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Abstract We characterize all n-person multi-valued bargaining solutions, defined
on the domain of all finite bargaining problems, and satisfying Weak Pareto Optimal-
ity (WPO), Covariance (COV), and Independence of Irrelevant Alternatives (IIA). We
show that these solutions are obtained by iteratively maximizing nonsymmetric Nash
products and determining the final set of points by so-called LDR decompositions. If,
next, we assume the (set-theoretic) Axiom of Determinacy, then this class coincides
with the class of iterated Nash bargaining solutions; but if we assume the Axiom of
Choice then we are able to construct an additional large set of discontinuous and even
nonmeasurable solutions. We show however that none of these nonmeasurable solu-
tions can be defined in terms of set theoretic formulae. We next show that a number
of existing results in the literature as well as some new results are implied by our
approach. These include a characterization of all WPO, COV and IIA solutions—
including single-valued ones—on the domain of all compact bargaining problems,
and an extension of a theorem of Birkhoff characterizing translation invariant and
homogeneous orderings.
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1 Introduction

In this paper we study n-person multi-valued bargaining solutions satisfying the
well-known (cf. Nash 1950) axioms of Weak Pareto Optimality (WPO), Covariance
(COV), and Independence of Irrelevant Alternatives (IIA), on domains of compact
bargaining problems containing all finite problems.

The work of Nash (1950) focuses on the domain of convex bargaining problems. The
restriction of bargaining solutions to convex bargaining problems is usually motivated
by the possibility to randomize over outcomes, in combination with the assumption
that players are expected utility maximizers. However, as among others Zhou (1996)
already observes, these arguments are not compelling for several reasons. Random-
ization might not always be an option, for example because it may simply not be
possible, or, even though theoretically possible and academically appealing, individ-
uals concerned might not deem randomization desirable or even acceptable as part of
the decision mechanism. Also, as has repeatedly been argued convincingly by many
authorities in the field of utility theory, individuals need not have von Neumann-
Morgenstern utility functions. (See for example Machina (1982) or Starmer (2000)
for an overview.) In fact, the empirical evidence that humans do not use expected utility
to make decisions is overwhelming, see for example the seminal paper by Kahneman
and Tversky (1979) and related literature.

Thus, there is a need to extend the classical results of Nash (1950) to domains
of bargaining problems where convexity is no longer assumed. Since we allow for
non-convex bargaining problems, some caution is needed in justifying the Covari-
ance condition. The usual interpretation of this axiom, associated with the use of
von Neumann-Morgenstern utility functions, would imply convexity of the bargain-
ing problems under consideration. Here, to motivate the requirement of Covariance,
we just assume that the preferences of the bargainers are uniquely represented up
to positive linear transformations.1 Allowing for multi-valuedness of solutions is a
natural consequence when considering non-convex bargaining problems.

We also do not impose continuity as a basic requirement. Adding continuity in gen-
eral excludes the possibility to select from multi-valued Nash bargaining solutions.
Many interesting solutions for non-convex bargaining problems, such as for example
serial dictatorship solutions,2 would consequently be ruled out by insistence on con-
tinuity of the solution. In some interesting environments continuity even leads to an
impossibility result. In particular, there is no single-valued continuous solution satis-
fying the three conditions WPO, COV and IIA on the domain of compact bargaining

1 We note that also in so-called non-expected utility theories representing utility functions are usually
unique up to positive linear transformations, cf. Denicolò and Mariotti (2000). Moreover, it is possible to
justify expected utility without all lotteries being available, cf. Fishburn (1972). Nevertheless, these are
only partial justifications for considering the combination of covariance of solutions and non-convexity of
bargaining problems.
2 A serial dictatorship solution is a bargaining solution in which first the first dictator chooses from the
initial set of outcomes those outcomes that maximize his personal utility. Next, from the remaining set of
outcomes, the second dictator chooses those that maximize the second dictator’s utility. And so on. This is
in fact a special case of an iterated Nash bargaining solution.
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problems.3 On the other hand, without continuity there is generally a large class of
solutions additional to the continuous case, such as for example the serial dictatorship
solutions, albeit that for some other additional ones we need the Axiom of Choice to
define them, see Sect. 4.

Our basic results are the three characterizations presented in Sect. 3 of the paper,
where we consider bargaining solutions defined on the domain of finite bargaining
problems. The first result says that any WPO, COV and IIA bargaining solution ϕ
must be a refinement of some (nonsymmetric) Nash bargaining solution. More pre-
cisely, there is a nonzero nonnegative vector α ∈ R

n such that each point x assigned
by ϕ maximizes the product �i xαi

i on the bargaining problem under consideration.
The level sets of such a (‘Nash’) product are called ‘generalized indifference curves’.
If we denote the generalized indifference curve through the vector e = (1, 1, . . . , 1)
by Iϕ , the second result says that not only does each WPO, COV and IIA ϕ induce
a partition of Iϕ into three sets L , D, and R with specific properties, but also that
each such partition induces a different ϕ. These partitions are called LDR decom-
positions. The set L in this decomposition consists of those points x such that from
the bargaining problem {x, e} only the point x is chosen by ϕ. Similarly, if only e is
chosen then x ∈ R, and if both x and e are chosen then x ∈ D. Together with the
Nash products these LDR decompositions completely characterize the class of WPO,
COV, and IIA bargaining solutions. The third result takes this characterization consid-
erably further and shows that each WPO, COV, and IIA bargaining solution can also
be described by first iteratively maximizing Nash products and in the end applying an
LDR decomposition.

In Sect. 4 we show that this last characterization is as far as we can go without
making additional assumptions. In fact, we show that essentially opposite results are
obtained depending on the basic set-theoretic axiom we wish to adopt. Under the
so-called Axiom of Determinacy—which, in particular, implies that every subset of
the interval [0, 1] is measurable—we obtain that every WPO, COV, and IIA bar-
gaining solution is an iterated Nash bargaining solution. Under the Axiom of Choice
(or, equivalently, Zorn’s Lemma) we are able to construct (very) many other—in par-
ticular non-measurable—WPO, COV, and IIA bargaining solutions.

From a theoretical point of view there seems to be no particular reason to favor
one of these basic axioms over the other. From a practical point of view however,
even though the Axiom of Choice allows for many more solutions, some of which
might conceivably be singled out by appealing axioms (we do not pursue this avenue
here), these solutions are difficult to use exactly because they can only be obtained
using the Axiom of Choice.4 Consequently these “extra” solutions, the ones besides
the iterated Nash bargaining solutions, cannot be calculated in any concrete sense, and
are therefore not computable beyond the mere observation “they exist”. This point of
view is substantiated in the last part of Sect. 4, where we show that none of these

3 This will be a consequence of Theorems 5.4 and 5.2 in this paper.
4 Karlis Podnieks writes on his website (Podnieks 2007): ‘…And the Platonist “world of sets” possesses
some features of a mirage: it seems to promise large amounts of water in the middle of a desert, but does
not keep the promise as you try to follow the vision”.
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non-measurable solutions can be defined when only using elementary set-theoretic
formulae in the definition.

