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Abstract Classical control charts are very sensitive to deviations from normality.
In this respect, nonparametric charts form an attractive alternative. However, these
often require considerably more Phase I observations than are available in practice.
This latter problem can be solved by introducing grouping during Phase II. Then each
group minimum is compared to a suitable upper limit (in the two-sided case also each
group maximum to a lower limit). In the present paper it is demonstrated that such
MIN charts allow further improvement by adopting a sequential approach. Once a
new observation fails to exceed the upper limit, its group is aborted and a new one
starts right away. The resulting CUMIN chart is easy to understand and implement.
Moreover, this chart is truly nonparametric and has good detection properties. For
example, like the CUSUM chart, it is markedly better than a Shewhart X -chart, unless
the shift is really large.

Keywords Statistical process control · Phase II control limits · Order statistics ·
CUSUM-chart

1 Introduction and motivation

By now it is well-known that standard control charts for controlling the mean of a
production process, such as the Shewhart or CUSUM chart (see, e.g., Page 1954;
Lorden 1971), are highly sensitive to deviations from normality (see, e.g., Chan et al.
1988; Pappanastos and Adams 1996; Hawkins and Olwell 1998, p. 75, Albers and
Kallenberg 2004, 2005b). Let us take the Shewhart X -chart for individual observations
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(which we shall denote by IND) as a starting point. Here an out-of-control (OoC) signal
immediately occurs once an incoming observation falls above an upper limit UL or
below a lower limit L L . While the process is in-control (I C), the false alarm rate (FAR)
should equal some small p, like p = 1/1, 000 or 1/500. Even if we assume that the
observations come from a normal distribution, typically its parameters are unknown.
An initial sample of size n (the so-called Phase I observations) is then needed already
to estimate these parameters and subsequently the UL and L L . Conditional on the
n Phase I observations, the FAR of the corresponding estimated chart now also is a
random variable (rv) Pn , and this Pn shows considerable variation around the intended
p. In fact, quite large values of n are required before this stochastic error (SE) becomes
negligible. Just see Albers and Kallenberg (AK for short) (2005a), which provides a
recent non-technical review of the results available, as well as additional references.

However, if normality fails, we actually estimate the wrong control limits and Pn is
not even consistent for p anymore. In addition to the SE, we thus have a nonvanishing
model error (ME). A first remedy is to consider wider parametric families, i.e., to
better adapt the distribution used to the data at hand by supplying (and estimating)
more than just two parameters. In this way, this ME can often be reduced substantially,
be it at the cost of a somewhat further increase of the SE (see, e.g., Albers et al. 2004).
The natural endpoint in this respect is a fully nonparametric approach: see, e.g., Bakir
and Reynolds (1979), Bakir (2006), Chakraborti et al. (2001, 2004), Qiu and Hawkins
(2001), and Qiu and Hawkins (2003), as well as Albers and Kallenberg (2004). In the
latter paper the control limits are simply based on empirical quantiles, i.e., appropriate
order statistics, of the initial sample. In this way, the ME is indeed removed completely,
but the price will typically be a huge SE, unless n is very large. By way of example,
consider a customary value like n = 100 and then realize the difficulty of subsequently
estimating the upper and lower 1/1, 000-quantiles in a nonparametric way. Hence, as
each type of chart has its own potential drawback, a sensible overall approach thus is
to adopt a data driven method (see Albers et al. 2006): let the data decide whether it
is safe to stick to a normality based chart, or, if not, whether estimating an additional
parameter offers a satisfactory solution. If neither is the case, a nonparametric approach
is called for, which will be fine if n is sufficiently large.

Consequently, what does remain is the need for a satisfactory nonparametric pro-
cedure for ordinary n. This problem has subsequently been successfully addressed by
Albers and Kallenberg (2006, 2008). The idea is to group the observations during the
monitoring phase. Hence the decision to give a signal is no longer based on a single
incoming observation, but instead on a group of size m, with m > 1 (with m = 1
we are back in the boundary case IND). The question which choice is best, is more
complicated than it might seem at first sight, even if we restrict attention (as is quite
customary) to OoC behavior characterized by a shift d. In fact, it is twofold: (i) what m
should we take, and (ii) which group statistic? Consequently, this problem is dealt with
first in Albers and Kallenberg (2006) for the case of known, not necessarily normal,
underlying distributions. Afterwards, the estimation aspects—which form the very
motivation to consider grouping at all—are the topic of Albers and Kallenberg (2008).

Because of its optimality under normality, the obvious group statistic is the average,
or equivalently, the sum. The corresponding chart is nothing but a Shewhart X -chart
chart, which we will denote by SUM (or occasionally by SU M(m)) here. It is easily
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verified that the optimal value of m decreases in d. In fact, for larger d, SU M(1) =
I N D is best, but for a wide range of d-values of practical interest, a choice of m
between say 2 and 5 will provide better performance. Incidentally, this is in line with
the observed superiority of CUSUM over IND for d not too large; we will come
back to this point in Sect. 3. However, we should realize that all of the foregoing
assumes normality; once this assumption is abandoned, SUM is no longer optimal.
Even worse, it is also difficult to adapt it to the nonparametric case. Approximations
based on the central limit theorem are simply not at all reliable, as m is small and we are
dealing with the tails. Moreover, a direct approach (see Albers and Kallenberg 2005b)
leads to interesting theoretical insights into the tail behavior of empirical distribution
functions for convolutions, but does not help much as far as practical implementation
is concerned: the estimation still requires an n which is typically too large.

Consequently, there remains a definite need to consider alternative choices for the
group statistic. Now a very good idea turns out to be using the minimum of the m
observations in the group in connection with some upper limit (and thus the group
maximum with a lower limit). The corresponding chart we have called MIN (see Albers
and Kallenberg 2006). Just like SUM, it beats IND, unless d becomes quite large. Of
course, under normality it is (somewhat) less powerful than SUM, but outside the
normal model, the roles can easily be reversed. Hence, even for known distributions,
MIN is a serious competitor for SUM. However, as soon as we drop this artificial
assumption, the attractiveness of MIN becomes fully apparent. For, as we just argued,
in this nonparametric setting SUM can easily lead to a large ME if we continue to
assume normality, while its nonparametric adaptation is no success. On the other
hand, the nonparametric version of IND is simple, but has a huge SE unless n is very
large. In fact, this was what prompted us to consider grouping.

