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Abstract We present an axiomatic characterization of the Owen–Shapley spatial
power index for the case where issues are elements of two-dimensional space. This
characterization employs a version of the transfer condition, which enables us to
unravel a spatial game into spatial games connected to unanimity games. The other
axioms include two conditions concerned particularly with the spatial positions of the
players, besides spatial versions of anonymity and dummy. The last condition says
that dummy players can be left out in a specific way without changing the power of
the other players. We show that this condition can be weakened to requiring dummies
to have zero power if we add a condition of positional continuity. We also show that
the axioms in our characterization(s) are logically independent.
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1 Introduction

Voting power in political bodies can be represented by simple games, which identify
the winning and losing coalitions: a winning coalition can enforce laws, amendments,
etc. In order to measure the power of an individual voter or political party one can
use a power index, like for instance the Shapley–Shubik index, which is the Shapley
value applied to the transferable utility game that assigns one to winning and zero to
losing coalitions. As is well known, the Shapley–Shubik index distributes a total of
one among the players by assigning to each player the fraction of the number of player
permutations in which that player is pivotal. This way of measuring individual power,
however, neither takes the possible issues at stake into account nor the individual
positions of the players concerning these issues. In order to remedy this defect, Owen
and Shapley (1989), following up on earlier papers of Owen (1971) and Shapley
(1977), assume that each player occupies a position in R

m : one can think of there
being m possible criteria, and a point x ∈ R

m represents a position with respect to
these criteria. An ‘issue’ is then a function f : Rm → R, with the interpretation that if
f (x) ≤ f (y) then a player with position x is more in favor of issue f , and thus more
likely to support f , than a player with position y. Owen and Shapley restrict attention
to linear homogenous issues; i.e., an issue can be represented by a vector r ∈ R

m with
length one, so that a player with position x is more in favor of r than a player with
position y if r · x ≤ r · y (dot-products). Given a simple game and a constellation
of player positions, for each issue r a pivotal player exists, by building a coalition
starting with the player whose position has the smallest dot-product with r . Then the
Owen–Shapley spatial power index assigns to each player the fraction of issues at
which this player is pivotal. In other words, compared to the Shapley–Shubik index,
the player permutations are weighted by considering the positions of the players.

Although the model underlying the Owen–Shapley spatial power index may seem
somewhat abstract, the concept derives important support from the fact that, at least
if m = 2 and the simple game is proper and strong (meaning, for each coalition, that
either that coalition is winning and its complement losing, or the other way around),
the strong point and the center of power coincide. The latter point is the convex
combination of the player positions using the Owen–Shapley spatial power index
values as weights; and the strong point is the Copeland winner, i.e., the position that is
least vulnerable to opposition by (winning) coalitions in terms of Euclidian distance.
See Owen and Shapley (1989) for details and a proof of this result.

Another relation between theOwen–Shapley spatial power index and the evaluation
of positions usingEuclidian distance has recently been obtained byMartin et al. (2014).
They show, by using a limit argument, that if pivotalness is based on closeness in terms
of Euclidian distance and all possible points in R

m are regarded as ‘issues’, then the
Owen–Shapley spatial power index again results. They also clarify the difference and
overlap between the original concepts of Owen (1971) and Shapley (1977).

In this paper we assume m = 2. A spatial game is a combination of a simple game
and a constellation of player positions. A spatial power index assigns to each player in
a spatial game a nonnegative number, where these numbers sum up to one. We show
that the Owen–Shapley spatial power index is uniquely characterized by five axioms:
a version of the well known transfer condition similar to the one in Einy and Haimanko
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(2011); anonymity and dummy axioms adapted to the spatial context; and two axioms
dealing exclusively with the spatial positions of the players. One of these last two
axioms requires that it should not matter where the constellation of player positions
is located in space: only the players’ relative positions matter. The other axiom says
that if the position of one player moves towards the position of another player along
the straight line through the two positions, then the power of the latter player does
not change. This axiom embodies the fact that such a movement does not change the
relative positions of these two players with respect to any issue. Thus, among the five
axioms considered it is the one that is most specific for the Owen–Shapley spatial
power index; in particular, it reflects the idea of straight lines as representing issues.

Our dummy property has a flavor of consistency: it says that dummies can be left
out, in a way to be specified, without changing the power of the other players. In this
respect it is related to the Null-Player-Out property in Derks and Haller (1999). A
consequence is that our characterization is formulated for a variable player set. We
show that by adding a positional continuity condition, the weak dummy property—
requiring, as usual, that dummies have zero power—is sufficient, and the player set
can be fixed.

We also show that in both characterizations the axioms are logically independent.
As far as we are aware, these are the first characterizations of the Owen–Shapley

spatial power index.

Further related literature Far from claiming completeness, we mention a few relevant
related papers. Shenoy (1982) provides a spatial version of another well-known power
index, the Banzhaf index. Passarelli and Bar (2007) propose a power index which is
more directly based on the Euclidian distance of player positions to issues, where the
latter are points in the same space as the player positions. They also discuss application
to the EU. Benati and Marzetti (2013) take a generalized approach to power indexes,
comprising the Shapley–Shubik andOwen–Shapley power indexes, and also apply this
to EU’s council of ministers. Blockmans and Guerry (2015), taking the Benati and
Marzetti (2013) approach as a lead, introduce issue saliences and consider empirical
applications for Belgium. Alonso-Meijide et al. (2011) develop an alternative spatial
power index based on lengths of paths connecting player positions and induced by
player permutations, and consider an application to the Catalan Parliament.

Also the more specific political science literature provides many interesting ref-
erences to this topic. We mention in particular Enelow and Hinich (1984, 1990),
Grofman et al. (1987), and Straffin (1994) for overviews and applications. For a dis-
cussion about the basic underlying assumption of a spatial power index, namely that
players (e.g., political parties) are more likely to vote in favor of a particular proposal
as their position is closer to the proposal, see Braham and Holler (2005) and Napel and
Widgrén (2005). For a general comparison of power indices see Bertini et al. (2013).

Organization of the paper Preliminaries are collected in Sect. 2. Section 3 provides
the axioms, main characterization, and logical independence. Section 4 presents the
alternative characterization using continuity, and Sect. 5 concludes.
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2 Preliminaries

We introduce the relevant notations and concepts in different subsections.