Section 5 discusses a number of consequences. Adding (a weak form of) continuity
results in a characterization of all (nonsymmetric) Nash bargaining solutions on any
domain containing the finite domain. Adding symmetry instead of continuity results
in a characterization of the symmetric n-person Nash bargaining solution. This basi-
cally implies a result by Mariotti (1998a), who characterizes the n-person symmetric
Nash bargaining solution on the domain of finite bargaining problems, and also the
recent result of Xu and Yoshihara (2006), characterizing the symmetric Nash bargain-
ing solution on any domain of compact bargaining problems containing the domain
of finite problems.5

The final result in Sect. 5 states that on the domain of all compact6 problems
WPO, COV and IIA characterize the set of iterated Nash bargaining solutions. This
result—which is also derived in a different way by Naumova and Yanovskaya (2001),
see below—not only implies but also refines the main results in Zhou (1996) and
Denicolò and Mariotti (2000), which state that under a similar set of conditions plus
single-valuedness, a solution selects from the maximizers of a Nash product. Here,
we show how exactly this selection has to be made.

In Sect. 6 we show how our results imply a generalization of a theorem of Birkhoff
(1948), which states that an ordering on R

n is translation invariant and positive homo-
geneous if and only if it maximizes a sequence of weighted sums with orthogonal
weight vectors. We characterize the orderings that are obtained by dropping homoge-
neity, in terms of LDR compositions.7 It follows, moreover, that in Birkhoff’s theorem
homogeneity can be replaced by the Axiom of Determinacy. Naumova and Yanovskaya
(2001) use Birkhoff’s theorem to derive the characterization of iterated Nash bargain-
ing solutions mentioned before.8 We could have started this paper from Birkhoff’s
theorem as well, but since our approach and results are more general, essentially we
would have had to redo the proof of that theorem to obtain the generalization that
we need. Therefore, the present paper starts from scratch and the generalization of
Birkhoff’s theorem follows as a byproduct.

A further discussion of related literature is deferred to the relevant places in the
paper and also to Sect. 7. We start with preliminaries in Sect. 2. Some of the proofs in
the paper are collected in a few appendices.

2 Preliminaries

For x, y ∈ R
n, x ≤ y means xi ≤ yi for all i , and x < y means xi < yi for all

i . The vector in R
n of which all coordinates are zero is denoted by 0. The vector in

5 It is easy to check that for our results to go through it is sufficient to include, at least, all finitely generated
comprehensive bargaining problems instead of the domain of finite problems.
6 This is for convenience, the result also holds for suitable subsets of this domain.
7 Birkhoff’s Theorem is formulated for the additive case but there is a one-to-one correspondence between
the additive case and the multiplicative case in our framework.
8 In their paper, they consider social welfare orderings instead of choice functions.
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R
n of which all coordinates are one is denoted by e. The set of vectors x in R

n with
x ≥ 0 is denoted by R

n+, and R
n++ denotes the set of vectors x in R

n with x > 0.
For a, x ∈ R

n++, ax := (a1x1, . . . , an xn) and x
a := ( x1

a1
, . . . , xn

an
). For a ∈ R

n and
S ⊂ R

n, aS := {ax | x ∈ S}. We use the notation S ⊂ T to indicate that S is a subset
of T , so S = T is allowed. For a set S ⊂ R

n , the closure of S is denoted by S.
A bargaining problem is a compact and non-empty set B ⊂ R

n++. (We implicitly
assume the ‘disagreement point’ to be the origin.) A non-empty set D of bargaining
problems is called a domain. In this paper we mainly consider the domain

F := {F ⊂ R
n++ | F is finite and not empty}

of all finite n-person bargaining problems. The domain of all n-person bargaining
problems is denoted by C. Most other domains D we consider in this paper include
F , so F ⊂ D ⊂ C.

A correspondence ϕ : D � R
n is called a (bargaining) solution if φ �= ϕ(B) ⊂ B

holds for all B ∈ D. If specific elements, say x and y or x1, x2 and x3 of R
n++

are involved, we typically write ϕ(x, y) and ϕ(x1, x2, x3) instead of ϕ({x, y}) and
ϕ({x1, x2, x3}).

A bargaining solution ϕ : D � R
n is a refinement of a bargaining solutionψ : D �

R
n if ϕ(B) ⊂ ψ(B) for all B ∈ D.
We define several properties that a bargaining solution ϕ may have.

WPO (Weak Pareto Optimality)
For every B ∈ D and all x, y ∈ B, x < y implies that x /∈ ϕ(B).

PO (Pareto Optimality)
For every B ∈ D and all x, y ∈ B, x ≤ y and x �= y implies that x /∈ ϕ(B).

IIA (Independence of Irrelevant Alternatives)
For all B,C ∈ D with C ⊂ B and C ∩ ϕ(B) �= φ we have ϕ(C) = C ∩ ϕ(B).

COV (Covariance)
For all a ∈ R

n++ and all B ∈ D such that aB ∈ D, ϕ(aB) = aϕ(B).
CON (Continuity)

Let xk, yk ∈ R
n++ for all k ∈ N, xk → x ∈ R

n++ and yk → y ∈ R
n++. If

{xk, yk}, {x, y} ∈ D and xk ∈ ϕ(xk, yk) for all k ∈ N, then x ∈ ϕ(x, y).
SYM (Symmetry)

Let B ∈ D be symmetric, i.e., B is invariant under any permutation of coor-
dinates. If x ∈ ϕ(B) and y ∈ B can be obtained from x by permuting its
coordinates, then y ∈ ϕ(B).

The properties of WPO, IIA, COV, and SYM were introduced by Nash (1950) for
single-valued solutions.9

Let ϕ : C � R
n andψ : C � R

n be two bargaining solutions. Suppose that ϕ(C) ∈
C for all C ∈ C. Then the composite bargaining solution ψ ◦ ϕ : C � R

n is defined
by, for all C ∈ C,

9 For the set-valued version of the IIA-axiom see (Shubik, 1982, p. 421), who attributes it to an informal
note of Nash.
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(ψ ◦ ϕ)(C) := ψ(ϕ(C)).