Hence with both SUM and IND we run into trouble. However, MIN has a straight-
forward nonparametric adaptation, and hence M E = 0, just like the nonparametric
IND. Moreover, unlike IND, it turns out to have an SE which is quite well-behaved
and comparable to that of the normal SUM chart. The intuitive explanation is actually
quite simple: application of MIN requires estimation of much less extreme quantiles
than IND or SUM. Take e.g., m = 3, then the upper 1/10-quantile is exceeded by a
group minimum with probability (1/10)3 = 1/1, 000, which is the same small value
as before. But estimating an upper 1/10-quantile on the basis of a sample of size
n = 100 is quite feasible, i.e., leads to a very reasonable SE. Hence (only) for MIN,
both ME and SE are under control! As a consequence, the conclusion from Albers and
Kallenberg (2008) is quite positive towards this new chart: it is easy to understand
and to implement, it is truly nonparametric and its power of detection is comparable
to that of the standard, normality based, charts using sums.

After this favorable conclusion, the question arises whether there is room for further
improvement. Specifically, having mentioned the CUSUM chart before, and having
remarked that for not too large shifts this chart is superior compared to IND, the idea
suggests itself that a cumulative or sequential version of MIN might serve this purpose.
In the present paper we shall demonstrate that this is indeed the case. Not surprisingly,
we will call the corresponding proposal a CUMIN chart. In Sect. 2 we will introduce
these charts in a systematic manner, taking once more the case of a known underlying
distribution as our starting point (cf. Albers and Kallenberg 2006). The focus will
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be on demonstrating that CUMIN remains quite easy to understand and implement.
Section 3 is devoted to studying the performance during OoC and comparing it to that
of its competitors. In Sect. 4 the artificial assumption of known underlying distribution
is abandoned and it is shown how the estimated version of the chart is obtained.

2 Definition and basic properties of CUMIN

Let X be a random variable (rv) with a continuous distribution function (df) F . As
announced, we shall begin by assuming that F is known. Hence for now, there is no
Phase I sample: we start immediately with the monitoring phase for the incoming
X1, X2, . . .. For ease of presentation, we shall mainly concentrate on the one-sided
case; only occasionally we shall consider the two-sided case, which can be treated
in a completely similar fashion. (Merely keep in mind to switch from (CU)MIN to
(CU)MAX at the lower control limit.) First consider IND, the individual case with
m = 1. Hence for given p, we need UL such that P(X > U L) = p during IC. For any

df H we write H = 1 − H and H−1 and H
−1

for the respective inverse functions,

and thus U L = F−1(1 − p) = F
−1

(p).
Next we move on to the grouped case, where m > 1 and consider for the first group

T = T (m) = min (X1, . . . , Xm) (2.1)

as our control statistic for the upper MIN chart. (Here and in what follows we add
‘(m)’ to the quantities we define when needed to avoid confusion, but often we use
the abbreviated notation.) As in this case P(T > U L) = F(U L)m during IC, it
follows that a fair comparison to IND is obtained by choosing U L = U L(m) =
F

−1
((mp)1/m), leading to F AR = P(T > U L) = mp. To see this, note that in this

way the average run length (ARL) will be m/F AR = 1/p, which thus agrees with the

ARL of IND based on U L = F
−1

(p). During OoC, we consider a shift d > 0, i.e.,
the Xi will have df F(x − d). Thus we immediately have that in this case we obtain
for the ARL of MIN that

ARL M (m, d) = m

P(T > U L)
= m

{F(U L − d)}m
= m

{F(F
−1

((mp)1/m) − d)}m
.

(2.2)

Clearly, ARL M (m, 0) = 1/p again. Moreover, by looking at ARL M (1, d) −
ARL M (m, d) and/or ARL M (m, d)/ARL M (1, d), we can compare the performance
of MIN to that of IND. As demonstrated in Albers and Kallenberg (2006), the conclu-
sion is that MIN is better than IND for a wide range of d values of practical interest.
Only for large d, IND is best.

Note that the above holds for arbitrary F , and not just for the normal case. For
the sake of comparison, we shall now also briefly consider the SUM chart (i.e., the
Shewhart X -chart). However, here normality is more or less required: for general F ,
we wind up with rather intractable convolutions. So let � denote the standard normal
df and suppose that F(x) = �((x − µ)/σ). Actually, since we are in the case of
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known F , we can take µ = 0 and σ = 1 without loss of generality, and thus F = �.
In the case of SUM, we replace T in (2.1) by the standardized SUM of the first group
X1, . . . , Xm :

T = T (m) = m−1/2
m∑

i=1

Xi = m1/2 X . (2.3)

Clearly, T then has df � as well and thus the choice U L = �
−1

(mp) will produce
the desired ARL = 1/p for F = �. It is also straightforward that under �(x − d)

ARL S(m, d) = m

�(�
−1

(mp) − m1/2d)
. (2.4)

Again under F = �, studying ARL SS(1, d)−ARL S(m, d) and/or ARL SS(m, d)/

ARL S(1, d) makes sense for comparing the performance of SUM and IND. Once
more the resulting picture is that IND is preferable only for rather large d (see
Albers and Kallenberg 2006 for details). Likewise ARL M (m, d) − ARL S(m, d)

and/or ARL S(m, d)/ARL M (m, d) can be studied in order to compare SUM and MIN
(cf. Albers and Kallenberg 2006 again).

In the above we have introduced and described IND, MIN and SUM. Now we are in
a position to move on to the cumulative or sequential approach. As announced in the
Introduction, the idea is actually quite simple. Just look at the MIN chart for some given
m. Then each time a complete group of size m is assembled, its minimum value T

from (2.1) is computed and this T is subsequently compared to U L = F
−1

((mp)1/m).
But of course, as soon as an observation occurs within such a group which falls below
this UL, it makes no sense to complete that group and we could as well stop right
away. The next observation will then be the first of a new attempt. This idea leads to
the following definition of a sequential MIN procedure:

“Give an alarm at the 1st time m consecutive observations all exceed some UL”

(2.5)

In other words, this CUMIN chart is an accelerated version of MIN: before the final
successful attempt to get m consecutive Xi > U L , the failed ones are broken of as
soon as possible, rather than letting these all reach length m as well.

The proposal in (2.5) is inspired by the representation of CUSUM which can be
found, e.g., in Page (1954) and Lorden (1971). The alternative form of CUSUM from,
e.g., Lucas (1982) leads to an alternative for (2.5) as well. Let I (A) be the indicator
function of the set A and set S0 = 0. Consider Si = I ({Xi > U L})(1 + Si−1), i =
1, 2, . . . , and give an alarm as soon as Sk ≥ m for some k.