2.1 Notations in R
2

For x, y ∈ R
2 with x �= y we denote by [x, y,→) the half-line starting at x and

crossing through y. We also use the notation (←, x, y,→) for the line through x and
y. The line segment with endpoints x and y is denoted by [x, y]; by ]x, y[ we denote
the open interval [x, y] \ {x, y}. For x �= y, the perpendicular bisector of [x, y] is the
line through 1

2 x + 1
2 y perpendicular to the line through x and y. For a point x and a

line � in R2 such that x /∈ � we denote by x� the reflection of x with respect to �, i.e.,
� is the perpendicular bisector of [x, x�]. For a point x ∈ � we define x� = x . By x̄�

we denote the projection of a point x on a line �, i.e., x̄� = 1
2 x + 1

2 x�. For x ∈ R
2,

||x || denotes the (Euclidian) length of x . For x = (x1, x2), y = (y1, y2) ∈ R
2, x · y

denotes the inner product of x and y, i.e., x · y = x1y1 + x2y2. For a subset X ⊆ R
2,

co (X) denotes the convex hull of X .

2.2 Simple games

A simple game is a pair (N , v), where N is a nonempty finite subset of N and v is a
function 2N → {0, 1} satisfying (a) v(∅) = 0 and v(N ) = 1; and (b) v(S) ≤ v(T )

for all S, T ∈ 2N with S ⊆ T .1 Elements of N are called players and subsets of
N coalitions. A coalition S is winning if v(S) = 1, otherwise it is losing. A minimal
winning coalition is awinning coalition of which each nontrivial subcoalition is losing.
We denote by VN the set of all simple games with player set N .

Player i is pivotal in S if v(S) = 1 and v(S \ {i}) = 0.
For a simple game (N , v) with at least two players and a player i ∈ N we define

the game (N \ {i}, v−i ) as follows: v−i (∅) = 0 and v−i (S) = v(S ∪ {i}) for every
∅ �= S ⊆ N \ {i}. The game (N \ {i}, v−i ) can be interpreted as player i withdrawing
from (N , v) but leaving his ‘consent’ behind; in particular, a winning coalition in
(N , v) remains winning in (N \ {i}, v−i ), i.e., also without player i . Note that, indeed,
(N \ {i}, v−i ) ∈ VN\{i}.2

2.3 Constellations

A constellation for player set N is a vector p = (pi )i∈N ∈ (R2)N such that pi �= p j

for all i, j ∈ N with i �= j . We denote by PN the set of all constellations for player
set N . For p ∈ PN and i ∈ N , p−i ∈ PN\{i} is defined by (p−i ) j = p j for every

1 Thus, in this paper simple games are monotonic by definition.
2 Also note that, even if (N , v) is proper—the complement of each winning coalition is losing—the game
(N \ {i}, v−i ) does not have to be proper.
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j ∈ N \ {i}. For a line � in R
2 and p ∈ PN , we denote p� = (p�

i )i∈N . Hence, the
constellation p� is the reflection of the constellation p with respect to �.

2.4 Spatial games

A spatial game for player set N is a triple (N , v, p) where (N , v) ∈ VN and p ∈ PN .
Player i is a dummy in (N , v, p) if pi ∈ co ({p j | j ∈ S \ {i}}) for every coalition

S in which i is pivotal. Note that, in particular, a player who is pivotal in no coalition in
the simple game (N , v), is a dummy.More generally, a dummy i , even if he is pivotal in
some coalition S, does not occupy an ‘extreme’ position in that coalition and therefore
will (almost) never exploit this pivotalness: whatever the issue, player i will not be
the last player of coalition S to consent. This interpretation is clearly consistent with
the idea underlying the Owen–Shapley spatial power index, but it is also consistent
with alternative approaches as mentioned in the introduction. For instance, if issues
are identified with points in R

2 and we take the Euclidian distance as a measure of
being close to an issue, then in the situation above player i will never have maximal
distance to an issue within the coalition S, and thus will never be the last player in S
to consent.

2.5 Power indices

A spatial power index is a function ϕ which maps each spatial game (N , v, p)

to a vector ϕ(N , v, p) ∈ R
N , such that ϕi (N , v, p) ≥ 0 for all i ∈ N and∑

i∈N ϕi (N , v, p) = 1.3 Note, in particular, that a spatial power index is, thus, defined
for every (finite) player set N ⊆ N.

Central in this paper is the Owen–Shapley spatial power index (Owen and Shapley
1989), which we define next.

Let (N , v, p) be a spatial game and let U = {r ∈ R
2 | ||r || = 1} denote the

circle with radius 1. We say that player i ∈ N is pivotal at r ∈ U if i is pivotal in
S = { j ∈ N | r · p j ≤ r · pi }. Then at each r ∈ U , except at at most finitely many
points, there is a unique pivotal player. Let ρi be the total length of the arc(s) of U
where player i is pivotal, divided by 2π (the total length of U ); so

∑
i∈N ρi = 1.

Alternatively, ρi is the probability that player i is pivotal if r is chosen from the
uniform distribution over U . The Owen–Shapley spatial power index � now assigns
these probabilities to the spatial game (N , v, p): �(N , v, p) = (ρi )i∈N .

From a geometric point of view—which we will use often in the sequel—player i
is pivotal at r if the following holds. Consider a(ny) line � in R2 parallel to r , and the
projections p̄�

j of the points p j , j ∈ N , on �. Say that player j precedes player i on

� if the projection p̄�
j (weakly) precedes p̄�

i when going along � in the direction of r .

3 Alternatively, one could include requirements such as Individual Rationality and Efficiency to obtain these
conditions. As will be argued later in the paper, in particular in Remark 3.14, the nonnegativity condition
is not innocent. The efficiency condition, however, is basically a normalization.
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Fig. 1 Illustrating Example 2.1

If player i is pivotal in the set of preceding players (which includes himself), then i is
pivotal at r .4

To further illustrate the Owen–Shapley spatial power index, we compute it for the
case in which the game v is a unanimity game.

Example 2.1 We compute � for the spatial game (N , uT , p) where ∅ �= T ⊆ N and
uT is the unanimity game on T , i.e., uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise.
The players outside T are, trivially, dummies and, in particular, cannot be pivotal at
any r ∈ U . Hence, �i (N , uT , p) = 0 for all i ∈ N \ T and moreover the points pi

for those players play no role in determining � j (N , uT , p) for the players j in T . If
p j ∈ co ({pi | i ∈ T \ { j}}) for some j ∈ T , then again j is a dummy in (N , uT , p),
and for any line � the projection p̄�

j is located between projections of other players in
T , so that j can be pivotal at at most finitely many r ; hence � j (N , uT , p) = 0. Let T ′
consist of the remaining (non-dummy) players in T , and let P = co ({pi | i ∈ T ′}).
Thus, pi is an extreme point of P for every i ∈ T ′. Without loss of generality suppose
that P = {p1, . . . , pk} and that the point pi is adjacent to pi−1 and pi+1 for each
i ∈ T ′, where p0 = pk and pk+1 = p1. For each i ∈ T ′ let αi denote the angle (in
radians) at pi in P .