Notice that this is indeed a legitimate definition, and that (ψ ◦ ϕ)(C) ⊂ ϕ(C) for all
C ∈ C.

A well-known class of bargaining solutions is the class of (asymmetric) Nash bar-
gaining solutions. For a non-zero vector α = (αi )i∈N ∈ R

n the α-bargaining solution
Nα is defined by, for all C ∈ C,

Nα(C) =
{

x ∈ C |
∏

i

xαi
i ≥

∏
i

yαi
i for all y ∈ C

}
.

A function of the form x 
→ ∏
i xαi

i is called a Nash product. A solution ϕ is called a
Nash bargaining solution10 if there exists a non-zero vector α ≥ 0 such that ϕ = Nα .
All α-bargaining solutions satisfy IIA and COV. If α ≥ 0, that is, if Nα is a Nash
bargaining solution, then Nα satisfies WPO.

Notice that Nα(C) ∈ C for any C ∈ C. Therefore the following definition makes
sense. A solution ϕ on C is an iterated Nash bargaining solution if there are non-zero
vectors α1, . . . , αk ∈ R

n such that α1 ≥ 0 and ϕ = Nαk ◦ · · · ◦ Nα1
.

The notions of α-bargaining solution, Nash bargaining solution and iterated Nash
bargaining solution carry over to solutions on an arbitrary domain D with D ⊂ C by
taking restrictions. Notice that the iterated Nash bargaining solution Nαk ◦ · · · ◦ Nα1

is a refinement of the Nash bargaining solution Nα1
. The motivation for the extra

requirement α1 ≥ 0 comes from the following observation.

Lemma 2.1 Suppose for a bargaining solution ϕ : D � R
n on domain D with F ⊂

D ⊂ C that ϕ = Nαk ◦ · · · ◦ Nα1
for non-zero vectors α1, . . . , αk ∈ R

n. Then ϕ
satisfies WPO if and only if α1 ≥ 0.

Proof Suppose that α1 ≥ 0. Then Nα1
satisfies WPO. Hence, since ϕ(C) ⊂ Nα1

(C)
for all C ∈ C, also ϕ satisfies WPO.

Conversely, suppose w.l.o.g.11 thatα1
1 < 0. Define x ∈ R

n++ by x1 := 2 and xi := 1

for all i �= 1. Clearly Nα1
(e, x) = {e}. Then, by the continuity of the Nash product,

Nα1
(e, x + εe) = {e} for sufficiently small ε > 0. Hence, also ϕ(e, x + εe) = {e} for

sufficiently small ε > 0. This violates WPO. ��
Let D be a domain with F ⊂ D. A solution ϕ : D � R

n++ is called transitive
if, for all x1, x2, x3 ∈ R

n++, from x2 ∈ ϕ(x1, x2) and x3 ∈ ϕ(x2, x3) it follows that
x3 ∈ ϕ(x1, x3). We shall frequently use the following observation.

Lemma 2.2 Any solution ϕ : D � R
n++ that satisfies IIA is transitive.

10 These solutions were first introduced—for convex two-person bargaining problems and positive weight
vectors—by Harsanyi and Selten (1972).
11 Without loss of generality.
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Proof Suppose that ϕ satisfies IIA, that x2 ∈ ϕ(x1, x2), and that x3 ∈ ϕ(x2, x3). Sup-
pose that ϕ(x1, x2, x3) does not contain x3. Then, because x3 ∈ ϕ(x2, x3), it also does
not contain x2 by IIA. Consequently, because x2 ∈ ϕ(x1, x2), it does also not contain
x1 by IIA. This contradicts the assumption that ϕ(x1, x2, x3) is not empty. Hence,
ϕ(x1, x2, x3) contains x3. ��

In the next section we provide three increasingly detailed characterizations of the
class of all WPO, COV, and IIA bargaining solutions on the domain F . In Sect. 4
we show how these characterizations can be further analyzed, depending on which
set-theoretic axiom one wishes to adopt. Section 5 presents ensuing existing and new
results, and Sect. 6 presents an extension of a theorem by Birkhoff following from our
results.

3 Three characterizations

3.1 The first characterization

On the domain F we study the set of all WPO, COV and IIA bargaining solutions. In
this subsection we show that each WPO, COV and IIA bargaining solution is a refine-
ment of a Nash bargaining solution. Technical proofs can be found in Appendix A.

Let ϕ : F � R
n++ be a bargaining solution that satisfies WPO, COV and IIA. Take

x ∈ R
n++. Define for y ∈ R

n++,

λ(x, y) := inf{λ > 0 | λy ∈ ϕ(x, λy)}.

By the following lemma this number is well-defined and positive.12

Lemma 3.1 Let x, y ∈ R
n++. Then 0 < λ(x, y) < ∞.

The next lemma prepares for the definition of the generalized indifference curve
below.

Lemma 3.2 For every x, y ∈ R
n++, if λ < λ(x, y) then ϕ(x, λy) = {x}, and if

λ > λ(x, y) then ϕ(x, λy) = {λy}.
Define

Iϕ(x) := {λ(x, y)y | y ∈ R
n++}.

The set Iϕ(x) is a subset of R
n++. It is called the generalized indifference curve (through

x). We briefly discuss the reason for this name. As we will see in Sect. 5, Iϕ(x) is
indeed the indifference curve through x whenever ϕ satisfies CON, in the sense that
Iϕ(x) equals the set of points y ∈ R

n++ with ϕ(x, y) = {x, y} in that case.
When ϕ does not (necessarily) satisfy CON, Lemma 3.2 shows that the point

λ(x, y)y is exactly the point of the form λy on the ray emanating from the origin

12 In fact, λ(x, y) depends on the solution ϕ and we should write, for example, λϕ(x, y). Usually, however,
it is clear which solution ϕ is meant and we simply write λ(x, y).
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through y where we switch from choosing ϕ(x, λy) = {λy} when λ > λ(x, y) to
choosing ϕ(x, λy) = {x} when λ < λ(x, y). The choice for ϕ(x, λ(x, y)y) itself is
left unspecified.13

We can say this somewhat differently. Notice that Iϕ(x) = {y ∈ R
n++ | λ(x, y)=1}.

Thus, Iϕ(x) is the set of points y ∈ R
n++ where we switch from choosing ϕ(x, λy) =

{λy} when λ > 1 to choosing ϕ(x, λy) = {x} when λ < 1. Again, the choice for
ϕ(x, y) itself is left unspecified. It can be either {x}, or {y}, or {x, y} (although this
choice cannot be made entirely arbitrarily as we will see in the next subsections).