Next we shall investigate the properties of CUMIN. In (2.5) we have deliberately

been a bit vague (’some UL’). Indeed, the UL for CUMIN, say F
−1

( p̃), will have to be

different from F
−1

((mp)1/m), the UL of MIN. As CUMIN reacts more quickly than
MIN, it is evident that its UL will have to be somewhat larger, i.e., p̃ < (mp)1/m will
hold. To find this p̃ exactly, a bit more effort is required. First let us introduce some
notation. By ’Y is G(θ)’ we will mean that the rv Y has a geometric distribution with
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parameter θ , and thus that P(Y = k) = θ(1 − θ)k−1, for k = 1, 2, . . .. Moreover, by
’Z is Gm(θ)’ we will mean that the rv Z has an m-truncated geometric distribution
with parameter θ , which is defined through P(Z = k) = P(Y = k|Y ≤ m), k =
1, . . . , m, where Y is G(θ). Clearly, G∞ = G again. Finally, let RL denote the run
length of a chart (and thus E(RL) = ARL). Then we have the following result.

Lemma 2.1 For the CUMIN chart defined in (2.5), with U L = F
−1

( p̃), the run
length is distributed as

RL = m +
V −1∑

i=1

Bi , (2.6)

where V, B1, B2, . . . , are independent rv’s and moreover V is G( p̃m) and the Bi are
Gm(1 − p̃). Consequently,

E(RL) = 1 − p̃m

(1 − p̃) p̃m
= 1

1 − p̃

(
1

p̃m
− 1

)
,

var(RL) = 1 − p̃m

{(1 − p̃) p̃m}2

{
1 + p̃m{ p̃ − 2m(1 − p̃)}

1 − p̃m

}
. (2.7)

Before proving Lemma 2.1 we present the following general result on m-truncated
distributions.

Lemma 2.2 Let B∗
1 , B∗

2 , . . . , be independent and identically distributed (iid) rv’s with
P(B∗

1 > m) > 0 and df H. Let V = min{k : B∗
k > m}. Then, conditional on V = v,

the rv’s B∗
1 , . . . , B∗

v−1 are iid with df Hm given by

Hm(b) = H(b)

H(m)
f or b ≤ m and Hm(b) = 1 f or b > m.

Moreover, there exist rv’s B1, B2, . . . , such that V, B1, B2, . . . , are independent, Bi

has df Hm and for each function g the rv’s g(B∗
1 , . . . , B∗

V −1) and g(B1, . . . , BV −1)

(with g equal to some constant if V = 1) have the same distribution.

Proof By definition of V , the event {V = v} = {B∗
1 ≤ m, . . . , B∗

v−1 ≤ m, B∗
v > m}.

Hence, we obtain for b1, . . . , bv−1 ≤ m, using the independence of B∗
1 , B∗

2 , . . . ,

P(B∗
1 ≤ b1, . . . , B∗

v−1 ≤ bv−1|V = v) = P(B∗
1 ≤ b1, . . . , B∗

v−1 ≤ bv−1, B∗
v > m)

P(B∗
1 ≤ m, . . . , B∗

v−1 ≤ m, B∗
v > m)

= �v−1
i=1

{
P(B∗

i ≤ bi )

P(B∗
i ≤ m)

}
= �v−1

i=1 Hm(bi )

and the first result easily follows. Define rv’s B1, B2, . . . , such that V, B1, B2, . . . ,

are independent and Bi has df Hm . Note that Hm , the conditional df of B∗
1 , . . . , B∗

v−1
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given V = v, does not depend on v, and hence the Bi can be defined as above. Now
we have for any x

P(g(B∗
1 , . . . , B∗

V −1) ≤ x) =
∞∑

v=1

P(g(B∗
1 , . . . , B∗

v−1) ≤ x |V = v)P(V = v)

=
∞∑

v=1

P(g(B1, . . . , Bv−1) ≤ x)P(V = v)

=
∞∑

v=1

P(g(B1, . . . , Bv−1) ≤ x, V = v)

= P(g(B1, . . . , BV −1) ≤ x).

��
Proof of Lemma 2.1. Consider two forms of blocks of experiments for the sequence
X1, X2, . . .. The first one is related to the MIN chart and consists of fixed blocks of
size m : W1 = (X1, . . . , Xm), W2 = (Xm+1, . . . , X2m), . . .. Obviously, W1, W2, . . .

are iid. The second one concerns the CUMIN chart. The first block now ends with
the first Xi ≤ U L . This gives W1. The second block starts with the next X and
ends with the second Xi ≤ U L . This produces W2, and so on. Again, W1, W2, . . .

are iid. In both situations the experiment Wi is called successful if at least m X ’s
in Wi satisfy Xi > U L . Hence the probability of success in experiment Wi equals
θ = p̃m in either situation. Let V be the waiting time till the first successful experiment
Wi , then V is indeed G( p̃m). For the MIN chart we simply have RL = mV and
E(RL) = m/ p̃m shows that in that case choosing p̃ = (mp)1/m indeed produces
E(RL) = ARL = 1/p.

For the second situation define B∗
i as the length of the vector Wi . Since W1, W2, . . . ,

are iid, the rv’s B∗
1 , B∗

2 , . . . , are also iid. Furthermore, the experiment Wi is successful
if B∗

i > m and hence V = min{k : B∗
k > m}. In view of (2.5) we have that

RL = m + ∑V −1
i=1 B∗

i . The first part of Lemma 2.1 now follows by application of

Lemma 2.2 with g(B1, . . . , BV −1) = m + ∑V −1
i=1 Bi , noting that B∗

i is the first time
that we get X ≤ U L and thus B∗

i is G(1 − p̃).
To obtain the moments in (2.7), let Y be G(θ) and Z be Gm(θ). For r = 1, 2, . . . ,

we observe that the memoryless property of the geometric distribution produces E(Y +
m)r = ∑∞

k=1(k + m)r P(Y = k + m|Y > m) = ∑∞
k=m+1 kr P(Y = k)/P(Y > m) =

{EY r − E Zr P(Y ≤ m)}/P(Y > m) and thus E Zr = {EY r − E(Y + m)r P(Y >

m)}/P(Y ≤ m). For r = 1 this gives E Z = EY − m P(Y > m)/P(Y ≤ m) =
1/θ − m(1 − θ)m/{1 − (1 − θ)m}. Hence E(RL) = m + E(V − 1)E B = m +
(1/ p̃m −1){1/(1− p̃)−m p̃m/(1− p̃m)} and the first result in (2.7) follows. Moreover,
applying the result above for r = 2 as well leads to var(Z) = var(Y ) − m2 P(Y >

m)/{P(Y ≤ m)}2 = (1− θ)/θ2 −m2(1− θ)m/{1− (1− θ)m}2. It remains to use that
var(RL) = (E B)2var(V ) + var(B)(EV − 1) in order to obtain the second result
in (2.7). ��
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Remark 2.1 E(RL) can also be obtained by applying renewal theory (see, e.g., Ross
1996). Instead of (2.6), use the representation RL = m − CV + ∑V

i=1 Ci , where the
Ci are simply G(1 − p̃). As ECV = m + 1/(1 − p̃), while Wald’s equation gives
E(

