�(F) =
n∑

i=1

log PF (Xi = xi ) =
n∑

i=1

log(F(xi ) − F(xi−)). (2)
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Likelihood based estimation of star-shaped distribution 267

Maximizing this function over all distribution functions yields the empirical distribu-
tion function. This

√
n-consistent estimator has many desirable properties.

In spite of the fact that the maximum likelihood approach leads to good estimators
in a variety of nonparametric problems, it can lead to ill-defined or inconsistent esti-
mators. This point has been made by many authors. An example that is often given to
stress this phenomenon, is that of estimating a star-shaped distribution. In that setting,
one can define an MLE completely along the lines of that of a general distribution func-
tion, and this estimator is inconsistent. Noting that all convex distribution functions
on [0, a] are star-shaped and the previous discussion on the Grenander-type estimator,
this might sound contradictory at first sight. The MLE is consistent over the class of
increasing densities (small class) and that of all distribution functions (large class),
but inconsistent over the class of star-shaped distributions (intermediate class).

In Sect. 2 we will follow the line of thought leading to an inconsistent MLE and
review some more history of this problem, including references to consistent estima-
tors. We also point out why the approach that leads to a successful MLE of a general
distribution function, can be expected to fail when considering star-shaped distribu-
tions. In Sect. 3, we define an alternative likelihood function that, when restricted to the
class of convex distribution functions, leads to an estimator related to the Grenander
estimator and when considered as function over the class of all distribution functions,
to the empirical distribution function. In fact, this definition unifies the likelihood
approach in these three nested convex models, and is related to the so-called maxi-
mum smoothed likelihood estimator in the sense of Eggermont and LaRiccia (2001),
where the level of smoothing is minimal. We derive an explicit representation of the
maximizer of this (as well as a more heavily smoothed) likelihood over the class of
star-shaped distributions.

In Sect. 4 we show that the more natural MLE defined in Sect. 3 (with minimal
smoothing) is also inconsistent. However, we also show that the smoothed log like-
lihood function, where more smoothing is used, leads to a consistent estimator. In
Sect. 5 we make some connections to other situations where MLE’s are inconsistent.

2 Nonparametric estimation of a star-shaped distribution

In this paper we consider the problem of estimating a star-shaped distribution. Fol-
lowing Barlow et al. (1972), we define a distribution function F on [0,∞) to be star
shaped if

x �→ F(x)

x

is increasing on the set {x ≥ 0 : F(x) < 1}. The terminology is due to the fact that
the set {(x, y) ∈ [0,∞)2 : 0 ≤ F(x) < 1, y ≥ F(x)} is star-shaped as a subset of
R

2 in the sense that whenever (x, y) belongs to this set, the line segment connecting
the origin with this point is also contained in this set.

The following missing data problem is a problem where exactly this shape con-
straint turns out to define the sampling distribution. Suppose Z has a distribution with
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distribution function G, with G(a) = 1. Independent of Z , U is uniformly distrib-
uted on (0, b) with b ≥ a and one observes X = max{Z , U }. Then for x ≤ b the
distribution function F of X is given by

F(x)= FG(x)= P(X ≤ x) = P(Z ≤ x, U ≤ x) = G(x)x/b ⇒ F(x)

x
= G(x)

b
(3)

meaning that it is star-shaped. Moreover, to every star-shaped distribution function
there corresponds a distribution function G in this way. Estimating a star-shaped dis-
tribution therefore corresponds to estimating an arbitrary distribution function G based
on a sample from the star-shaped distribution function FG (these distribution functions
are in one-to-one correspondence). In this sense, the problem is that of estimating a
sampling distribution in a statistical inverse problem. See Vardi (1989) for missing data
models where the sampling distribution function turns out to be concave on [0,∞).