We show that a WPO, COV and IIA bargaining solution ϕ is in fact a refinement
of an α-bargaining solution for some non-zero vector α ≥ 0. In order to specify for
exactly which α, define λ(x) := λ(e, x) for x ∈ R

n++. Next, define a j ∈ R
n++ by

a j
i :=

{ 1
2 if i = j
1 otherwise.

Define the vector α = (α1, . . . , αn) by

α j := 2log λ(a j ).

Notice that e ≥ a j . Hence by WPO, λ(a j ) ≥ 1, and therefore α j ≥ 0. Moreover, we
have the following lemma.

Lemma 3.3
∑

i αi = 1.

Proof We show
∏

j λ(a
j ) = 2 in two steps.

A. We show that λ(x) · λ(y) = λ(xy) for any x, y ∈ R
n++. Take x, y ∈ R

n++.
Take λ > λ(x) and μ > λ(y). Then ϕ(λx, e) = {λx} and ϕ(μy, e) = {μy} by
Lemma 3.2. So, by COV and transitivity, ϕ(λμxy, e) = {λμxy} and λμ ≥ λ(xy).
Hence, λ(x) · λ(y) ≥ λ(xy). Conversely, take λ < λ(x) and μ < λ(y). Then
ϕ(λx, e) = {e} and ϕ(μy, e) = {e} by Lemma 3.2. So, by COV and transitivity,
ϕ(λμxy, e) = {e} and λμ ≤ λ(xy). Hence, λ(x) · λ(y) ≤ λ(xy). Altogether
λ(x) · λ(y) = λ(xy).

B. Since
∏

j a j = 1
2 e, it is easy to see that λ

(∏
j a j

)
= 2. Hence, by A,

∏
j λ(a

j ) =
λ
(∏

j a j
)

= 2. ��

We can now show the first (partial) characterization, namely that ϕ is a refinement of
the α-Nash bargaining solution, where α is chosen in the above way.

Theorem 3.4 Let ϕ be a WPO, COV and IIA bargaining solution. Then there is a
unique non-zero vector α ≥ 0 such that ϕ is a refinement of the Nash bargaining
solution Nα .

13 The now following construction bears similarity to the classical construction of a utility function repre-
senting a binary relation (e.g. Debreu 1964). Note, however, that we do not require continuity.
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Proof Let ϕ be a bargaining solution that satisfies WPO, COV and IIA. Let α =
(α1, . . . , αn) be as defined before. Take F ∈ F and x ∈ F . Suppose that x /∈ Nα(F).
We show that x /∈ ϕ(F).

By IIA it suffices to show that there is a y ∈ F with ϕ(x, y) = {y}. Since x /∈
Nα(F), there is a y ∈ F with

∏
i

xαi
i <

∏
i

yαi
i . (*)

We show that indeed ϕ(x, y) = {y}. Write μ := λ(x, y). Then, by definition, μ · y ∈
Iϕ(x). So, by Lemma A.5 and Lemma 3.3,

∏
i

xαi
i =

∏
i

(μ · yi )
αi =

∏
i

μαi ·
∏

i

yαi
i = μ

∑
i αi ·

∏
i

yαi
i = μ ·

∏
i

yαi
i .

Now from inequality (∗) we conclude that λ(x, y) = μ < 1. Hence, by Lemma 3.2,
ϕ(x, y) = {y}, and the proof is complete. ��

This shows that the collection of Nash bargaining solutions coincides with the col-
lection of maximal WPO, COV, and IIA bargaining solutions, where maximality is
taken with respect to set inclusion.14 Conversely, we can view every WPO, IIA and
COV bargaining solution as arising from a Nash bargaining solution, with the addi-
tional proviso that ties, or indifferences, within the indifference curve of the Nash
bargaining solution may be broken one way or the other. How exactly ties can be
broken is the topic of the next two subsections.

3.2 The second characterization

In this subsection we show that for a WPO, COV and IIA bargaining solution, ties
within the indifference curve of the enveloping Nash bargaining solution can only be
broken in a specific way, namely only in a way that respects the covariance require-
ment together with transitivity. We give a precise description of the consequences of
this observation.

Let ϕ : F � R
n++ be a WPO, COV and IIA bargaining solution. Consider the

generalized indifference curve Iϕ := Iϕ(e) through the unit vector e. Notice that Iϕ is
an Abelian multiplicative group under the operation defined by (xy)i := xi yi . Indeed,
if x, y ∈ Iϕ , then xy ∈ Iϕ and e

x ∈ Iϕ by Lemma A.5. Define the subsets Lϕ, Dϕ and
Rϕ of Iϕ by

Lϕ := {x ∈ Iϕ | ϕ(x, e) = {x}, x �= e}
Dϕ := {x ∈ Iϕ | ϕ(x, e) = {x, e}}
Rϕ := {x ∈ Iϕ | ϕ(x, e) = {e}, x �= e}.

14 That is, we can define a partial order on bargaining solutions by φ � ψ when φ(F) ⊂ ψ(F) for all
F ∈ F . The Nash bargaining solutions are the maximal elements w.r.t. this partial order.
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Now let I be an Abelian group with respect to the operation ∗. An LDR decomposition
of I is a partition of I into sets L , D and R such that L , D and R are closed under
∗, D is not empty, λ ∈ R and μ ∈ D implies that λ ∗ μ ∈ R, and λ ∈ L and μ ∈ D
implies that λ ∗ μ ∈ L .

This implies e ∈ D (where e denotes the neutral element of I ), and if x ∈ L then
e
x ∈ R (where e

x denotes the inverse of x). If (in R
k) the operation ∗ is a multiplication,

we say that the LDR decomposition is multiplicative, and we say it is additive if the
operation ∗ is an addition.

Example To give the reader a first intuition for these notions, we give two examples
of additive LDR decompositions. The first example is I = R, D = {0}, L = (−∞, 0)
and R = (0,∞). The second example is I = R

2, D = {(0, 0)},

L = {(x1, x2) | x1 > 0} ∪ {(x1, x2) | x1 = 0 and x2 > 0}

and R = −L . It can easily be verified that both examples indeed are LDR decom-
positions. Note in the second example that sets L and R are neither open nor
closed. ��
Theorem 3.5 The sets Lϕ, Dϕ and Rϕ form an LDR decomposition of the Abelian
multiplicative group Iϕ .

Proof Clearly Lϕ, Dϕ and Rϕ partition Iϕ . Further, since ϕ is transitive and satisfies
COV, Lϕ, Dϕ and Rϕ are closed under multiplication. The set Dϕ is not empty because
it contains e.