Let i ∈ T ′. We compute �i (N , uT , p). Clearly, if k = 1 then �i (N , uT , p) = 1.
Now assume that k ≥ 2. Let � be the line through pi−1 and pi and let m be the line
through pi+1 and pi (see Fig. 1). Let �⊥ be the line through pi perpendicular to � and
let m⊥ be the line through pi perpendicular to m.5 Consider a vector r of length one
starting at pi . Then the projections of the points p j for j ∈ T ′ precede the projection
of pi on the line through pi in the direction of r if and only if r is in between �⊥ and
m⊥ and pointing outward from P . It is easy to see that the (outward) angle between
�⊥ and m⊥ is equal to π − αi , so that �i (N , uT , p) = (π − αi )/2π . Since the sum

4 Verification of this claim follows from elementary geometry.
5 If k = 2 then � and m as well as �⊥ and m⊥ coincide.
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Fig. 2 The Owen–Shapley
spatial power index in a
three-person spatial unanimity
game. The dashed lines are
perpendicular to the edges of the
triangle, and the powers of the
players are proportional to the
three pieces of the disk

p1
p2

p3

Φ1 Φ2

Φ3

of the angles at the vertices of P is equal to (k − 2)π we have, indeed,

∑

i∈T ′
�i (N , uT , p) = 1

2
k − (k − 2)π

2π
= 1.

Figure 2 illustrates the Owen–Shapley spatial power index when the simple game is
a three-person unanimity game ({1, 2, 3}, u{1,2,3}, (p1, p2, p3)). Bymoving the center
of the triangle and the dashed lines to (for instance) p3, we obtain a similar situation
as in Fig. 1.

3 An axiomatic characterization of the Owen–Shapley spatial power
index

We formulate the axioms and state and prove the main characterization result. We also
show that the axioms are independent.

3.1 The axioms

Throughout, let ϕ be a power index. The first axiom is equivalent to the well-known
transfer axiom of Dubey (1975), as remarked in Dubey et al. (2005). Here we use a
different name which reflects its content in a more direct manner.

Equal Power Change (EPC) For all player sets N , all p ∈ PN , and all v, v′, w,w′ ∈
VN , if v − v′ = w − w′ ≥ 0, then ϕ(N , v, p) − ϕ(N , v′, p) = ϕ(N , w, p) −
ϕ(N , w′, p).
EPC says that, for each constellation, if the same winning coalitions are added when
going from v′ to v as when going from w′ to w, then the change in power for every
player when going from v′ to v should be equal to the change in power when going
from w′ to w. As in Einy and Haimanko (2011), the condition will imply that, for
each fixed constellation, the power index for arbitrary simple games is completely
determined by its value on unanimity games as in Example 2.1.
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The second axiom requires that dummies can be left out—while leaving behind their
consent—without any effect on the power of the remaining players.
Dummy Property (DP) For every spatial game (N , v, p) and every dummy i in
(N , v, p), ϕ j (N , v, p) = ϕ j (N \ {i}, v−i , p−i ) for every j ∈ N \ {i}.
The Dummy Property is in line with the definition and interpretation of a dummy in
Sect. 2.4. It is similar in spirit to the Null-Player-Out property of Derks and Haller
(1999), in that it requires that dummies not only have zero power (which is a direct
consequence of DP) but can be left out, in the way specified, without changing the
power of the remaining players. In Sect. 3.3 we demonstrate that it is not sufficient
to require only that dummies have zero power, and in Sect. 4 we show that this does
suffice when we add a continuity condition.
The third axiom is a standard anonymity requirement, expressing that it should not
matter how the players in a spatial game are called. Let N ⊆ N be finite and let
σ : N → N be an injective function. For a spatial game (N , v, p) define the spatial
game (σ (N ), σv, σ p) by σv(σ (S)) = v(S) for all S ⊆ N and (σ p)σ(i) = pi for all
i ∈ N .

Anonymity (AN) For every spatial game (N , v, p) and every injective function σ :
N → N, ϕσ(i)(σ (N ), σv, σ p) = ϕi (N , v, p) for all i ∈ N .

The last two axioms concern constellations. The first implies that it does not matter
where in R2 the constellation is located. It is a natural consequence of the assumption
that for a power index all potential issues are taken into consideration and are regarded
equally likely, so that only the relative positions of the players matter. In other words,
the choice of the origin and of the two axes in two-dimensional Euclidian space should
not influence the power of the players. Without this condition, other distributions of
issues than the uniform one become possible (cf. Sect. 3.3).We formulate the axiom by
requiring that the power of the players does not change if we reflect the constellation
with respect to any straight line. Note that by such reflections, we can shift and rotate
the whole constellation to any desired position.

Reflection Invariance (RI) For every spatial game (N , v, p) and every line � in R
2,

ϕ(N , v, p) = ϕ(N , v, p�).
The final axiom reflects the consideration that whatmatters in a constellation are the

relative positions of the players as expressed by the lines connecting them. Specifically,
the axiomstates that the power of a player i does not change if the position p j of another
player j moves along the line through pi and p j without passing pi . Note that this
implies that the order of precedence of the projections of pi and p j on any line does
not change.

As an example, think of an issue as representing the amount of increase of pub-
lic spending on social security versus the amount of increase of public spending on
national defense, and suppose that party j wants to increase spending (measured in
some unit) by 30 and 10, respectively, while party i wants to increase spending by
45 and 15. Hence, the parties agree that three times as much should be spent more
on social security than on national defense, but they disagree on the amounts. On this
issue, as far as coalition formation is concerned and starting from some low amounts,
party j would enter a coalition before party i , and this does not change if, for instance,
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j changes its preferred amounts to 42 and 14. Similarly, the order of precedence does
not change on any other issue (for instance, decrease with equal amounts) if we take
the projections (points with minimal Euclidian distance) of the 3:1-issue positions as
the parties’ positions with respect to that issue. The axiom below is going to require
that in this case party i’s power does not change. It says nothing about party j , since
the position of j with respect to parties other than i will have changed in general.

As a simpler, one-dimensional example, suppose there is a moderate left party, a
centre party, and a moderate right party, and suppose that the moderate right party
changes to extreme right. The axiom we are going to state requires that the power of
each party is the same in the old and in the new situation, since the relative positions
of the parties have not changed.