Saying that F is star-shaped geometrically means that for y ∈ [0, F−1(1)], the line
connecting the points (0, 0) and (y, F(y)) lies above the curve x �→ F(x) on [0, y]
and below this curve on [y, F−1(1)]. This shows in particular that convex distribution
functions on [0, a] are automatically star-shaped. In fact, the class of star-shaped dis-
tribution functions is a genuine superset of that of convex distribution functions, since
also discontinuous (hence nonconvex) distribution functions like

Fu(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈ [0, u)

x if x ∈ [u, 1)

1 if x > 1

(4)

for u ∈ (0, 1) are star-shaped on [0, 1]. This also shows that a single σ -finite dom-
inating measure for these distributions cannot be found. A restriction to absolutely
continuous distribution functions also leads to difficulties, since one can construct
star-shaped distribution functions that have an arbitrarily high derivative near the
observed data points.

Analogously to the procedure leading to the empirical distribution function as MLE
over the class of all distribution functions, Barlow et al. (1972) proceed by using log
likelihood function (2) on the class of star-shaped distributions. Using representation
(3), this yields

�(F) =
n∑

i=1

log(F(xi ) − F(xi−))

=
n∑

i=1

log(xi (G(xi ) − G(xi−))/xn)=̇
n∑

i=1

log(G(xi ) − G(xi−)),

where =̇ means equality up to an additive constant not depending on F . As a function
of G, this criterion function is maximized by the discrete distribution function G giv-
ing mass 1/n to all observed data points xi , where we suppose for the moment that
there are no ties. Via (3) this again leads to the maximizer that assigns mass xi/(nxn)
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Likelihood based estimation of star-shaped distribution 269

to the point xi . Writing Fn for the empirical distribution function of x1, . . . , xn , the
resulting estimator then becomes

F̃n(x) = Fn(x)
x

xn
∧ 1. (5)

Using the law of large numbers and the fact that X(n) = max1≤i≤n Xi converges to
F−1(1) a.s., it immediately follows that for any underlying star-shaped F ,

F̃n(x) → x F(x)

F−1(1)
∧ 1 a.s. for n → ∞.

This clearly implies inconsistency of this MLE. In Barlow et al. (1972), this result is
derived only for the particular situation where F is the uniform distribution function
on (0, 1).

Let us elaborate on this inconsistency. The structure of the log likelihood function
leads to an estimator that considers the data from the star-shaped distribution F as if
these were generated directly by the underlying (unrestricted) distribution function G.
The heart of the inconsistency problem can therefore be seen as the combination of a
log in the function � and the product relation between F and G, because by taking the
log, the product structure defining the shape constraint on F disappears.

Before returning to likelihood based estimators, showing in fact that (2) is a very
unnatural likelihood function to use in this context, a few words on alternative, con-
sistent, nonparametric estimators for F . In Barlow et al. (1972), an isotonic estimator
is defined via a least squares isotonic regression of a naive estimator for G, namely
the piecewise constant function with value Fn(xi )/xi at the points xi . They also pro-
pose another consistent isotonic estimator, the quantile estimator. In Wang (1988)
another

√
n-consistent estimator of F is studied, the greatest star-shaped minorant of

the empirical distribution function.
Let us now return to the procedure leading to the estimator (5). Using log likelihood

function (2) is somewhat unnatural in this setting. The intersection of the class of star-
shaped distributions and those with density w.r.t. counting measure on observed data
points is empty. Indeed, if x1 < x2 and 0 < F(x1) = F(x) for x ∈ [x1, x2), F(x)/x
decreases on [x1, x2). The procedure is nevertheless to optimize the likelihood over a
class of discrete distribution functions, and then change the purely discrete distribution
function to make up for the fact that it is not star-shaped. The mass that is introduced
in between the observed data points during the second stage of this procedure, does
not affect the log likelihood (2). In the next section a more natural MLE is defined,
and characterized.