Now take an x ∈ Rϕ and y ∈ Dϕ . So, using COV, e ∈ ϕ(x, e) and x ∈ ϕ(xy, x).
Hence, by transitivity, e ∈ ϕ(xy, e). However, also xy /∈ ϕ(xy, y) and e ∈ ϕ(y, e).
Hence, by transitivity, xy /∈ ϕ(xy, e). Thus, ϕ(xy, e) = {e} and xy ∈ Rϕ .

Similarly it can be shown that x ∈ Lϕ and y ∈ Dϕ imply xy ∈ Lϕ . Hence, Lϕ, Dϕ
and Rϕ form an LDR decomposition of Iϕ . ��

Thus, each WPO, IIA and COV bargaining solution ϕ determines a quadruple

(
α, Lϕ, Dϕ, Rϕ

)
where α ≥ 0 is such that the set

Iα :=
{

x ∈ R
n++ |

∏
i

xαi
i = 1

}

equals Iϕ , and Lϕ, Dϕ and Rϕ constitute an LDR decomposition of Iα . We call this
quadruple the characteristic quadruple of ϕ. Let Q denote the collection of quadruples
(α, L , D, R) such that α = (α1, . . . , αn) is a non-negative vector with

∑
i αi = 1, and

L , D and R form an LDR decomposition of Iα .15 Let W denote the collection of WPO,
COV and IIA bargaining solutions on F . Let Q denote the map that assigns to each

15 It is easy to check that Iα is an Abelian multiplicative group.
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element ϕ ∈ W its characteristic quadruple. Lemma 3.3 together with Theorem 3.5
show that Q(ϕ) ∈ Q for each ϕ ∈ W .

We show now that the characteristic quadruple of ϕ characterizes the solution ϕ
in the following sense. Not only does each WPO, IIA and COV bargaining solution
determine a (unique) characteristic quadruple in Q, but conversely also each quadruple
in Q uniquely determines a WPO, IIA and COV bargaining solution.

Theorem 3.6 The map Q : W → Q is one-to-one and onto.

Proof We show that Q has an inverse as follows. Take a quadruple (α, L , D, R)
in Q. We show that there exists a unique WPO, COV and IIA bargaining solution
ϕ : F � R

n++ such that Iϕ = Iα, Lϕ = L , Dϕ = D and Rϕ = R.
First take an arbitrary set {x, y} ∈ F . Take λ > 0 such that λ x

y ∈ Iα . Defineμ(x, y)
by

μ(x, y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{x} if λ < 1
{x} if λ = 1 and x

y ∈ L
{x, y} if λ = 1 and x

y ∈ D
{y} if λ = 1 and x

y ∈ R
{y} if λ > 1.

Observe that μ(x, y) is defined in accordance with what the LDR decomposition
L , D, R of Iα prescribes for the set { x

y , e}. By COV, this also determines how to make
the choice for {x, y}.

We argue that μ is transitive. Take x1, x2, x3 ∈ R
n++. Suppose that x2 ∈ μ(x1, x2)

and x3 ∈ μ(x2, x3). Let λ1 > 0 and λ2 > 0 be such that λ1
x1

x2 ∈ Iα and λ2
x2

x3 ∈ Iα .

Then, since Iα is a multiplicative group, λ1λ2
x1

x3 ∈ Iα . Moreover, since x2 ∈ μ(x1, x2)

and x3 ∈ μ(x2, x3), we have that λ1 ≥ 1 and λ2 ≥ 1. Therefore also λ1λ2 ≥ 1. We
distinguish two cases.

(a) λ1λ2 > 1. In this case μ(x1, x3) = {x3} by definition.
(b) λ1λ2 = 1. In this case λ1 = λ2 = 1. So, by definition of μ, x1

x2 ∈ R ∪ D and
x2

x3 ∈ R ∪ D. Then, because L , D, and R form an LDR decomposition of Iα , also
x1

x3 ∈ R ∪ D, and hence x3 ∈ μ(x1, x3).

Next define ϕ : F � R
n++ by, for all F ∈ F ,

ϕ(F) := {x ∈ F | x ∈ μ(x, y) for all y ∈ F}.

We show that ϕ is the unique WPO, IIA and COV bargaining solution ϕ : F � R
n++

such that ϕ(x, y) = μ(x, y) for all x, y ∈ R
n++.

A. From the definition of ϕ it follows immediately that ϕ(x, y) = μ(x, y) for all
x, y ∈ R

n++. From this it follows that Iϕ = Iα, Lϕ = L , Dϕ = D and Rϕ = R
(once we established that ϕ is a bargaining solution and that it satisfies WPO,
IIA, and COV), since all these sets are defined by considering pairs of elements
in R

n++.
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B. Take F ∈ F . We claim that ϕ(F) is not empty. Suppose it were empty. Take a point
x1 ∈ F . Since x1 /∈ ϕ(F) there is an x2 ∈ F with x1 /∈ μ(x1, x2). Since μ(x1, x2)

is not empty, necessarily {x2} = μ(x1, x2). In the same way we find an x3 ∈ F
with x2 /∈ μ(x2, x3). Iterating this procedure yields a sequence x1, x2, x3, . . . in F
with xk /∈ μ(xk, xk+1) for all k ≥ 1. Since F is finite, we have xr = xt for some
r, t with r < t . This violates the transitivity of μ.

C. The solution ϕ satisfies IIA. Take F,G ∈ F with G ⊂ F and G ∩ ϕ(F) �= φ. We
show that ϕ(G) = G ∩ ϕ(F).
C1. Take an x ∈ ϕ(G). Clearly x ∈ G. In order to show that x ∈ ϕ(F), take

y ∈ F . If x ∈ μ(x, y) we are done. Since G ∩ ϕ(F) �= φ, we can take
z ∈ G ∩ ϕ(F). Since x ∈ μ(x, z) and z ∈ μ(y, z), we have x ∈ μ(x, y) by
the transitivity of μ.

C2. Take an x ∈ G ∩ ϕ(F). Take a y ∈ G. Then x ∈ μ(x, y) since x ∈ ϕ(F).
Hence x ∈ ϕ(G).

D. Next we show that ϕ satisfies WPO. Take F ∈ F and x, y ∈ F with x < y. Then
x
y < e. So, for λ > 0 with λ x

y ∈ Iα we have λ > 1. Hence, μ(x, y) = {y} and
therefore x /∈ ϕ(F) by the definition of ϕ.

E. We show that ϕ satisfies COV. Take a ∈ R
n++, take F ∈ F and take x ∈ ϕ(F).

It suffices to show that ax ∈ ϕ(aF). Take an arbitrary y ∈ aF . Then y
a ∈ F . So,

x ∈ μ(x, y
a ). Hence, ax ∈ μ(ax, y) by the definition of μ.