Thus, while all five axioms will be crucial for obtaining the Owen–Shapley spatial
power index—seeSect. 3.3—this final axiommost closely reflects the ideas underlying
this index. In this sense, the reasonableness of the axiom is intimately related to the
reasonableness of the model underlying the Owen–Shapley spatial power index.

Positional Invariance (PI) For all player sets N , i ∈ N , and p, p′ ∈ PN , if p′
i = pi

and p′
j ∈ [pi , p j ,→) for all j ∈ N \ {i}, then ϕi (N , v, p) = ϕi (N , v, p′) for all

(N , v) ∈ VN .
Positional Invariance indeed confirms that issues are identifiedwith lines: if position

p j moves along the line through pi and p j in the direction of pi or away from pi ,
then the relative positions of i and j with respect to the issue represented by that line
or by any other line do not change.

3.2 The characterization

The main result of this paper is the following.

Theorem 3.1 The Owen–Shapley spatial power index � is the unique spatial power
index satisfying EPC, DP, AN, RI, and PI.

We first show that � satisfies the five axioms in the theorem.

Lemma 3.2 � satisfies EPC.

Proof To show that � satisfies EPC, let p ∈ PN and let v, v′, w,w′ be simple games
with player set N , satisfying v − v′ = w − w′ ≥ 0. Write n = |N |. It is sufficient to
consider the case where v arises from v′ andw fromw′ by adding theminimal winning
coalition S. First consider a player i ∈ S. Then v(T ∪{i})−v(T ) ≥ v′(T ∪{i})−v′(T )

and w(T ∪ {i}) − w(T ) ≥ w′(T ∪ {i}) − w′(T ) for all T ⊆ N \ {i}. This implies
that, according to �, player i can never lose power when going from v′ to v and from
w′ to w. Player i gains, when going from v′ to v, at an r ∈ U where he is not pivotal
according to v′ but pivotal according to v. Suppose the induced ordering at such an
r is i1, . . . , in , player it is pivotal according to v′, S ⊆ {i1, . . . , it−1}, and i is the
last player of S in this ordering, say i = is for some s ≤ t − 1. Then {i1, . . . , is}
is losing in v′ and winning in v, and therefore losing in w′ and winning in w. Also,
{i1, . . . , is−1} is losing in v′, v, w′, and therefore also in w. Thus, player i is pivotal
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according to v and according to w but not according to v′ and w′. Hence, the gain in
power for player i at this particular ordering when going from v′ to v and when going
from w′ to w is equal to the share of the vectors r ∈ U inducing this ordering, which
depends exclusively on the constellation p. We conclude that the gain of each player
i ∈ S when going from v′ to v and when going from w′ to w is the same.

Next, let i /∈ S. Now player i can only lose when going from v′ to v and from
w′ to w. Player i loses, when going from v′ to v, at an r ∈ U where he is pivotal
according to v′ but not pivotal according to v. Suppose the induced ordering at such
an r is i1, . . . , in , player i = it is pivotal according to v′, and S ⊆ {i1, . . . , it−1}, so
that player i is no longer pivotal according to v. Since S is also winning in w, player
i is also not pivotal according to w. Since {i1, . . . , it−1} is losing in v′ and winning in
v, it must be losing in w′; and since {i1, . . . , it } is winning in v′, v, and w, it must be
winning in w′. Hence, player i is pivotal according to w′. Hence, the loss in power for
player i at this particular ordering when going from v′ to v and when going from w′
to w is equal to the share of the vectors r ∈ U inducing this ordering, which depends
exclusively on the constellation p. We conclude that the loss of each player i /∈ S
when going from v′ to v and when going from w′ to w is the same. �
Lemma 3.3 � satisfies DP, AN, RI, and PI.

Proof Let (N , v, p) be a spatial game. If player i is a dummy, i.e., pi ∈ co ({p j | j ∈
S \{i}}) for every coalition S in which i is pivotal, then the projection of pi on any line
� is in between the projections of other players in S, for every S in which i is pivotal.
Hence, player i is pivotal at at most finitely many r ∈ U . Thus, �i (N , v, p) = 0 and
nothing changes for the other players if we leave out player i from (N , v) and pi from
p, i.e., ϕ j (N , v, p) = ϕ j (N \ {i}, v−i , p−i ) for every j ∈ N \ {i}. Hence, � satisfies
DP.

AN of � is obvious by definition. For RI, suppose that player i in (N , v, p) is
pivotal at some r ∈ U . Let � be a line in R

2, and let m be the line through the origin
parallel to �. Then it is easy to check that player i is pivotal at rm ∈ U in the spatial
game (N , v, p�). Since this holds for every player i and every r ∈ U , RI of� follows.

Finally, let p′ ∈ PN and i ∈ N such that p′
i = pi and p′

j ∈ [pi , p j ,→) for all
j ∈ N \ {i}. Then, for every r ∈ U , player i is pivotal at r in (N , v, p) if and only if
he is pivotal at r in (N , v, p′), since the set of preceding players of player i does not
change. Therefore, ϕi (N , v, p) = ϕi (N , v, p′), and PI of � is proved. �

Lemmas 3.2 and 3.3 imply that the Owen–Shapley spatial power index satisfies the
five axioms in the theorem. We now show uniqueness.

The next lemma implies that, if ϕ satisfies EPC, then it is completely determined
by its value on unanimity games as defined in Example 2.1. The lemma follows from
Lemma 2.3 in Einy (1987), see also Einy and Haimanko (2011).

Lemma 3.4 Let ϕ be a spatial power index satisfying EPC and let (N , v, p) be a
spatial game. Let T1, . . . , Tk be the minimal winning coalitions in (N , v). Then

ϕ(N , v, p) =
∑

∅�=I⊆{1,...,k}
(−1)|I |+1ϕ(N , u∪m∈I Tm , p).
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An axiomatic characterization of the Owen–Shapley… 535

Until further notice, ϕ is a spatial power index satisfying DP, AN, RI, and PI.
For a spatial game (N , uT , p), let Tp ⊆ T denote the set of non-dummies.

Lemma 3.5 Let (N , uT , p) be a spatial game, where ∅ �= T ⊆ N. Then
ϕi (N , v, p) = 0 for all i ∈ N \ Tp and ϕi (N , uT , p) = ϕi (Tp, uTp , p′) for all
i ∈ Tp, where p′ is the restriction of p to Tp.