∑V
i=1 Ci ) = EV EC1 = 1/{ p̃m(1 − p̃)}, the first line in (2.7) again follows. ��

From (2.7) it follows that ARL = 1/p will result if p̃ is chosen such that

(1 − p̃) p̃m

1 − p̃m
= p, (2.8)

As p is very small, p̃m will be of the order p, and hence as a first approximation
we have p̃m ≈ p/(1 − p1/m), i.e.,

p̃ ≈
(

p

1 − p1/m

)1/m

. (2.9)

This already is quite accurate; if desired, (2.9) can be replaced by p̃ ≈ {p/(1 −
[p/(1 − p1/m)]}1/m)}1/m , which is very precise. Note that the interpretation of (2.9)
is still rather simple: the failed sequences of fixed length m for MIN are replaced by
sequences of expected length approximately 1/(1 − p̃) for CUMIN. Hence the total
expected length changes from m/ p̃m to about 1/{(1 − p̃) p̃m} and thus the former
solution (mp)1/m becomes (2.9). Indeed, 1/(1 − p1/m) is considerably smaller than
m : for p = 0.001, e.g., 1.11 for m = 3 and 1.46 for m = 6.

Next we note that the fact that p̃m is of order p implies in view of (2.7) that
var(RL) ≈ 1/{(1− p̃) p̃m}2. This leading term is essentially due to (E B)2var(V ); the
second part var(B)(EV −1) of var(RL) just gives a lower order contribution. In other
words, the RL of CUMIN behaves to first order as V/(1− p̃) (cf. the RL of MIN which
exactly equals mV ). Moreover, if p̃ satisfies (2.8), it follows that var(RL) ≈ 1/p2.
Hence the simple conclusion is that the RL of the CUMIN chart from Lemma 2.1
with p̃ selected such that (2.8) holds, behaves like a G( p̃m)/(1 − p̃) rv. By way of
illustration, we give:

Example 2.1 For p = 0.001 and m = 3 we obtain that p̃ = 0.103677 and p̃m =
0.001114. The approximation from (2.9) leads to p̃ = 0.103574 and p̃m = 0.001111,
which produces 0.000997 rather than p = 0.001 in (2.8). The refinement below
(2.9) gives p̃ = 0.103712 and p̃m = 0.001116, which gives 0.001001 in (2.8). (We
have dragged along more digits than would be useful in practice, just to show the
differences.) Roughly speaking, the RL behaves like 10/9 times a G(1/900)rv.

If we choose instead m = 6, the results become p̃ = 0.338708 and p̃m = 0.001510.
The approximation from (2.9) then leads to p̃ = 0.336911 and p̃m = 0.001462, which
produces 0.000971 rather than p = 0.001 in (2.8). The refinement below (2.9) leads
to p̃ = 0.338640 and p̃m = 0.001508, and 0.000999 as the result of (2.8). Here RL
is roughly 3/2 times a G(3/2000) rv. ��
We summarize the previous discussion with the following formal result.
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Lemma 2.3 Let p̃ be defined by (2.8) and let V be G( p̃m). Then, for p → 0,

E(RL) = E

(
V

1 − p̃

)
− 1

1 − p̃
= E

(
V

1 − p̃

)
(1 + O(p)) , (2.10)

var(RL)=var

(
V

1 − p̃

) {
1 + p̃m p̃ − 2m(1 − p̃)

1 − p̃m

}
= var

(
V

1 − p̃

)
(1 + O(p)) .

(2.11)

Proof Let h(x) = (1 − x)xm/(1 − xm), then h( p̃) = p. For any ε we obtain that
lim p→0h(p1/m(1 + ε))/p = (1 + ε)m and hence

p̃ = p1/m(1 + o(1)) (2.12)

as p → 0. As V is G( p̃m), it follows that E(V/(1 − p̃) equals

1

p̃m(1 − p̃)
= 1 − p̃m

p̃m(1 − p̃)
+ 1

1 − p̃
= E(RL) + 1

1 − p̃
= 1

p
+ O(1)

as p → 0 and thus (2.10) holds. Likewise, the definition of V implies that var
(V/(1− p̃)) = (1− p̃m)/{(1− p̃) p̃m}2. Now (2.11) follows from (2.7) by noting that
p̃m{ p̃ − 2m(1 − p̃)/(1 − p̃m} = p̃m{−2m + O( p̃)} = O(p). ��

3 Out-of-control behavior

In this section we shall study the OoC behavior of CUMIN and compare it to that of its
competitors. For MIN and SUM, the ARL during OoC has already been given in (2.2)
and (2.4), respectively. Lemma 2.1 continues to hold in the OoC case if we replace p̃

by F(F
−1

( p̃) − d). In view of (2.7) we now obtain for CUMIN that

ARLC M (m, d) =
{

1

(F(F
−1

( p̃) − d))m
− 1

}
1

F(F
−1

( p̃) − d)
, (3.1)

where p̃ = p̃(m) is the solution of (2.8), as given approximately by (2.9). Hence
we have ARLC M (m, 0) = 1/p again for all F (just like MIN, cf. (2.2)), and not just
for F = � (like SUM, cf. (2.4)).

Note that we have made only explicit in (3.1) the dependence of the ARL on m and
d. To achieve full generality, we should of course write ARLC M (p, m, d, F). However,
to avoid an unnecessarily lengthy exposition, we shall not pursue the dependence on
p and F in detail. For p the reason is quite simple: it really suffices to concentrate
on a single representative value, like the case p = 0.001 from our examples. The
values used in practice will be of a similar order of magnitude and it can be verified
that for such values the conclusions about the behavior of the function from (3.1) will
be qualitatively the same. As concerns F , the situation is a bit more complicated. In
principle, it would be quite interesting to see how (3.1) behaves for a variety of F’s.
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However, as most of the competitors (IND, SUM, CUSUM) are only valid under the
single option F = �, there is little to compare to outside normality. For that reason
only, we will restrict attention to F = � for our CUMIN as well. Hence, as indicated
in (3.1), in what follows we concentrate on m and d.

The first question of interest (cf. Sect. 1) is of course: what m should we take? As
mentioned, the answer depends on d: the larger d, the smaller m should be. To be a bit
more specific, for really large d, like d = 3, it is best to simply let m = 1, i.e., to use
IND. For values in an interval around the typical choice d = 1 (cf. e.g., Ryan 1989,
p.107), a simple rule of thumb for the optimal value of m is:

mopt ≈ 17

1 + 2d2 . (3.2)

As d increases from 1/2 to 3/2 in steps of 1/4, the rule in (3.2) indeed produces the
corresponding correct values of mopt : 11, 8, 6, 4 and 3. For values of d even smaller
than 1/2, the optimal value of m rises sharply. However, the function in (3.1) then
remains quite flat over a wide range of m-values, so there seems to be no need to
consider m larger than 10. All in all, a simple advice for use in practice could be:

• Use m = 1, i.e., IND, only if the supposed d is really large (d ≈ 3).
• In all other cases, considerable improvement w.r.t. IND is possible.
• If d is supposed to be moderately large (≈ 3/2 or 2), m = 3 is suitable. (3.3)

• For somewhat smaller d (≈ 1), m = 6 seems fine.
• For really small d (1/2 or below), m = 10 should do.