F. Finally we prove uniqueness. Letψ be an arbitrary WPO, IIA and COV bargaining
solution such that ψ(x, y) = μ(x, y) for all x, y ∈ R

n++. Take F ∈ F . We prove
that ψ(F) = {x ∈ F | x ∈ μ(x, y) for all y ∈ F}.
F1. Take an x ∈ ψ(F). Take a y ∈ F . Then, from IIA and the fact thatψ(x, y) =

μ(x, y), it follows that x ∈ μ(x, y).
F2. Take an x ∈ F with x ∈ μ(x, y) for all y ∈ F . Since ψ(F) is not empty, we

can take z ∈ ψ(F). Then x ∈ μ(x, z) = ψ(x, z), and hence x ∈ ψ(F) by
IIA. ��

3.3 The third characterization

In this subsection we further refine the characterization in Theorem 3.6 by taking the
analysis of the internal structure of the LDR decomposition a few steps further.

Let ϕ : F � R
n++ be a WPO, COV and IIA bargaining solution. We use a recur-

sive process to construct a sequence Iϕ = J1 ⊃ J2 ⊃ . . . of closed multiplicative
subspaces Jk of Iϕ such that D := Dϕ ⊂ Jk for all k.

STEP I. This is the initialization step. Take J1 := Iϕ . Go to STEP II.
STEP II. This is the recursion step. Suppose Jk has already been defined. Define

Lk := Lϕ ∩ Jk and Rk := Rϕ ∩ Jk . If Lk is empty, define Jk+1 := Jk . If Lk

is not empty, define Jk+1 := Lk ∩ Rk . (Recall that, for a set S, S indicates
the closure of S.) Go to STEP II.16

16 Of course, we can also formulate this step using the sets Rk as criterion, since in an arbitrary LDR
decomposition the set R consists exactly of the inverses of the elements of L . Similarly, Lemma 3.7 also
holds with Rϕ in the place of Lϕ . Similar remarks hold for Theorems 3.9 and 3.10.
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Note that J1 is closed by Lemma A.2. Then an induction argument shows that for all
k, Jk is closed and Jk ⊃ Jk+1. Thus we have a sequence Iϕ = J1 ⊃ J2 ⊃ · · · of closed
sets. Further, since Lk, D, and Rk form an LDR decomposition of Jk (in particular,
D ⊂ Jk by Theorem B.1), it follows from Theorem B.1 that Jk+1 is a multiplicative
subspace of Jk with D ⊂ Jk+1. Thus, D is a subset of Jk for all k. Furthermore, if nk

denotes the dimension of the closed subspace Jk , it follows from Theorem B.1 that
nk+1 is either equal to nk or equal to nk − 1. Thus the sequence I = J1 ⊃ J2 ⊃ . . .

consists of an initial part J1 ⊃ . . . ⊃ JK for which nk+1 = nk −1 holds for all k < K ,
after which we have that Jk = JK for all k ≥ K .

The (uniquely defined) number K is called the characteristic number of the LDR
decomposition Lϕ, Dϕ and Rϕ of Iϕ . The sequence J1 ⊃ . . . ⊃ JK is called the cen-
tral chain of the LDR decomposition. The linear subspace Jϕ := JK of Iϕ is called
the center of the LDR decomposition. Evidently Dϕ ⊂ Jϕ .

Lemma 3.7 Let Jϕ be the center of the LDR decomposition Lϕ, Dϕ and Rϕ of Iϕ .
Then either Lϕ ∩ Jϕ is empty or Lϕ ∩ Jϕ is dense in Jϕ .

Proof Suppose that Lϕ ∩ Jϕ is not empty. Let K be the characteristic number of the
LDR decomposition Lϕ, Dϕ and Rϕ of Iϕ . Then JK+1 := Lϕ ∩ JK ∩ Rϕ ∩ JK is
equal to JK . Hence, Lϕ ∩ Jϕ = Lϕ ∩ JK is dense in JK = Jϕ . ��

3.3.1 Canonical coefficients

Let ϕ : F � R
n++ be a WPO, COV and IIA bargaining solution. Let α be as con-

structed in Sect. 3.1. Let K be the characteristic number of the LDR decomposition
Lϕ, Dϕ , and Rϕ of Iϕ = Iα , and let Iϕ = J1 ⊃ · · · ⊃ JK = Jϕ be the central chain.

We construct a sequence of orthogonal non-zero vectors β1, . . . , βK in R
n such

that β1 = α, and for all 2 ≤ k ≤ K ,

Jk =
⎧⎨
⎩x ∈ Jk−1 |

∏
j

x
βk

j
j = 1

⎫⎬
⎭ .

Evidently, we take β1 := α. We recursively define β2, . . . , βK as follows. Suppose
that, for 2 ≤ k ≤ K , βk−1 has already been defined. Write Hk−1 := {y ∈ R

n |∑
i β

k−1
i yi = 0}.

Lemma 3.8 There exists a vector βk ∈ Hk−1 such that

Jk =
{

x ∈ Jk−1 |
∏

i

x
βk

i
i = 1

}
.

This vector is unique up to scalar multiplication.

Proof Define the operation ρ : J1 → R
n by

ρ(x1, . . . , xn) := (ln(x1), . . . , ln(xn)).
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Since J1 = Iφ = Iα = Iβ1 ,

J1 =
{

x ∈ R
N++ |

∏
i

x
β1

i
i = 1

}
.

Then it is straightforward to check that ρ(J1) = H1, that ρ is a homeomorphism from
J1 to H1, and that ρ is an isomorphism w.r.t. addition on Hα and multiplication on Iα .

Now it is easy to check that ρ(Jk−1) = Hk−1. So, since Jk is a closed multiplicative
subspace of Jk−1, it follows that ρ(Jk) is a closed additive subspace of Hk−1. More-
over, dim(Jk) = dim(Jk−1) − 1 by construction. Hence, ρ(Jk) is a linear subspace
of Hk−1 of dimension dim(Hk−1)− 1. So there exists a vector βk ∈ Hk−1 (which is
unique up to scalar multiplication) such that

ρ(Jk) :=
{

y ∈ Hk−1 |
∑

i

βk
i yi = 0

}
.

Using the isomorphism ρ it is now easy to show that Jk={x ∈ Jk−1 | ∏i x
βk

i
i =1}. ��

Moreover, by taking −βk instead of βk when necessary, we can use Lemma B.2 to
guarantee that

⎧⎨
⎩x ∈ Jk−1 |

∏
j

x
βk

j
j > 1

⎫⎬
⎭ ⊂ Lϕ ∩ Jk−1.