Proof Let j ∈ N\Tp, thenϕi (N , uT , p) = ϕi (N\{ j}, (uT )− j , p− j ) for all i ∈ N\{ j}
byDP. In particular, ϕ j (N , v, p) = 1−∑

i∈N\{ j} ϕi (N \{ j}, (uT )− j , p− j ) = 1−1 =
0; and ϕi (N , uT , p) = ϕi (N \{ j}, uT \{ j}, p− j ) for all i ∈ N \{ j}. Also, Tp is still the
set of non-dummies in (N \ { j}, uT \{ j}, p− j ). The lemma now follows from repeated
application of this argument. �
In viewof Lemma3.5wemay restrict attention to spatial games of the form (N , uN , p)

and having no dummies. The next lemma establishes a very useful consequence of
AN and RI for this kind of spatial game.

Lemma 3.6 Let (N , uN , p)be a spatial game and suppose that for two distinct players
i and j with � the perpendicular bisector of [pi , p j ] we have {p�

k | k ∈ N } = {pk |
k ∈ N }. Then ϕi (N , uN , p) = ϕ j (N , uN , p).

Proof Consider σ : N → N defined by σ(k) = k′ if pk′ = p�
k . By AN,

ϕi (N , uN , p) = ϕσ(i)(N , σuN , σ p) = ϕ j (N , uN , p�). By RI, ϕ j (N , uN , p�) =
ϕ j (N , uN , p). Hence ϕi (N , uN , p) = ϕ j (N , uN , p). �
Next we take care of spatial games with one or two players.

Lemma 3.7 Let (N , uN , p) be a spatial game. If |N | = 1 or |N | = 2 then
ϕ(N , uN , p) = �(N , uN , p).

Proof Observe that in both cases there are no dummies. If N = {i} then clearly
ϕi (N , uN , p) = �i (N , uN , p) = 1. If N = {i, j} with j �= i then ϕi (N , uN , p) =
ϕ j (N , uN , p) by Lemma 3.6. This holds also for �, and we obtain �i (N , uN , p) =
� j (N , uN , p) = ϕi (N , uN , p) = ϕ j (N , uN , p) = 1

2 . �
Themain part of the proof consists of the three-player case, starting with the following
lemma.

Lemma 3.8 Let |N | = 3, k ∈ N, p ∈ PN , and let co ({pi | i ∈ N }) have a right
angle at pk. Then ϕk(N , uN , p) = �k(N , uN , p) = 1

4 .

Proof (cf. Fig. 3)Without loss of generality let N = {1, 2, 3}with k = 2 and consider
an additional player 4 with p4 ∈ R

2 such that co ({pi | i ∈ N ∪ {4}}) is a rectangle
with vertex p4 opposite of p2. Consider the spatial game (N ∪ {4}, uN∪{4}, p). By
Lemma 3.6 we obtain ϕ1(N ∪{4}, uN∪{4}, p) = ϕ2(N ∪{4}, uN∪{4}, p), and similarly
ϕ2(N ∪ {4}, uN∪{4}, p) = ϕ3(N ∪ {4}, uN∪{4}, p) = ϕ4(N ∪ {4}, uN∪{4}, p), so that
ϕi (N ∪ {4}, uN∪{4}, p) = 1

4 for every i = 1, . . . , 4.
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Fig. 3 Illustrating the proof of
Lemma 3.8

p1 p2

p3p4

q4

Fig. 4 Illustrating Lemma 3.9
and its proof

b

y

a

z

c

d

x

Next consider the spatial game (N ∪ {4}, uN∪{4}, q), where qi = pi for i = 1, 2, 3
and q4 = 1

2 p1 + 1
2 p3. By PI, ϕ2(N ∪ {4}, uN∪{4}, q) = ϕ2(N ∪ {4}, uN∪{4}, p) =

1
4 . Since player 4 is a dummy in (N ∪ {4}, uN∪{4}, q), we obtain ϕ2(N , uN , p) =
ϕ2(N , (uN∪{4})−4, q−4) = ϕ2(N ∪ {4}, uN∪{4}, q) = 1

4 , where the second equality
follows from DP. The same argument (or Example 2.1) applies to �. �
In what follows we use the notation� xyz for the size of the (smaller) angle, measured
in radians, at y between the line through x and y and the line through z and y. The
following lemma and its proof are illustrated in Fig. 4.

Lemma 3.9 Let a, b, c, and d be four distinct points in R
2 such that b and c are

on different sides of the line through a and d, and � bad + � cad < π . Let N =
{i, j, k}, |N | = 3, and let p, q, s ∈ PN be defined by p = (pi , p j , pk) = (a, b, c),
q = (qi , q j , qk) = (a, b, d), and s = (si , s j , sk) = (a, d, c), Then

ϕi (N , uN , p) = ϕi (N , uN , q) + ϕi (N , uN , s) − 1

2
.

If, additionally, � bad = � cad, then

ϕi (N , uN , p) = 2ϕi (N , uN , q) − 1

2
.

Proof Take a point x in the open line segment between a and d, such that the line
through x perpendicular to the line through a and d intersects the open line segment
between a and b in a point y and the open line segment between a and c in a point z.
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An axiomatic characterization of the Owen–Shapley… 537

By PI it is sufficient to prove that

ϕi (N , uN , p̃) = ϕi (N , uN , q̃) + ϕi (N , uN , s̃) − 1

2
,

and if � bad = � cad,

ϕi (N , uN , p̃) = 2ϕi (N , uN , q̃) − 1

2
,

where p̃ = ( p̃i , p̃ j , p̃k) = (a, y, z), q̃ = (q̃i , q̃ j , q̃k) = (a, y, x), and s̃ =
(̃si , s̃ j , s̃k) = (a, x, z). Now

ϕ j (N , uN , p̃) = ϕ j (N , uN , q̃) = 3

4
− ϕi (N , uN , q̃), (1)

where the first equality follows fromPI and the second fromLemma 3.8. By analogous
arguments,

ϕk(N , uN , p̃) = ϕk(N , uN , s̃) = 3

4
− ϕi (N , uN , s̃). (2)

Combining (1) and (2) we obtain

ϕi (N , uN , p̃) = 1 − ϕ j (N , uN , p̃) − ϕk(N , uN , p̃)

= ϕi (N , uN , q̃) + ϕi (N , uN , s̃) − 1

2
,

which completes the proof of the first statement. Now suppose, additionally, that
� bad = � cad. Then by Lemma 3.6 we have ϕ j (N , uN , p̃) = ϕk(N , uN , p̃). By (1)
and (2) this implies ϕi (N , uN , q̃) = ϕi (N , uN , s̃), and the second statement in the
lemma follows. �

Lemma 3.10 Let N = {i, j, k}, |N | = 3, and let p ∈ PN such that � p j pi pk = m
2h π

for some h, m ∈ N with m < 2h. Then ϕi (N , uN , p) = 1
2 − m

2h+1 .