Do remember that this advice is tuned at p = 0.001 and F = �. For different
p we might get slightly different results; for (quite) different F in principle (quite)
different behavior could be advisable. However, if a specific interest arises for a given
F , a suitable analog of (3.2) can easily be found through (3.1) along the same lines.

It should be stressed that the resulting picture about the relation between d and m is
by no means typical for CUMIN. In fact, expressions (2.2) and (2.4) lead to completely
similar results for MIN and SUM, respectively. From (2.2) we obtain as an analog to
(3.2) for MIN that mopt ≈ 1, 000/(75+80d2) for 1/2 ≤ d ≤ 3/2, while (2.4) produces
mopt ≈ 40/(1 + 4d2) for SUM and these values of d, e.g., for d = 1, mopt = 6 for
MIN and mopt = 8 for SUM. Hence, as already stated before, both SUM and MIN also
beat IND for smaller values of d. In fact, detailed information on the relation between
IND, SUM and MIN was already presented in AK (2006). Here we just present a single
but representative example.

Example 3.1 From Albers and Kallenberg (2006) we quote that for p = 0.001 and
F = �, at d = 1 the ARL of the individual chart equals 54.6. Suppose we had
decided to use m = 3, then this result is improved with 26.7 by taking MIN, yielding
ARL = 27.9; the further improvement when using SUM is much less: 8.5, giving
ARL = 19.4. (That the overall winner here is SUM is of course by virtue of the
choice F = �; outside normality, MIN can be the winner; see Albers and Kallenberg
(2006) for examples.) If we now in addition suppose that we did not simply use m = 3,
but in fact had guessed correctly and selected mopt in either case, the picture is modified
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Fig. 1 Comparison of CUMIN to MIN

as follows. For MIN, we then apply m = 6, leading to ARL = 24.3, while SUM uses
m = 8, leading to ARL = 12.1. Indeed some further improvement, but note that the
discretization effect will be larger for these higher m-values (cf. the remark following
Example 3.1 (cont.) below). ��

In view of the already existing comparison results just mentioned, here we can focus
on the comparison of CUMIN to MIN. This can be done in the same way as described
already in Sect. 2 for the other charts. Here use (3.1) together with (2.2) and then look
at ARL M (m, d) − ARLC M (m, d) and/or ARLC M (m, d)/ARL M (m, d). In Fig. 1 a
representative picture is given for m = 6, which is the optimal value for both CUMIN
and MIN for d = 1.

Hence indeed CUMIN forms a useful further improvement over MIN. For m = 3,
the picture looks completely similar. To present some actual values, we have:

Example 3.1 (cont.) Above we found for the given choice m = 3 at a realized d = 1
an ARL of 54.6 for IND and of 19.4 for SUM. Most of this gap was bridged by MIN
with a value 27.9; now we can offer a further reduction through CUMIN to 24.8. The
luckiest choice of m for the realized value d = 1 would have been m = 6 for both
MIN and CUMIN, leading to realizations for the ARL of 24.3 and 22.0, respectively.

An additional advantage of CUMIN over MIN that should be mentioned concerns
the discrete character of the charts. Typically, the point where a shift occurs will only
rarely coincide precisely with the start of a new group. Hence it is quite likely that the
impact of the process going OoC will be delayed until the present group has ended.
Clearly, this effect will be more pronounced for procedures such as MIN and SUM,
with groups of fixed size m, than for the more quickly reacting CUMIN. Especially
for small d, and thus large m, this effect is not negligible.
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To complete the picture, it remains to add some comparison to CUSUM as well.
However, let us first point out some confusion which might arise here, due to the fact
that the notion of grouped data is used in various ways. Quite often, data used for
control charting occur already in subgroups of sizes, e.g., 3, 4 or 5. The corresponding
subgroup averages are then used and a Shewhart X -chart is applied, rather than a
Shewhart X -chart for individual observations. This sounds as if, in our terminology,
SUM is used instead of IND. However, this does not necessarily have to be the case.
Consider, e.g., Ryan (1989), Sect. 5.3, where the CUSUM procedure is compared to
the Shewhart X -chart. An example involving subgroups of size 4 is used and it is
rightfully concluded that, e.g., for d = 1 the CUSUM chart really is much better. The
question; however, is: much better than what? The point is that in this example the
shift d is given in units of σX and not of σX . Hence, in our terminology, the Xi are used
as individual observations again, and the comparison is between CUSUM and IND,
and not between CUSUM and SUM. If the appropriate Xi in their turn are collected
into groups according to our setup, the gap in performance would be much smaller.
To illustrate this qualitative explanation, we have the following example.

Example 3.2 Ryan (1989) gives in Table 5.6 an ARL of 10.4 for the CUSUM chart
with d = 1 (k = 0.5) and h = 5. In comparison, he mentions that the X -chart scores
the much larger 43.96. Indeed, this latter value is the ARL of IND for d = 1 and
p = 0.00135 = �(3), used in the customary ‘3σ ’-chart. As according to Table 5.6
the two-sided CUSUM chart in question has ARL = 465 during I C , the appropriate
p to use would be 1/930. In that case IND even requires an ARL = 51.8 for d = 1.
However, suppose we would have used SUM with m = 8 (which is mopt for d = 1 and
the present value p = 1/930 as well). Then it follows from (2.4) that the corresponding
ARL is merely 11.9, which indeed is much closer to CUSUM’s 10.4 than IND’s 51.8.
Admittedly, this result looks extremely nice because we (more or less) took mopt in
SUM. But take, e.g., d = 1/2 instead of d = 1, then the ARL’s rise for CUSUM to 38.0
and for IND to 196. In this situation, m = 8 is not at all optimal anymore for SUM.
Nevertheless, the SU M(8) chart has ARL = 48.0 for d = 1/2, which still largely
bridges the gap between 196 and 38.0.