The vectors β1, . . . , βK are called the canonical coefficients of ϕ. Each of these vec-
tors is unique up to multiplication by a positive scalar. Note that, because βk ∈ Hk−1
for all 2 ≤ k ≤ K , the vectors βk are orthogonal.

3.3.2 The characterization

Theorem 3.9 Let ϕ : F � R
n++ be a WPO, COV, and IIA bargaining solution. Let

β1, . . . , βK be the canonical coefficients of ϕ. Write N = Nβk ◦· · ·◦ Nβ1
. Then either

ϕ = N or ϕ is a (strict) refinement of N and Rϕ ∩ DN is dense in DN .

Proof The proof is in two parts.

A. We show that ϕ is a refinement of N . Note that IN = Iβ1 = Iα = Iϕ . Therefore,
by Theorem 3.6, it suffices to prove that L N ⊂ Lϕ . Take x ∈ L N . Then x ∈ IN ,
but x /∈ DN = Jϕ . Hence, there is a (uniquely determined) 2 ≤ k ≤ K such that

x ∈ Jk−1, but x /∈ Jk . Thus, because Jk = {x ∈ Jk−1 | ∏i x
βk

i
i = 1} and x ∈ L N ,

it follows that
∏

j x
βk

j
j > 1. However, by the choice of the canonical coefficients,

{x ∈ Jk−1 | ∏ j x
βk

j
j > 1} ⊂ Lϕ ∩ Jk−1, and x ∈ Lϕ .
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B. Suppose that ϕ does not equal N . We show that Rϕ ∩ DN is dense in DN . Since
DN = Jϕ , it follows from Lemma 3.7, with Rϕ in the role of Lϕ , that Rϕ ∩
DN is either empty or dense in DN . Suppose it is empty. Then Dϕ = Jϕ =
DN , and ϕ = N . This contradicts our assumption. Hence Rϕ ∩ DN is dense in
DN . ��

Theorem 3.10 Let N : F � R
n++ be an iterated Nash bargaining solution. Further,

let L , D and R be an LDR decomposition of I := DN such that R is dense in I . Then
there is a (unique) WPO, COV, and IIA refinement ϕ of N such that Rϕ ∩ I = R.

Proof Let β1, . . . , βK be the canonical coefficients of N . Let ϕ be an arbitrary WPO,
COV and IIA refinement of N , and let (α, Lϕ, Dϕ, Rϕ) be its characteristic quadruple.
Then necessarily α = β1. Moreover, necessarily Rϕ ⊃ RN . This however implies that
Rϕ = RN ∪ R. Hence, using Theorem 3.6, The bargaining solution that is associated
with the characteristic quadruple (β1, L N ∪ L , D, RN ∪ R) is the unique WPO, COV,
and IIA refinement of N such that Rϕ ∩ I = R. ��
Thus, every bargaining solution ϕ : F � R

n++ is uniquely characterized by an iterated
Nash bargaining solution N plus, unless ϕ = N , an LDR decomposition L , D, and R
of DN for which R is a dense subset of DN .

The remainder of this paper is devoted to discussing known and new consequences
of the characterizations derived in this section.

4 To be or not to be

In this section we use the characterizations derived in the preceding section to dis-
cuss the existence of WPO, COV and IIA bargaining solutions that are not iterated
Nash bargaining solutions. We divide the collection of WPO, COV and IIA bargaining
solutions into two types: iterated Nash bargaining solutions are of type I and all other
WPO, COV and IIA bargaining solutions are of type II.

On some domains, solutions of the second type do not exist, see e.g. Naumova and
Yanovskaya (2001) and Theorem 5.4 below. Furthermore, examples of WPO, COV
and IIA bargaining solutions other than iterated Nash bargaining solutions have, to the
best of our knowledge, never been reported in literature. The question arises whether
bargaining solutions of the second type exist at all on the domain F , or on any larger
domain. The answer to this question is ambiguous: it depends!

If we accept (for example) the Axiom of Choice, it is possible to construct (many)
WPO, COV and IIA bargaining solutions on the domain F that are not iterated Nash
bargaining solutions. However, in mathematical logic there is an alternative for the
Axiom of Choice, called the Axiom of Determinacy. The Axiom of Determinacy is
compatible with the countable version of the Axiom of Choice, but it is not compati-
ble with the uncountable version of the Axiom of Choice. If we accept the Axiom of
Determinacy, bargaining solutions of the second type do not exist. In this section we
explore both avenues and provide proofs for these claims.
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4.1 Not to be: the Axiom of Determinacy

In this subsection we show that, when we accept the Axiom of Determinacy, WPO,
COV and IIA bargaining solutions of type II do not exist on the domain F . Hence, in
this case, on the domain F , and therefore on any other domain D with F ⊂ D ⊂ C, the
collection of all WPO, COV and IIA bargaining solutions coincides with the collection
of all iterated Nash bargaining solutions.

THE AXIOM OF DETERMINACY. Consider a subset A of the unit interval [0, 1]. The
set A defines a game G(A) for two players, I and II. This game is played as follows.
First player I chooses a binary number a1 ∈ {0, 1}. Next, player II observes this number
and subsequently chooses a binary number a2 ∈ {0, 1}. Then Player I observes what
Player II chose, and chooses a third binary number a3 ∈ {0, 1}. Etcetera. This way
Players I and II construct an infinite sequence a1, a2, a3, a4, . . . of binary numbers,
which defines a real number

x =
∞∑

k=1

ak

(
1

2

)k

in the unit interval [0, 1]. If x ∈ A, Player I wins and if x /∈ A Player II wins.
The set A is said to be determined if either Player I or Player II has a winning

strategy in the game G(A). The Axiom of Determinacy states that every subset of the
unit interval [0, 1] is determined. Mycielski and Swierczkowski (1964) showed the
following fact.

Theorem 4.1 Every determined set A in [0, 1] is measurable.

WPO, COV AND IIA BARGAINING SOLUTIONS. Thus, the Axiom of Determinacy
effectively rules out the existence of sets that are not measurable. We exploit this fact
in the remainder of this section to prove that every WPO, COV and IIA bargaining
solution on the domain F is an iterated Nash bargaining solution.

Lemma 4.2 Let L , D and R be an additive LDR decomposition of R. Suppose that
R is dense in R. Then R is not a measurable set.

Proof Suppose that R is a measurable set. Let λ denote the Borel-Lebesgue measure
on R. We derive a contradiction in three steps.

STEP I. Take u, v ∈ R, u < v. We show that λ(R ∩ (u, v)) ≤ 1
2 (v− u). Suppose

that λ(R ∩ (u, v)) > 1
2 (v − u). Since R is dense in R and L = −R, also L is dense

in R. Therefore we can take k, l ∈ L with k < l such that λ(R ∩ (k, l)) > 1
2 (l − k).