3 Smoothed likelihood-based estimation

As seen in the previous section, likelihood function (2) leads to an inconsistent MLE.
A method of defining the likelihood function should take into account the fact that any
star-shaped distribution has to assign mass to intervals in between successive obser-
vations (xi−1, xi ), i ≥ 2. Given observed data 0 < x1 < x2 < · · · < xn , the following
log likelihood function is a natural candidate:
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270 G. Jongbloed

�(F) =
n∑

i=1

log(F(xi ) − F(xi−1)). (6)

In the case there are ties in the data (note that this can happen in general, see, e.g., the
distribution function on (4)), denote the distinct ordered observations by y1 < y2 <

· · · < ym . Log likelihood (6) is then interpreted as

�(F) =
m∑

j=1

n j log(F(y j ) − F(y j−1)), where n j = |{i : xi = y j }|. (7)

This type of log likelihood function was also considered under the name ‘maximum
product of spacings estimator’ in the context of estimating a unimodal density in Shao
(2001). Maximizing (6) over all distribution functions that are convex on their sup-
port, yields an estimator that is closely related to the Grenander estimator of a concave
distribution function on [0,∞). Noting that one may restrict oneself to distribution
functions having a left-continuous density, constant on intervals (xi−1, xi ], (6) can be
written as

�(F) =
n∑

i=1

log ( f (xi )(xi − xi−1)) =̇
n∑

i=1

log f (xi ),

where again =̇ denotes equality up to an additive constant not depending on f . Max-
imizing this function over the class of aforementioned densities is an instance of
generalized isotonic regression, as described in Sect. 1.5 of Robertson et al. (1988).
On [0, xn] it is the greatest convex minorant of the points {(xi , Fn(xi )) : 0 ≤ i ≤ n}
whereas on [xn,∞) it is one. Maximizing (7) over the larger class of all distribution
functions on [0,∞), gives the empirical distribution function at the observed data
points. Hence, (7) furnishes one single log likelihood function that can be maximized
over classes of distribution functions to obtain an MLE over these classes.

Lemma 1 (Piecewise linear MLE) In maximizing (7) over all star-shaped distribu-
tion functions, attention can be restricted to piecewise linear, continuous, distribution
functions with knots y1, . . . , ym and F(ym) = 1.

Proof Consider an arbitrary star-shaped distribution function F on [0,∞). Based on
this, we construct a star-shaped distribution function F̄ of the type described in the
statement of the lemma and show that �(F̄) ≥ �(F). This shows that in maximizing
(7) over all star-shaped distribution functions, we may restrict ourselves to distribution
functions of that type.

Construct the piecewise linear distribution function F̄ by connecting the points
(0, 0), (y j , F(y j )) for 1 ≤ j ≤ m − 1 and (ym, 1). This distribution function is
star-shaped. Indeed, that j �→ F̄(y j )/y j is nondecreasing is immediate. On the inter-
val (y j−1, y j ], 1 ≤ j ≤ m − 1, one can write

F̄(y) = y j F(y j−1) − y j−1 F(y j )

y j − y j−1
+ y

F(y j ) − F(y j−1)

y j − y j−1
.
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Likelihood based estimation of star-shaped distribution 271

The star-shape condition on F forces the first term to be nonpositive, since y j F(y j−1)−
y j−1 F(y j ) = y j y j−1(F(y j−1)/y j−1 − F(y j )/y j ) ≤ 0. This implies that on
(y j−1, y j ], y �→ F̄(y)/y is increasing. For j = m, this also holds since F(ym) ≤ 1 =
F̄(ym). The function F̄ is a piecewise linear, continuous, distribution function with
knots y1, . . . , ym and F(ym) = 1. Moreover,

�(F̄) − �(F) = nm (log(1 − F(ym−1)) − log(F(ym) − F(ym−1))) ≥ 0.

�

From now on we write Fj = F(y j ) and identify the vector (Fj )
m
j=1 with the

piecewise linear function having F(y j ) = Fj .

Theorem 1 The piecewise linear continuous distribution function F with knots at
y1, . . . , ym that maximizes (7) over all star-shaped distribution functions on [0,∞)

is given by

F(yi ) = Tn(yi )Fn(yi ), where Tn(yi ) =
m∏

j=i+1

(
1 ∧ y j−1Fn(y j )

y j Fn(y j−1)

)
. (8)

Proof Write λi = Fi−1/Fi . Then Fi = ∏m
j=i+1 λ j and in terms of this parametriza-

tion, computing the MLE boils down to maximizing

φ(λ) =
m∑

i=1

⎛

⎝ni log(1 − λi ) + ni log
m∏

j=i+1

λ j

⎞

⎠

=
m∑

i=1

⎛

⎝ni log(1 − λi ) +
⎛

⎝
i−1∑

j=1

n j

⎞

⎠ log λi

⎞

⎠

over the hypercube {λ = (λ2, . . . , λm) ∈ R
m−1 : λi ∈ [0, yi−1/yi ], i = 2, 3, . . . , m}.