Hence the resulting picture is as follows. For a wide range of d values, an (often
substantial) improvement over IND is offered by MIN. This chart in its turn is further
improved by its sequential analogue CUMIN, both directly (cf. Fig. 1) and because of
the discrete character of the charts. For the sum-based procedures the situation actually
is completely analogous. First IND is substantially improved by SUM, which in its turn
is further improved by CUSUM. When focusing on the case F = �, sum-based charts
are obviously better than min-based ones. But always bear in mind that this superiority
rests on this normality assumption, which is often quite questionable, especially in the
tails. If normality fails, both SUM and CUSUM run into trouble. For known F 	= �,
they are awkward to handle, whereas for the min-based charts � plays no special role
at all (cf. (2.2) and (3.1)). And when F is unknown, SUM and CUSUM (cf. Hawkins
and Olwell 1998, p.75) may lead to a considerable ME. In case of IND, see, e.g., Table 1
on p. 173 of Albers et al. (2004). Various nonnormal distributions are considered here,
such as the normal power family, based on |Z |1+γ sign(Z), with Z standard normal
and γ > −1. For γ = 1/2, and p = 0.001, we have ME = 5.6p, while for γ = 1
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Table 1 ARL’s of five charts for
p = 1/930 and various values
of d

d 0 1/4 1/2 3/4 1 3/2 2

IND 930 415 196 98.0 51.8 17.1 7.01

M I N (6) 930 257 97.5 43.7 23.6 10.7 7.38

CU M I N (6) 930 236 86.8 38.9 21.5 10.3 7.35

SU M(8) 930 170 48.0 20.1 11.9 8.26 8.00

CUSUM 930 139 38.0 17.0 10.4 5.75 4.01

we even obtain ME = 9.4p. For a Student(6)-df, we get ME = 3.6p, while Tukey’s λ

family (based on {Uλ − (1 − U )1−λ} with U uniform on (0,1)) produces M E = 4.7p
for λ = −0.1. On the other hand, when F is unknown both MIN and CUMIN allow a
rather straightforward nonparametric adaptation by using appropriate order statistics
from an initial sample. In case of MIN this has been shown in Albers and Kallenberg
(2008); for CUMIN we shall demonstrate it in Sect. 4. But before doing so, we shall
conclude the present section by giving a representative example of ARL’s for the five
charts considered so far.

Example 3.2 (cont) Above we already used Table 5.6 from Ryan (1989) for making
some illustrative comparisons between IND, CUSUM and SU M(8) (using that at
d = 1 for the latter chart mopt = 8). Now we add M I N (6) and CU M I N (6) to the
picture (as at d = 1 in either case we have mopt = 6) and we consider a somewhat
wider range of d-values. The result is given in Table 1 above.

Indeed, especially for the smaller d, a wide gap exists between IND and CUSUM,
which is bridged to a large extent by MIN and even better by CUMIN.

The improvement of CUMIN over MIN, illustrated in Fig. 1 , can be explained and
generalized by Lemma 3.1 below. The condition in this lemma concerns the behavior
of f/F in the tail and is e.g., satisfied for the standard normal distribution, as is
shown in Lemma 3.2. Under this tail condition, ARLC M is smaller than ARL M for
sufficiently small p and d. This holds for each m. Let mM be the mopt for MIN and
mC M the one for CUMIN. Then, for sufficiently small p and d, ARLC M (mC M , d) ≤
ARLC M (m M , d)< ARLM (m M , d) and hence the improvement of CUMIN over MIN
continues to hold for the optimal choices of m, even if these are different for MIN and
CUMIN.

Lemma 3.1 Assume that h(x) = f (x)/F(x) is increasing in the tail in the following
sense: there exists a normalizing function z(p) > 0 such that, if c(p) → c > 1

lim p→0

{
1 − h(F

−1
(c(p)p))

h(F
−1

(p))

}
z(p) > 0, (3.4)

lim p→0 pz(p) = 0. (3.5)

Then, for each m ≥ 2,

lim p→0 limd→0

{
ARLC M (m, d)

ARL M (m, d)
− 1

}
{dh(F

−1
( p̃))}−1z( p̃) < 0.
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Proof Taylor expansion of ARLC M (m, d), given in (3.1), and application of
ARLC M (m, 0) = (1 − p̃)−1( p̃−m − 1), cf. (2.7), yields as d → 0

ARLC M (m, d) = ARLC M (m, 0) − mdh(F
−1

( p̃))

(1 − p̃) p̃m
+ d

(
1

p̃m
− 1

)
p̃h(F

−1
( p̃))

(1 − p̃)2

+ O(d2) = ARLC M (m, 0){1 − mdk( p̃) + O(d2)},

where k( p̃) = h(F
−1

( p̃))[1 + p̃m/(1 − p̃m) − p̃/((1 − p̃)m)]. By Taylor expansion
of ARL M (m, d), as given in (2.2), we get

ARL M (m, d) = ARL M (m, 0) − m2d F(F
−1

((mp)1/m))−m−1 f (F
−1

((mp)1/m)) + O(d2)

= ARL(m, 0){1 − mdh(F
−1

((mp)1/m)) + O(d2)}

as d → 0. Since ARLC M (m, 0) = ARL M (m, 0) = p−1, we obtain

ARLC M (m, d)

ARL M (m, d)
= 1 − mdk( p̃)

1 − mdh(F
−1

((mp)1/m))
+ O(d2)}

= 1 − md{k( p̃) − h(F
−1

((mp)1/m))} + O(d2)}

as d → 0. Hence we get

limd→0

{
ARLC M (m, d)

ARL M (m, d)
− 1

}
d−1 = −m{k( p̃) − h(F

−1
((mp)1/m))}. (3.6)

Define c( p̃) = (mp)1/m p̃−1. (Note that p can be considered as a function of p̃ and
vice versa.) In view of (2.12) we have that lim p→0 c( p̃) = m1/m > 1. According to
the condition on h there exists a function z with z( p̃) > 0 such that

lim p→0

{
1 − h(F

−1
((mp)1/m))

h(F
−1

( p̃))

}
z( p̃) > 0

and lim p→0 p̃z( p̃) = 0. Together with (3.6) and the definition of k( p̃) we obtain

lim p→0 limd→0

{
ARLC M (m, d)

ARL M (m, d)
− 1

}
{dh(F

−1
( p̃))}−1z( p̃)

= lim p→0 − mz( p̃)

{
1 + p̃m

1 − p̃m
− p̃

(1 − p̃)m
− h(F

−1
((mp)1/m))

h(F
−1

( p̃))

}

= lim p→0 − mz( p̃)

{
1 − h(F

−1
((mp)1/m))

h(F
−1

( p̃))

}
< 0

as was to be proved. ��
We check the conditions on h in case where F = �.
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Lemma 3.2 For the standard normal distribution h(x) = ϕ(x)/�(x) is increasing
in the sense of (3.4) and (3.5).