Proof First suppose m = 1. If h = 1 then ϕi (N , uN , p) = 1
4 by Lemma 3.8. Assume

that the statement has been proved for h, then for h+1we have by the second statement
in Lemma 3.9 that

1

2
− 1

2h+1 = 2ϕi (N , uN , p) − 1

2
,

hence ϕi (N , uN , p) = 1
2 − 1

2h+2 . By induction the statement in the lemma follows for
m = 1 and all h ∈ N. Now suppose the statement in the lemma has been proved for
m and arbitrary h such that m + 1 < 2h , Then by the first statement in Lemma 3.9 we
obtain for m + 1
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ϕi (N , uN , p) =
(
1

2
− 1

2h+1

)

+
(
1

2
− m

2h+1

)

− 1

2
= 1

2
− m + 1

2h+1

and the proof of the lemma is complete by induction. �

Let

A =
{ m

2h
π | h, m ∈ N, m < 2h

}
.

With some abuse of notation we will write ϕ(α) := ϕi (N , uN , p) for (N , uN , p) as
in Lemma 3.10, where α = � p j pi pk ∈ A. Observe that A is a dense subset of the
interval (0, π) and that ϕ : A → (0, 1

2 ),
m
2h π �→ 1

2 − m
2h+1 is a decreasing continuous

function. Note that ϕ(α) = π−α
2π for every α ∈ A.

Next, we extend these findings to all of (0, π).

Lemma 3.11 Let a, b, c, and d be four distinct points in R
2 such that d and b are

on different sides of the line through a and c, and 0 < � cab < � dab < π . Let
N = {i, j, k}, |N | = 3, let p = (pi , p j , pk) = (a, b, c) and let q = (qi , q j , qk) =
(a, b, d). Then ϕi (N , uN , p) ≥ ϕi (N , uN , q).

Proof By PIwemay assume that the linem through b and d is perpendicular to the line
� through a and c and that these two lines intersect in c. See Fig. 5 for an illustration
of this and of the later part of the proof. Without loss of generality we assume i = 1,
j = 2, k = 3.
Consider the spatial game (N ∪{4}, uN∪{4}, (a, b, e, d)), where e = am . By PI and

DP we obtain

ϕ2(N ∪ {4}, uN∪{4}, (a, b, e, d)) = ϕ2(N , uN , (a, b, e)) (3)

which can be seen by moving the location d of player 4 to c along m. Since ϕ1(N , uN ,

(a, b, e)) = ϕ3(N , uN , (a, b, e)) by Lemma 3.6, we have

ϕ2(N , uN , (a, b, e)) = 1 − 2ϕ1(N , uN , (a, b, e)). (4)

Fig. 5 Illustrating the proof of
Lemma 3.11

d

a

b

e

c

123



An axiomatic characterization of the Owen–Shapley… 539

Since also ϕ1(N ∪ {4}, uN∪{4}, (a, b, e, d)) = ϕ3(N ∪ {4}, uN∪{4}, (a, b, e, d)) by
Lemma 3.6, we obtain

ϕ2(N ∪ {4}, uN∪{4}, (a, b, e, d)) = 1 − 2ϕ1(N ∪ {4}, uN∪{4}, (a, b, e, d))

−ϕ4(N ∪ {4}, uN∪{4}, (a, b, e, d)). (5)

Combining (3)–(5) and the assumption that ϕ4(N ∪ {4}, uN∪{4}, (a, b, e, d)) ≥ 0,
we obtain

ϕ1(N , uN , (a, b, e)) ≥ ϕ1(N ∪ {4}, uN∪{4}, (a, b, e, d)). (6)

By PI, ϕ1(N , uN , (a, b, e)) = ϕ1(N , uN , (a, b, c)) and by PI and DP, ϕ1(N ∪
{4}, uN∪{4}, (a, b, e, d)) = ϕ1({1, 2, 4}, u{1,2,4}, (a, b, d). Together with (6) we
have ϕ1(N , uN , (a, b, c)) ≥ ϕ1({1, 2, 4}, u{1,2,4}, (a, b, d), hence by AN, ϕ1(N ,

uN , (a, b, c)) ≥ ϕ1(N , uN , (a, b, d). �
Lemma 3.11 in fact states that in a spatial game (N , uN , p) with three players and
the points pk forming a triangle, the power of player i decreases as the angle at the
point pi increases. Combined with Lemma 3.10 and the discussion following it we
thus obtain the following result.

Corollary 3.12 Let N = {i, j, k}, |N | = 3, and let p ∈ PN . Then for each i ∈ N,

�i (N , uN , p) = ϕi (N , uN , p) = π − � p j pi pk

2π
.

The case with an arbitrary number of players now follows easily.

Corollary 3.13 Let (N , uN , p) be a spatial game without dummies and let i, j, k ∈ N
such that p j and pk are adjacent to pi . Then

�i (N , uN , p) = ϕi (N , uN , p) = π − � p j pi pk

2π
.

Proof By shifting the position of every player in N \ {i, j, k} inside the triangle with
vertices pi , p j , and pk along the straight line through pi , we obtain by PI and DP
that ϕi (N , uN , p) = ϕi ({i, j, k}, u{i, j,k}, (pi , p j , pk)). The claim now follows from
Corollary 3.12. �
Proof of Theorem 3.1 By Lemmas 3.2 and 3.3, � satisfies all the axioms in the the-
orem. The converse follows from Corollary 3.13 and Lemma 3.5, combined with
Lemma 3.4. �

3.3 Independence of the axioms

The following spatial power indices show that the axioms in Theorem 3.1 are logically
independent.
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(1) Define

ϕ1(N , v, p) = 1

2k − 1

∑

∅�=I⊆{1,...,k}
�(N , u∪m∈I Tm , p),

for every spatial game (N , v, p), where T1, . . . , Tk are the minimal winning coalitions
in (N , v) (cf. Lemma 3.4). Then ϕ1 satisfies all the axioms in Theorem 3.1 except
EPC.
(2) Define ϕ2

i (N , v, p) = 1/|N | for every spatial game (N , v, p) and every i ∈ N .
Then ϕ2 satisfies all the axioms in Theorem 3.1 except DP.
(3) Let αi , i ∈ N, be positive real numbers, not all equal, and let ϕ3

i (N , v, p) =
αi�i (N , v, p)/

∑
j∈N α j� j (N , v, p) for every spatial game (N , v, p) and every i ∈

N . Then ϕ3 satisfies all the axioms in Theorem 3.1 except AN.
(4) Take an arbitrary non-uniform density g over the unit circle U . For a spatial game
(N , v, p) and every player i ∈ N , let Ui be the subset of U consisting of all r ∈ U
at which player i is pivotal, and let ϕ4

i (N , v, p) = ∫
r∈Ui

g(r)dr . Then ϕ4 satisfies all
the axioms in Theorem 3.1 except RI.
(5) For a spatial game (N , v, p), player i ∈ N , and r ∈ U , call i d-pivotal at r if i is
pivotal in S = { j ∈ N | ||p j − r || ≤ ||pi − r ||}. Let Di be the subset of U consisting
of all r ∈ U at which player i is d-pivotal, and let ϕ5

i (N , v, p) = ∫
r∈Di

u(r)dr , where

u is the uniform density overU . Then ϕ5 satisfies all the axioms in Theorem 3.1 except
PI.