Differentiation with respect to λi yields that this function is maximized over λi by

taking λi =
(

1 − ni/
∑i

j=1 n j

)
∧ (yi−1/yi ), leading to

Fm = 1 and Fi−1 = Fi min

{
1 − ni/

i∑

1

nk, yi−1/yi

}
for 2 ≤ i ≤ m.

Hence, F(ym) = 1 and for 2 ≤ i ≤ m

F(yi−1) =
m∏

j=i

min

⎧
⎨

⎩1 − n j/

j∑

1

nk, y j−1/y j

⎫
⎬

⎭ .
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272 G. Jongbloed

Noting that

m∏

j=i

(
1 − n j

∑ j
k=1 nk

)
=

m∏

j=i

∑ j−1
k=1 nk

∑ j
k=1 nk

= 1

n

i−1∑

k=1

nk = Fn(yi−1),

gives

F(yi−1) = Fn(yi−1)

m∏

j=i

(
1 ∧ y j−1

∑ j
k=1 nk

y j
∑ j−1

k=1 nk

)
= Fn(yi−1)

m∏

j=i

(
1 ∧ y j−1Fn(y j )

y j Fn(y j−1)

)
.

�
The function maximizing (7) over all distribution functions, can be seen as a spe-

cific instance of a maximum smoothed likelihood estimator in the spirit of Eggermont
and LaRiccia (2001). Indeed, taking F̃n as the linearly interpolated (and thus slightly
smoothed) empirical distribution function, and denoting by f the piecewise constant
density function corresponding to a piecewise linear star-shaped distribution function
with knots y1, . . . , ym , our log likelihood of F (apart from a constant not depending
on F) is given by

�(F) = n
∫

log f (x) d F̃n(x).

In fact, defining a grid 0 = z0 < z1 < · · · < zk = ym , we can in the same spirit define
a maximum smoothed likelihood estimator based on the linearly interpolated empiri-
cal distribution function with knots in this grid. Copying the proof of Theorem 1, we
get the following corollary.

Corollary 1 The piecewise linear continuous distribution function F with knots at
0 = z0 < z1 < · · · < zk maximizes

F �→
k∑

i=1

ni log(F(zi ) − F(zi−1)) with ni = |{ j : x j ∈ (zi−1, zi ]}

over all star-shaped distribution functions of this type if and only if

F(z j ) = Tn(z j )Fn(z j ), where Tn(z j ) =
k∏

i= j+1

(
1 ∧ zi−1Fn(zi )

zi Fn(zi−1)

)
. (9)

4 (In)consistency of the MSLE

We prove in this section that the maximizer of (7) over all star-shaped distributions
is inconsistent in general. We do this by considering the case where F is the uniform
distribution function on [0, 1].
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Likelihood based estimation of star-shaped distribution 273

Theorem 2 Let X1, X2, . . . be i.i.d. uniformly distributed random variables on [0, 1].
Then for each x > 0, the maximizer F̂n of (6) (where xi denotes the i th order statistic
X(i) in the set X1, . . . , Xn) satisfies

F̂n(x) →P x1/e F(x) = x1/e+1

as n → ∞.

Proof Fix x > 0. Because F is continuous, there are no ties in the data. In the spirit
of (8), define

Tn(x) =
∏

{i : X(i)>x,X(i−1)/X(i)<1−1/ i}

X(i−1)/X(i)

1 − 1/ i
.