Proof The behavior of � in the tail is given by the following expansion for large
quantiles:

�
−1

(q) = (2|logq|)1/2[1 − k1(q) + o(|logq|−1)],

as q → 0, where k1(q) = (2|logq|)−1{log(2|logq|) + log(2π)}/2.
Furthermore use that h(x) = x[1 + x−2{1 + o(1)}] as x → ∞. Let c(p) → c > 1

as p → 0. Then we obtain, as p → 0, that h(�
−1

(c(p)p))/h(�
−1

(p)) equals

�
−1

(c(p)p)

�
−1

(p)

{
1 + [�−1

(c(p)p)]−2(1 + o(1))

1 + [�−1
(p)]−2(1 + o(1))

}

= k0(p)

{
1 − k1(c(p)p) + o(|logp|−1)

1 − k1(p) + o(|logp|−1)

}
k2(p)(1 + o(1)),

in which k0(p) = {|log(c(p)p)|/|logp|}1/2 and k2(p) = {1+(2|log(c(p)p)|)−1}{1+
(2|logp|)−1}. For the various ki we have the following results:

k0(p) =
{−logc(p) + |logp|

|logp|
}1/2

= 1 − 1

2

logc

|logp| + o(|logp|−1),

1 − k1(c(p)p))

1 − k1(p))
= [1 − k1(c(p)p))][1 + k1(p)] + o(|logp|−1) = 1 + o(|logp|−1),

k2(p) = 1 + o(|logp|−1),

and thus, as p → 0,

h(�
−1

(c(p)p))

h(�
−1

(p))
= 1 − 1

2

(
logc

|logp|
)

+ o(|logp|−1).

Now define z(p) = |logp|, then the limit in (3.4) equals (logc)/2. As c > 1, this is
indeed positive. Moreover, (3.5) holds as well. ��

4 The nonparametric chart

In Sects. 2 and 3 we have worked under the assumption of known F . This was very use-
ful in order to demonstrate the properties and performance of CUMIN and to compare
it to its various competitors. However, by now we should drop this artificial assump-
tion again and return to our main case of interest. There the normality assumption is
not to be trusted, especially in the tail area we are dealing with, and a nonparametric
approach is desired. Hence a Phase I sample X1, . . . , Xn is needed again and will be
used to obtain an estimated Û L (and, for the two-sided case, an estimated L̂ L).
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Assume that F is continuous and let Fn(x) = n−1#{Xi ≤ x} be the empirical df
and F−1

n the corresponding quantile function, i.e., F−1
n (t) = inf{x |Fn(x) ≥ t}. Then it

follows that F−1
n (t) equals X(i) for (i −1)/n < t ≤ i/n, where X(1) < · · · < X(n) are

the order statistics corresponding to X1, . . . , Xn . Hence, letting F
−1
n (t) = F−1

n (1−t),
we get for the nonparametric IND that a signal occurs if for a single new observation
Y we have

Y > Û L, with Û L = F
−1
n (p) = X(n−r), (4.1)

where r = [np], with [y] the largest integer ≤ y. Note that for p = 0.001 this r will
remain 0, and thus Û L will equal the maximum of the Phase I sample, until n is at
least 1,000. Details on this chart, as well as suitably corrected versions, can be found
in Albers and Kallenberg (2004). For the grouped case, after Phase I, we have a new
group of observations Y1, . . . , Ym and consider T = min(Y1, . . . , Ym) for MIN (cf.
(2.1)). In analogy to (4.1), the estimation step for the nonparametric version of MIN
leads to

T > Û L, with Û L = F
−1
n ((mp)1/m) = X(n−r), (4.2)

with this time r = [n(mp)1/m]. For p = 0.001, m = 3 and n = 100, we e.g., obtain
r = 14 and we are dealing with X(86), which is much less extreme than the sample
maximum X(100). Details and corrected versions for this chart are given in Albers and
Kallenberg (2008).

In view of (4.1) and (4.2), it is clear how to obtain a nonparametric adaptation of

CUMIN. In Sect. 2 , we replaced F
−1

((mp)1/m) by F
−1

( p̃) and thus (2.5) will now
become:

“Give an alarm at the 1st time m consecutive

observations all exceed F
−1
n ( p̃) = X(n−r)”, (4.3)

with r = [n p̃] here, in which p̃ is defined through (2.8) as a function of p and m (see
also (2.9)). For p = 0.001, m = 3 and n = 100 we find r = 10 (see Example 2.1)
and thus X(90), which again is much less extreme than X(100).

Using stochastic limits in (4.1)–(4.3) means that the fixed ARL’s from the case of
known F now have become stochastic. From (2.2) together with (4.2), we immediately
get for MIN that, conditional on X1, . . . , Xn ,

ARL M (m, d) = m

{F(F
−1
n ((mp)1/m) − d)}m

. (4.4)

Let U(1) < · · · < U(n) denote order statistics for a sample of size n from the
uniform df on (0,1), then it readily follows from (4.4) that during I C

ARL M (m, 0) ∼= m

{U(r+1)}m
, (4.5)

with ‘∼=’ denoting ‘distributed as’ and r = [n(mp)1/m]. Hence indeed MIN and IND
(which is the case m = 1 in (4.4) and (4.5)) are truly nonparametric. Moreover,
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{U(r+1)}m →P mp as n → ∞ and thus ARL M (m, 0) →P 1/p: there is no ME and
the SE tends to 0. However, as mentioned in the Introduction, this convergence is quite
slow and for m = 1 the SE of the corresponding IND is huge, unless n is very large.
The explanation is that the relevant quantity of course is the relative error

WM = ARL M (m, 0)(
1
p

) − 1 ∼= mp

{U(r+1)}m
− 1, (4.6)

which for m = 1 indeed shows a very high variability. As is demonstrated in Albers
and Kallenberg (2008), using m > 1, i.e., a real MIN chart, dramatically reduces this
variability. In fact, from m = 3 on, the resulting SE is roughly the same as that of the
Shewhart X -chart.

For CUMIN we obtain along the same lines through (3.1) and (4.3) that

ARLC M (m, d) =
{

1

(F(F
−1
n ( p̃) − d))m

− 1

}
1

F(F
−1
n ( p̃) − d)

, (4.7)

and thus that during IC

ARLC M (m, 0) ∼=
{

1

{U(r+1)}m
− 1

}
1

(1 − U(r+1))
, (4.8)

where r = [n p̃], with p̃ as in (2.8). Obviously, about the relative error WC M =
ARLC M (m, 0)/(1/p) − 1, completely similar remarks can be made as about WM

from (4.6). Hence, just like MIN, CUMIN has no ME and a SE which is as well-
behaved as that of a Shewhart X -chart for m ≥ 3.