Remark 3.14 We show that also the (implicit) nonnegativity requirement on a spatial
power index cannot be dispensed with. Recall that this condition is (only) used in
the proof of Lemma 3.11, which shows that the power of a player i decreases if the
angle at the extreme point pi of the polytope of the player positions increases. Without
Lemma 3.11 we still have that ϕi (N , uN , p) = 1

2 (1−q) for a spatial game (N , uN , p)

without dummies, if the angle at pi is equal to qπ for some q = m/2h , h, m ∈ N,
m < 2h . We will now define a power index which still satisfies this property and
all axioms in Theorem 3.1, with sum of the powers of the players equal to one, but
which violates nonnegativity. To this end, let g : R → R be an additive function (i.e.,
g(x + y) = g(x) + g(y) for all x, y ∈ R) such that g(x) = x for all x ∈ Q but not
for all x ∈ R.6 We construct a spatial power index ψ by defining it for all (N , uN , p),
N ⊆ N, such that no player i ∈ N is a dummy. By DP and EPC, ψ is then extended to
all spatial games. Let (N , uN , p) be a spatial game without dummies. Let the angle at
pi , i ∈ N , be xiπ . Thenwe defineψi (N , uN , p) = 1

2 (1−g(xi )) for all i ∈ N . Sinceψ

depends only on the angles in the polytope determined by the constellation p, it follows
thatψ satisfies AN, RI, and PI. Also,

∑
i∈N ψi (N , uN , p) = 1

2 (|N |−g(
∑

i∈N xi )) =
1
2 (|N | − (|N | − 2)) = 1, where the first equality follows from additivity of g. Since
g(x) �= x for some x ∈ R, it follows that ψ �= �. Consequently, nonnegativity must
be violated.

6 The existence of such a function g can be shown using the Axiom of Choice.
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An axiomatic characterization of the Owen–Shapley… 541

Remark 3.15 The usual dummy condition would only require that dummy players
obtain zero.We now show that this conditionwould not be sufficient to characterize the
Owen–Shapley spatial power index. For a spatial game (N , v, p), let Np(v, p) denote
the set of non-dummies. Define the power index ψ as follows: for every spatial game
(N , v, p) with |N | �= 3, let ψ(N , v, p) = �(N , v, p). If |N | = 3, let ψi (N , v, p) =
1/|Np(v, p)| if i ∈ Np(v, p) and let ψi (N , v, p) = 0 if i /∈ Np(v, p). The spatial
power index ψ satisfies EPC, AN, RI, and PI, but not DP; however, it satisfies the
weaker requirement that dummies obtain zero. Observe that, for |N | = 3, ψ is not
continuous in the constellation p : if none of the players is a dummy but one of the
positions converges to a dummy position then the associated power remains at 1

3 and
thus does not converge to zero.

4 Weak dummy and continuity

In this section we fix the player set N , and the power index ϕ is defined for all spatial
games with this fixed player set, i.e., each pair (v, p), such that (N , v) is a simple game
and p is a constellation for N . The axioms EPC, RI and PI are as before, but restricted
to spatial games with player set N . In the formulation of the anonymity axiom, σ is
now a permutation of N . We weaken DP as follows.

Weak Dummy Property (WDP) For every spatial game (v, p) and every dummy i in
(v, p), ϕi (v, p) = 0.
We will impose the following continuity condition.

Positional Continuity (PC) For every sequence of constellations (pk)k∈N such that
limk→∞ pk = p ∈ PN , limk→∞ ϕ(v, pk) = ϕ(v, p) for every (N , v) ∈ VN .
Compared to Theorem 3.1, in the following characterization of the Owen–Shapley
spatial power index for fixed player set N , the dummy property is replaced by the
weak dummy property and positional continuity.

Theorem 4.1 The Owen–Shapley spatial power index � is the unique spatial power
index on the class of spatial games with player set N satisfying EPC, WDP, PC, AN,
RI, and PI.

In order to prove this theorem we first consider unanimity games. Until further notice
the spatial power index ϕ is assumed to satisfy the six axioms in the theorem.

Lemma 4.2 Let i ∈ N. Then ϕi (u{i}, p) = 1 and ϕ j (u{i}, p) = 0 for all j ∈ N \ {i}
and all p ∈ PN .

Proof Straightforward from the definition of a power index and WDP. �
Recall that in a unanimity spatial game (uT , p), Tp ⊆ T denotes the set of non-
dummies.

Lemma 4.3 Let T ⊆ N with |T | ≥ 2, let i, j ∈ T with i �= j , and suppose that Tp =
{i, j}. Then ϕi (uT , p) = ϕ j (uT , p) = 1

2 and ϕk(uT , p) = 0 for all k ∈ N \ {i, j}.
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Proof By WDP and the definition of a power index we have ϕk(uT , p) = 0 for all
k ∈ N \ {i, j}, ϕi (uT , p), ϕi (uT , p) ≥ 0, and ϕi (uT , p) + ϕi (uT , p) = 1. For each
k ∈ T \{i, j}we have pk ∈ ]pi , p j [ and for each k ∈ N \T with pk ∈ (←, pi , p j ,→)

we may assume by PI that pk ∈ ]pi , p j [. Moreover, we may assume, again by PI, that
all these points are symmetrically located with respect to 1

2 pi + 1
2 p j , e.g., dividing

the line segment [pi , p j ] in pieces of equal length. For each k ∈ N \ T with pk /∈
(←, pi , p j ,→), note that by shifting in the direction of pi or p j , possibly in both
directions consecutively, we may shift pk to any point y with ||y − pi || = ||y − p j ||
on the same side of (←, pi , p j ,→) as pk . In particular therefore, we may assume that
any point pk with k ∈ N \ T with pk /∈ (←, pi , p j ,→) has ||pk − pi || = ||pk − p j ||.
Then, by AN and RI, we obtain ϕi (uT , p) = ϕ j (uT , p) = 1

2 . �
In the preceding lemma PCwas not used. In the next lemmawe show that the power of
a non-dummy in a spatial unanimity game depends only on the angle at the position of
this player in the constellation. The proof of this lemma uses PC – see also Remark 4.8.