Using the well known representation of uniform order statistics in terms of partial
sums of i.i.d. exponential random variables E1, E2, . . ., i.e.,

(X(1), X(2), . . . , X(n)) =d
(

S1

Sn+1
,

S2

Sn+1
, . . . ,

Sn

Sn+1

)
, where Si =

i∑

j=1

E j (10)

we have

Tn(x) = d
∏

{i : Si >x Sn+1}

{
i Si−1/Si

i − 1
∧ 1

}
=

∏

{i : Si >x Sn+1}

{(
1 + 1 − i Ei/Si

i − 1

)
∧ 1

}

= exp

⎛

⎝
∑

{i : Si >x Sn+1}
log(1 + Bi )

⎞

⎠ , with Bi = 0 ∧ 1 − i Ei/Si

i − 1
.

We will now show that
∣∣∣∣log Tn(x) − 1

e
log x

∣∣∣∣ →P 0 as n → ∞. (11)

Define

B̃i = 0 ∧ 1 − Ei

i − 1
, i = 2, 3, . . . (12)

and observe that by the triangle inequality

∣∣∣∣∣∣

n∑

i=�nx�
log(1 + Bi ) − 1

e
log x

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

n∑

i=�nx�
(log(1 + Bi ) − Bi )

∣∣∣∣∣∣
+

∣∣∣∣∣∣

n∑

i=�nx�
Bi − B̃i

∣∣∣∣∣∣

+
∣∣∣∣∣∣

n∑

i=�nx�

(
B̃i − E B̃i

)
∣∣∣∣∣∣
+

∣∣∣∣∣∣

n∑

i=�nx�
E B̃i − 1

e
log x

∣∣∣∣∣∣
=|I1,n| + |I2,n| + |I3,n| + |I4,n|.
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Now, I4,n → 0 as n → ∞, because

n∑

i=�nx�
E B̃i =

n∑

i=�nx�

∫ ∞
1 (1 − y)e−y dy

i − 1
= −

n∑

i=�nx�

1/e

i − 1

= −1

e

n∫

nx

1

y
dy −

⎛

⎝
n∑

i=�nx�

1/e

i − 1
− 1

e

n∫

nx

1

y
dy

⎞

⎠ = 1

e
log x + Rn,

where Rn → 0 as n → ∞. Moreover, I3,n →P 0 as n → ∞ by Markov’s inequality,
since also

Var

⎛

⎝
n∑

i=�nx�
B̃i

⎞

⎠ =
n∑

i=�nx�

∫ ∞
1 (1 − y)2e−y dy − 1/e2

(i − 1)2 → 0

as n → ∞. Now consider I2,n . By the strong law of large numbers,

Rm := max
j≥m

∣∣∣∣
j

S j
− 1

∣∣∣∣ → 0 almost surely as m → ∞. (13)

Since |Bi − B̃i | ≤ Ei |i/Si − 1|/(i − 1),

|I2,n| ≤
n∑

i=�nx�
|Bi − B̃i | ≤ R�nx�

n∑

i=�nx�

Ei

i − 1
→P 0

for n → ∞ by (13) and Markov’s inequality, because

E

⎛

⎝
n∑

i=�nx�

Ei

i − 1

⎞

⎠ = O(1) and Var

⎛

⎝
n∑

i=�nx�

Ei

(i − 1)

⎞

⎠ → 0.

For I1,n , first note that for all −1 < b ≤ 0,

0≤b−log(1+b)=
∞∑

j=2

(−b) j

j
= 1

2
b2

∞∑

j=0

2

j + 2
(−b) j ≤ 1

2
b2

∞∑

j=0

(−b) j = b2

2(1+b)
.

Note that by Borel Cantelli and the strong law of large numbers

ME := sup
j≥2

E j

log j
< ∞ and MS := max

j≥1

j

S j
< ∞ almost surely. (14)
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Also using that 0 ≤ −Bi ≤ Ei (i/Si )/(i − 1) ≤ MS Ei/(i − 1), this leads to

0≤ I1,n =
n∑

i=�nx�
(log(1+Bi )−Bi )≤

n∑

i=�nx�

M2
S E2

i

2(i − 1)2 ·
(

1 − MS sup
�nx�≤ j≤n

E j

j − 1

)−1

≤ 1

2
M2

S

n∑

i=�nx�

E2
i

(i − 1)2 ·
(

1 − MS
log n

nx − 1
sup

�nx�≤ j≤n

E j

log j
· (nx − 1) log j

( j − 1) log n

)−1

≤ 1

2
M2

S

(
1 − MS ME

log n

nx − 1

)−1 n∑

i=�nx�

E2
i

(i − 1)2 →P 0.