This actually already concludes the discussion of the simple basic proposal (4.3)
for the nonparametric version of CUMIN. However, the following should be noted.
The fact that for m ≥ 3 the SE is no longer huge but comparable to that of an ordinary
Shewhart X -chart, is gratifying of course. But on the other hand, such an SE is still
not negligible. In fact, at the very beginning of the paper we remarked that quite large
values of n are required before this will be the case, even for the most standard types
of charts. Hence it remains worthwhile to derive corrections to bring such stochastic
character under control. This has e.g., been done for both normal and nonparametric
IND, as well as for nonparametric MIN (see Albers and Kallenberg 2005a, 2004, 2008,
respectively). Here we shall address this point for CUMIN as well. However, to avoid
repetition, we shall not go into full detail about all possible types of corrections. For
that purpose we refer to the papers just mentioned.

The idea behind the desire for corrections is easily made clear by means of an
example. For our typical value p = 0.001, during I C the intended ARLC M = 1/p =
1, 000. However, the estimation step results in the stochastic version given by (4.8),
rather than in a fixed value such as 1,000. On the average, the result from (4.8) will be
close to this target value 1,000, but its actual realizations for given outcomes x1, . . . , xn

may fluctuate quite a bit around this value. The larger the SE, the larger this variation
will be. To some extent, such variation is acceptable, but it should only rarely exceed
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certain bounds, e.g., a value below 800 should occur in at most 20% of the cases.
Hence what we in fact want is a bound on an exceedance probability like:

P

(
ARLC M (m, 0) <

1

{p(1 + ε)}
)

≤ α, (4.9)

for given small, positive ε and α. In the motivating example, ε = 0.25 and α = 0.2.
Note that (4.9) can also be expressed as P(WC M < −ε̃) ≤ α, with ε̃ = ε/(1+ε) ≈ ε.

First we shall give expressions for the exceedance probability in (4.9) for the
uncorrected version of the chart.

Lemma 4.1 Let h(x) = (1 − x)xm/(1 − xm) and p̃ε = h−1(p(1 + ε)) (and thus
p̃0 = p̃ = h−1(p)). Let B(n, p∗, j) stand for the cumulative binomial probability
P(Z ≤ k) with Z bin(n, p∗). Then

P

(
ARLC M (m, 0) <

1

p(1 + ε)

)
= B(n, p̃ε, r) →

�

(
(r + 1/2 − n p̃ε)

{n p̃ε(1 − p̃ε)}1/2

)
≈ �

(
− ε

m

{
n p̃

1 − p̃

}1/2
)

, (4.10)

where the first step is exact, the second holds for n → ∞ and the last one moreover
is meant for ε small.

Proof From (4.8) it is immediate that ARLC M (m, 0) = 1/h(U(r+1)) and thus that the
probability in (4.9) equals P(h(U(r+1)) > p(1 + ε)) = P(U(r+1) > p̃ε). Now there
is a well-known relation between beta and binomial distributions: P(U(i) > p) =
B(n, p, i −1) and thus the first result in (4.10) follows. The second step is nothing but
the usual normal approximation for the binomial distribution. As r = [n p̃], we have r+
1/2 ≈ n p̃, while p̃ε ≈ p̃(1+ε)1/m and therefore r+1/2−n p̃ε ≈ n p̃{1−(1+ε)1/m} ≈
−εn p̃/m. ��

The result from (4.10) readily serves to illustrate the point that the SE is not negli-
gible and corrections are desirable.

Example 4.1 Once more let p = 0.001, m = 3 and n = 100 and, just as above, choose
ε = 0.25. From Example 2.1 we have that p̃ = 0.1037 and thus r = 10; likewise we
obtain that p̃0.25 = h−1(0.00125) = 0.1120. Hence the exact exceedance probability
in this case equals B(100, 0.1120, 10) = 0.428, whereas the two approximations from
(4.10) produce 0.412 and 0.388, respectively. Consequently, in about 40% of the cases
the ARL will produce a value below 800, which percentage is well above the value
α = 0.2 used above. ��

A corrected version can be given in exactly the same way as for MIN in Albers
and Kallenberg (2008). In order to satisfy (4.9), essentially X(n−r) in (4.3) is replaced
by a slightly more extreme order statistic X(n+k−r), for some nonnegative integer k.
To be more precise, equality in (4.9) can be achieved by randomizing between two
such shifted order statistics. Let V be independent of (X1, . . . , Xn, Y1, . . .), with
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P(V = 1) = 1 − P(V = 0) = λ. Then replace X(n−r) in (4.3) by

Û L(k, λ) = (1 − V )X(n+k+1−r) + V X(n+k−r). (4.11)

Let b(n, p∗, j) stand for the binomial probability P(Z = j), with Z bin(n, p∗), then:

Lemma 4.2 Equality in (4.9) will result by selecting k and λ in (4.11) such that

B(n, p̃ε, r − k − 1) ≤ α < B(n, p̃ε, r − k), λ = (α − B(n, p̃ε, r − k − 1))

b(n, p̃ε, r − k)
.

(4.12)

Moreover, for large n, approximately k = [ki ] and 1 − λ = ki − [ki ], i = 1, 2, where

k1 = uα{n p̃ε(1 − p̃ε)}1/2 + {r + 1/2 − n p̃ε} ≈ k2 = uα{n p̃(1 − p̃}1/2 − εn p̃

m
,

(4.13)

with k2 meant for ε small. Equivalently, k2 ≈ uα{r(1 − r/n)}1/2 − εr/m.

Proof In view of (4.11), in combination with (4.9) and (4.10), it is immediate that
P(ARLC M (m, 0) < 1/{p(1 + ε)}) = {(1 − λ)P(U(r−k) > p̃ε) + λP(U(r−k+1) >

p̃ε)} = {(1 − λ)B(n, p̃ε, r − k − 1) + λB(n, p̃ε, r − k)} = B(n, p̃ε, r − k − 1) +
λb(n, p̃ε, r − k), from which (4.12) follows. Arguing as in Lemma 4.1, we have that
B(n, p̃ε, r − k) → �((r − k + 1/2 − n p̃ε)/{n p̃ε(1 − p̃ε)}1/2). Equating this to the
desired boundary value �(−uα) = α gives (4.13) for k1. The result for k2 follows
likewise. ��
Example 4.1 (cont.) Again p = 0.001, n = 100 and m = 3, leading to r = 10, and
ε = 0.25. We obtain for B(100, 0.1120, 10 − j) the outcomes 0.428, 0.305 and 0.199
for j = 0, 1 and 2 respectively. Hence if X(90) is replaced by X(92), the percentage
of ARL’s below 800 is indeed reduced to less than 20. Equality in (4.9) for α = 0.2
results according to (4.12) by letting k = 1 and λ = 0.01, i.e., by using X(91) rather
than X(92) in 1% of the cases. The approximations from (4.13) produce k1 = 1.95 and
k2 = 1.69, respectively. Hence indeed k = 1 in either case, while λ = 0.05 and 0.31,
respectively. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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