Lemma 4.4 Let (uT , p) and (uS, q) be spatial games such that |Tp|, |Sq | ≥ 3. Let
p f be adjacent to pg and pg adjacent to ph in co {pd | d ∈ Tp}, and let qi be adjacent
to q j and q j adjacent to qk in co {qd | d ∈ Sq}. Suppose that � p f pg ph = � qi q j qk .
Then ϕg(uT , p) = ϕ j (uS, q).

Proof The proof proceeds in two steps.
(a) Consider a spatial game (uT , p̂) such that p̂g = pg , p̂ f ∈ [pg, p f ,→) with
|| p̂ f − pg|| = 1, p̂h ∈ [pg, ph,→) with || p̂h − pg|| = 1, and p̂d ∈ co { p̂ f , p̂g, p̂h}
for all d ∈ N \ { f, g, h} such that { p̂d | d ∈ N } = { p̂�

d | d ∈ N }, where � is the
straight line through p̂g and 1

2 p̂ f + 1
2 p̂h . We claim that ϕg(uT , p) = ϕg(uT , p̂).

To prove this, first observe that by PI, we have ϕg(uT , p) = ϕg(uT , p′) for any
p′ ∈ PN such that p′

g = pg = p̂g , p′
f = p̂ f , p′

h = p̂h , and p′
d ∈ [pg, pd ,→) for all

d ∈ N \ { f, g, h}. Also by PI, ϕg(uT , p̂) = ϕg(uT , p′′) for any p′′ ∈ PN such that
p′′

g = pg = p̂g , p′′
f = p̂ f , p′′

h = p̂h , and p′′
d ∈ [pg, p̂d ,→) for all d ∈ N \ { f, g, h}.

Since we may choose the points p′
d and p′′

d as close to pg as desired, we conclude by
PC that ϕg(uT , p) = ϕg(uT , p̂).
(b) Similarly as in (a) we can find a constellation q̂ such that ϕ j (uS, q) = ϕ j (uS, q̂)

and such that q̂ can be obtained from p̂ by appropriate reflections. By AN and RI we
obtain ϕg(uT , p̂) = ϕ j (uS, q̂), and therefore ϕg(uT , p) = ϕ j (uS, q). �
In view of Lemma 4.4, similarly to what we did before, we introduce the notation ϕ(α)

to indicate the power of a non-dummy i in any spatial game (uT , p) with |Tp| ≥ 3, if
the angle at pi in the polytope co {pd | d ∈ Tp} is α ∈ (0, π). Then we have:

Lemma 4.5 ϕ(π/2) = 1
4 .

Proof Let x := ϕ(π/2) ∈ [0, 1]. We claim that, for every k ∈ N,

ϕ

(
1

2k+1π

)

= 2k − 1

2k
− 2k+1 − 3

2k
x . (7)
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The proof is by induction on k. For k = 1, we have ϕ(π/4) = (1− x)/2 = 1
2 − 1

2 x , as
desired, by considering (without loss of generality in view of Lemma 4.4) a triangle
with one angle equal to π/2 and the other angles equal to π/4, and applying RI and
AN. Now assume that (7) holds for k − 1. Then, by considering a triangle with one
angle equal to 1

2k π and the other angles equal to (π − 1
2k π)/2, we obtain

ϕ

(
π − 1

2k π

2

)

= 1

2

(

1 − 2k−1 − 1

2k−1 + 2k − 3

2k−1 x

)

by induction, which after simplification implies

ϕ

(
2k − 1

2k+1 π

)

= 1

2k
+ 2k − 3

2k
x .

Next, by considering a triangle with one angle equal to π/2 and another angle equal

to 2k−1
2k+1 π , we obtain for the third angle

ϕ

(
1

2k+1

)

= 1 − x − 1

2k
− 2k − 3

2k
x

= 2k − 1

2k
− 2k+1 − 3

2k
x

which concludes the proof of (7).
Now consider a sequence of triangles with vertices a, b, c(k), k ∈ N, such that the

angles at a and b are equal to 1
2k+1 π . By PC, Lemma 4.3, and (7), we have

lim
k→∞

2k − 1

2k
− 2k+1 − 3

2k
x = 1

2
,

hence 1 − 2x = 1
2 , so that ϕ(π/2) = x = 1

4 . �
We proceed by observing that Lemmas 3.9 and 3.10 still apply; together with
Lemma 4.5 we obtain:

Lemma 4.6 For all h, m ∈ N such that m < 2h,

ϕ
( m

2h
π

)
= 1

2
− m

2h+1 . (8)

Since the function ϕ(·) is continuous in view of PC, the following corollary follows
from Lemma 4.6.

Corollary 4.7 For all α ∈ (0, π),

ϕ(α) = 1

2
− α

2π
. (9)
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Proof of Theorem 4.1 The Owen–Shapley spatial power index � satisfies PC, and it
satisfies all the other axioms byTheorem3.1.Apower index satisfyingEPC is uniquely
determined by its value on spatial games based on unanimity games. Uniqueness now
follows from Lemmas 4.2 and 4.3, and Corollary 4.7. �
Remark 4.8 The axioms in Theorem 4.1 are logically independent. For EPC, WDP,
AN, RI, and PI, the power indexes ϕ1 up to ϕ5 in Sect. 3.3, respectively, are still
valid examples. To show logical independence of PC, we adapt the power index ψ in
Remark 3.15 as follows. Fix N with |N | ≥ 3. For a spatial game (N , uT , p) with with
|T | = 3, let ψi (N , uT , p) = 1/|Tp| if i ∈ Tp and ψi (N , uT , p) = 0 otherwise. For
any other spatial game (N , v, p) let ψ(N , v, p) = �(N , v, p).

5 Concluding remarks

The main result in this paper is a characterization of the Owen–Shapley spatial power
index by means of five axioms. A limitation of our approach is that it is restricted
to constellations and issues in R

2. It is straightforward to extend the axioms to the
case of constellations and issues in R

m for m > 2, and it is safe to conjecture that
the Owen–Shapley spatial power index satisfies these extended axioms. A proof of
an eventual converse, however, seems to be more involved, and it is not even clear
whether such a converse would hold.

As far as we are aware, this is a first axiomatic characterization of a spatial power
index. Further research may concern characterizations of alternative power indexes,
as proposed in the literature.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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