In the last step we use that the first factor is bounded in probability by (14) and the
second, positive factor, converges to zero in expectation.

To see (11), note that for each 0 < ε < x , with probability tending to one,

n∑

i=�n(x−ε)�
log(1 + Bi ) ≤ log Tn(x) ≤

n∑

i=�n(x+ε)�
log(1 + Bi ).

Finally, using (8) and the fact that the Xi ’s become dense in [0, 1] with probability
one, F̂n(x) →P x1/e F(x) as n → ∞. �

For the star-shaped distribution functions F(x) = xα ∧ 1, α ≥ 1, the estimator can
be shown to converge to the function F(x)x1/eα

. This shows that the asymptotic bias
factor depends on the underlying distribution function F for the MLE of Sect. 3, in
contrast to the bias factor of the MLE of Sect. 2. The factor gets closer to one as the
curvature of F increases. See Fig. 1 for an illustration of the inconsistency for α = 1.
For α = 2, see Fig. 2, and note that the MLE of Theorem 1 is much closer to the true
distribution function than in Fig. 1.

We now consider the maximum smoothed likelihood estimator of Corollary 1, under
some assumptions on the distance between successive points zi of the grid and the
underlying star-shaped distribution. Theorem 3 shows, without using the explicit rep-
resentation of the estimator, that it is consistent under a ‘strict star-shaped’ condition
and a condition on the level of smoothing of the empirical distribution function.

Theorem 3 Suppose that the underlying star-shaped distribution function F is strictly
star-shaped in the following sense. For some t > 0, there exist c, β, δ > 0 such that
for t ≤ z < F−1(1)

F(z + h)

z + h
− F(z)

z
≥ chβ for all 0 < h < δ ∧ (F−1(1) − z). (15)

Moreover, suppose that the grid points zi are taken in such a way that for all i

zi − zi−1 ≥ κnn−1/(2β) with 0 < κn → ∞ as n → ∞.

Then, for all z > t , F̂n(z) →P F(z) as n → ∞.

123



276 G. Jongbloed

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1 The left picture shows the empirical distribution function, the estimator (5) (dotted) and the estima-
tor of Theorem 1 (dashed) based on a sample of size n = 100 from the uniform distribution on (0, 1). The
solid line is the underlying uniform distribution function. The right picture shows these estimators based
on a sample of size n = 10.000 from the same distribution

Proof Fix x > t . By Donsker’s theorem we have that Vn = √
n‖Fn − F‖∞ =

OP (1). Moreover, a.s., for n sufficiently large, F(x)/2 < Fn(x) < 2F(x). Hence, for
z j−1 ≥ x ,

z j−1Fn(z j )

z j Fn(z j−1)

= z j−1(Fn(z j ) − F(z j ))

z j Fn(z j−1)
+ z j−1 F(z j )

z j

(
1

Fn(z j−1)
− 1

F(z j−1)

)
+ F(z j )z j−1

F(z j−1)z j

≥ − 2zm Vn√
nx F(x)

− 4zm Vn√
nx F(x)2

+ F(z j )z j−1

F(z j−1)z j
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Fig. 2 The left picture shows the empirical distribution function, the estimator (5) (dotted) and the esti-
mator of Theorem 1 (dashed) based on a sample of size n = 100 from the distribution function F(x) = x2

on (0, 1). The solid line is the underlying distribution function. The right picture shows these estimators
based on a sample of size n = 10.000 from the same distribution

≥ − 2zm Vn√
nx F(x)

− 4zm Vn√
nx F(x)2

+ 1 + z j−1

F(z j−1)

(
F(z j )

z j
− F(z j−1)

z j−1

)

≥ 1 − λ
Vn√

n
+ xc(z j+1 − z j )

β ≥ 1 + n−1/2 (
xcκβ

n − λVn
)
.

Note that with probability tending to one this right hand side will be bigger than one
uniformly in j such that z j−1 > x . This implies that with probability tending to one,
Tn(z j ) = 1, where Tn is as defined in (9). This proves the lemma. �

Theorem 3 can, e.g., be applied to star-shaped distributions with F(x) = xG(x)

where G is a distribution function with density g(x) = G ′(x) ≥ c > 0 on [0, F−1(1)].
Then (15) holds with β = 1 and taking the grid such that maxi (zi − zi−1) → 0 and
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√
n mini (zi − zi−1) → ∞, yields a consistent estimator. Theorem 3 cannot be applied

to star-shaped functions that have linear parts on which x �→ F(x)/x is constant, such
as the uniform distribution. However, also for that type of functions, consistency can
be proved. We consider the estimator that is obtained by taking zi = X(ikn) where kn

is a sequence that tends to infinity at a slower rate than n. In fact this corresponds to
a random grid, jumping through the set of observed data points such that the jump
size tends to zero, but the number of observations jumped over at each step tends to
infinity. This density estimate is related to that used in Tsybakov and Van der Meulen
(1996) to estimate the entropy of a probability density. Also other choices for the grid
could be chosen, but we do not pursue that here.

Theorem 4 Let F be a star-shaped distribution function with support [0, 1]. Let k =
kn be a sequence of positive numbers, tending to infinity at rate o(n). Let F̂n be the esti-
mator defined in Corollary 1, with z j = X( jkn). Then for each x > 0, F̂n(x) →P F(x).

Proof Denote by Q the quantile function F−1 belonging to F , and note that for all
0 < u < v < 1, the star-shaped condition on F implies that

Q(u) ≥ u and Q(v) − Q(u) ≤ Q(u)

u
(v − u)

⇒ Q(v) − Q(u)

Q(v)
≤ Q(u)(v − u)

Q(v)u
≤ v − u

u
.

Note that the latter inequality also trivially holds if u = v. By the representation of
uniform order statistics on (0, 1) in terms of i.i.d. exponential random variables given
in (10) and the quantile method,

(X(1), . . . , X(n)) =d
(

Q

(
S1

Sn+1

)
, Q

(
S2

Sn+1

)
, . . . , Q

(
Sn

Sn+1

))
.

Now, also using the inequality derived above,

Fn(Z( j))Z( j−1)

Fn(Z( j−1))Z( j)
= Fn(X(kn j))X(kn( j−1))

Fn(X(kn( j−1)))X(kn j)
=d j Q(Skn( j−1)/Sn+1)

( j − 1)Q(Skn j /Sn+1)

= ( j − 1)Q(Skn j /Sn+1) + Q(Skn j /Sn+1) + j (Q(Skn( j−1)/Sn+1) − Q(Skn j /Sn+1))

( j − 1)Q(Skn j /Sn+1)

= 1 + 1 − j (Q(Skn j /Sn+1) − Q(Skn( j−1)/Sn+1))/Q(Skn j /Sn+1)

j − 1

≥ 1 + 1 − j (Skn j − Skn( j−1))/Skn( j−1)

j − 1
.

Fix x > 0 and note that

Tn(x) =
∏

{ j : Z j >x}

Fn(Z( j))Z( j−1)

Fn(Z( j−1))Z( j)
∧ 1 ≥d exp

⎛

⎝
∑

{ j : Q(S jkn /Sn+1)>x}
log(1 + C j )

⎞

⎠
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with

C j = 0 ∧ 1 − j (Skn j − Skn( j−1))/Skn( j−1)

j − 1
.

Arguing as in the proof of Theorem 2, observe that for j large, S( j−1)kn ≈ ( j − 1)kn ,
giving

∑

{ j : Q(S jkn /Sn+1)>x}
log(1 + C j ) ≈

�n/kn�∑

j=�nx/kn�
C j ≈

�n/kn�∑

j=�nx/kn�
C̃ j , (16)

where

C̃ j = 0 ∧ 1 − (Skn j − Skn( j−1))/kn

j − 1
= 0 ∧ 1 − k−1

n
∑kn j

�=kn( j−1)+1 E�

j − 1

= −G( j)
kn

∨ kn − kn

kn( j − 1)

with G( j)
kn

∼ Gamma(kn). Note the crucial difference of this expression with (12),
where a single Ei appears in contrast to the mean of an increasing number of such
exponentials. Now, denoting the Gamma(p) density by φp, we get using integration
by parts

E
(

G( j)
kn

∨ kn − kn

)
=

∞∫

kn

(y − kn)φkn (y) dy

= 1

(kn − 1)!
∞∫

kn

(yk − kyk−1)e−y dy = kkn
n e−kn

(kn − 1)! .

Also using the Stirling approximation n! ∼ √
2πnn+1/2e−n as n → ∞ (in the sense

that the ratio tends to one) and the logarithmic approximation to the sum of 1/( j − 1)

we get

E

∣∣∣∣∣∣

�n/kn�∑

j=�nx/kn�
C̃ j

∣∣∣∣∣∣
≤

�n/kn�∑

j=�nx/kn�
E |C̃ j |=

�n/kn�∑

j=�nx/kn�

E
(

G( j)
kn

∨ kn − kn

)

kn( j − 1)
∼ − log x√

2πkn
→ 0

as n → ∞. Since also the variance of this sum tends to zero, Tn(x) →P 1, implying
that F̂n(y) − Fn(y) →P 0 for all y > x . The steps in (16) can be made rigorous in
the same way as was done in the proof of Theorem 2. �
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Fig. 3 The left picture shows the estimator (5) (dotted), the estimator of Theorem 1 (dashed) and the
estimator of Corollary 1 (solid) with zi = x10i based on a sample of size n = 100 from the uniform
distribution (0, 1). The straight solid line is the underlying uniform distribution function. The right picture
shows these estimators based on a sample of size n = 10.000 from the same distribution, with zi = x100i

Figure 3 shows three estimators based on samples of sizes n = 100 and n = 10.000
from the uniform distribution on (0, 1): the estimator of (5), Theorem 1 and the con-
sistent maximum smoothed likelihood estimator of Corollary 1.

5 Discussion

An intriguing example of a problem where the (nonparametric) MLE is inconsistent,
is that of estimating a star-shaped distribution. We argue that the likelihood function
that is usually considered in that setting, is somewhat unnatural. It corresponds to
the product of point masses at observation points, where actually a star-shaped dis-
tribution has to assign quite some mass to points outside the set of observations. We
propose another likelihood that takes these masses into account. It can also be used
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in the context estimating a convex distribution function on an interval [0, b] as well
as in the context of estimating a general distribution function (without any shape con-
straints). In these settings, it leads to the usual MLEs: a Grenander-type estimator and
the empirical distribution function respectively. This alternative likelihood function
can be interpreted as a smoothed likelihood in the spirit of Eggermont and LaRiccia
(2001), where the level of smoothing is minimal. We show this alternative MLE is
also inconsistent. In view of the observation that the objective function is exactly the
same as in the setting of estimating a convex distribution function and a general dis-
tribution function, this is an interesting result. This objective function optimized over
all convex distribution functions leads to a consistent estimator, as well as optimized
over all distribution functions. But optimizing the same function over the intermediate
class of star-shaped distribution functions, leads to an inconsistent estimator.

We finally show that increasing the level of smoothing in the smoothed likelihood,
leads to a consistent likelihood based method. We expect this result also to hold true in
other situations where the MLE is not consistent. For example the problem where the
uniform distribution in (3) is replaced by a more general distribution or the problem
of estimating an increasing failure rate average (IFRA) distribution as considered in
Boyles et al. (1985). Another example is work in progress (Groeneboom et al. 2008).
There the inconsistency problem, addressed in Maathuis and Wellner (2008) in the
context of estimating a bivariate distribution function in the current status problem with
continuous marks, is handled by using a smoothed version of the empirical distribution
of the observed data instead of the empirical distribution function in the definition of
the log likelihood.

Acknowledgments Thanks to two referees, whose comments lead to various improvements in the text
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