Now notice that, since L = −R and R is measurable, it follows that

−(R ∩ (k, l)) = −R ∩ (−l,−k) = L ∩ (−l,−k)

is a measurable subset of L . Therefore, since k, l ∈ L and L + L ⊂ L , it follows that
(k + l) + (L ∩ (−l,−k)) is a measurable subset of the (measurable) set L ∩ (k, l).
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Hence, due to the translation invariance and rotation invariance of the Borel-Lebesgue
measure λ,

λ(L ∩ (k, l)) ≥ λ((k + l)+ (L ∩ (−l,−k))) = λ(L ∩ (−l,−k))
= λ(−(R ∩ (k, l))) = λ(R ∩ (k, l))
> 1

2 (l − k).

This however contradicts the assumption that R and L are disjoint.
STEP II. Take u, v ∈ R, u < v. We show that A := R ∩ (u, v) is negligible. Take

ε > 0. Since A is a measurable set, Theorem 1.1 in Billingsley (1968) implies that
there exists an open set U ⊃ A such that λ(U \ A) < ε. Since U is an open set in R,
we can write U as the disjoint union of open intervals (un, vn), n ∈ N. Hence, using
step I to obtain the second inequality,

∑
n

(vn − un) = λ(U ) ≤ λ(A)+ ε

= λ(A ∩ U )+ ε

=
∑

n

λ(A ∩ (un, vn))+ ε

=
∑

n

λ(R ∩ (un, vn))+ ε

≤ 1
2 ·
∑

n

(vn − un)+ ε.

Thus λ(U ) = ∑
n(vn − un) ≤ 2ε. This implies that A is negligible.

STEP III. By step II we know that R and L are negligible. Hence, since L , D and
R partition R, D is measurable and λ(D) > 0. However, since R is dense in R, we
can take an r ∈ R. Then r + D is a subset of R and λ(r + D) > 0 by the translation
invariance of the Borel-Lebesgue measure. This contradicts the negligibility of R. ��
Lemma 4.3 Let H be a linear subspace of R

n. Further, let L D and R be an (additive)
LDR decomposition of H and suppose that R is dense in H. Then there exists a line
P in H through the origin such that P ∩ R is dense in P.

Proof Let z1, . . . , zk be a basis for H . We say that a basis element zi is superfluous
when at least one of the following two inclusions holds:

(1) {λzi | λ ≥ 0} ⊂ L ∪ D
(2) {λzi | λ ≤ 0} ⊂ L ∪ D.

We argue by contradiction that not all basis elements are superfluous. Suppose that
all basis elements are superfluous. Assume w.l.o.g. that (1) holds for all i (when only
(2) holds, take −zi instead of zi ). Then the set G of points z ∈ H for which there are
non-negative numbers λ1, . . . , λk such that z = ∑

i λi zi is a subset of L ∪ D which
is of full dimension in H . This contradicts the density of R in H .

Now take a basis element zi that is not superfluous. Then there are λ > 0 andμ < 0
such that both λzi and μzi are elements of R. The result now follows from the fact
that R is closed under addition. ��
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Theorem 4.4 Assume the Axiom of Determinacy. Then a bargaining solutionϕ : F �
R

n++ satisfies WPO, COV, and IIA if and only if it is an iterated Nash bargaining
solution.

Proof Let ϕ : F � R
n++ be a WPO, COV, and IIA bargaining solution, and assume

that it is not an iterated Nash bargaining solution. Then, by Theorem 3.9 there exists
a (unique) iterated Nash bargaining solution N such that ϕ is a strict refinement of N
and Rϕ ∩ DN is dense in DN .

Define the operation ρ : DN → R
n by

ρ(x1, . . . , xn) := (ln(x1), . . . , ln(xn)).

Write H := ρ(DN ). It is straightforward to check that H is a closed and additive,
and hence linear, subspace of R

n . Furthermore, L := ρ(Lϕ ∩ DN ), D := ρ(Dϕ) and
R := ρ(Rϕ ∩ DN ) form an LDR decomposition of H , and R is dense in H . So, by
Lemma 4.3 there is a line P in H through the origin such that P ∩ R is dense in P .
The existence of such a line is contradicted by Theorem 4.1 and Lemma 4.2. ��

In fact Lemmas 4.3 and 4.2 show that the above result can also be obtained under
the assumption that all sets are measurable, a much weaker assumption than the Axiom
of Determinacy.

4.2 To be: Zorn’s Lemma and the Axiom of Choice

Thus, when we assume the Axiom of Determinacy, the collection of all WPO, COV,
and IIA bargaining solutions on F , or any other domain D with F ⊂ D ⊂ C, coincides
with the collection of all iterated Nash bargaining solutions on that domain. Without
the Axiom of Determinacy however, the picture changes. If, instead, we assume Zorn’s
Lemma, a statement that is equivalent to the Axiom of Choice, it is possible to con-
struct WPO, COV, and IIA bargaining solutions that are not iterated Nash bargaining
solutions. We show how this can be done. Let Hα ⊂ R

n be defined by

Hα := {x ∈ R
n |
∑

i

αi xi = 0}.

Any additive functional f : Hα → R defines an LDR decomposition as follows. Note
that the operation ρ : Iα → Hα defined by

ρ(x1, . . . , xn) := (ln(x1), . . . , ln(xn))

is an isomorphism w.r.t. addition on Hα and multiplication on Iα . Define

L f := {x ∈ Iα | ( f ◦ ρ)(x) < 0}
D f := {x ∈ Iα | ( f ◦ ρ)(x) = 0}
R f := {x ∈ Iα | ( f ◦ ρ)(x) > 0}.
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It is easy to check that L f , D f and R f form an LDR decomposition of Iα . Thus,
every additive functional f induces a WPO, IIA and COV bargaining solution ϕ( f ),
and two such functionals f and g induce different solutions ϕ( f ) and ϕ(g) whenever
L f , D f , R f is a different LDR decomposition than Lg, Dg, Rg .

We use the above observation to construct a plethora of WPO, IIA and COV bar-
gaining solutions as follows. Of course every linear functional f : Hα → R induces a
solution ϕ( f ). However, using Zorn’s Lemma, we can construct many more different
additive functionals, and hence many more different WPO, IIA and COV bargaining
solutions. First we need some notation. Let X be a non-empty set and let � be a binary
relation on X that satisfies

[1] (reflexivity) for all x ∈ X we have x � x , and
[2] (transitivity) for all x, y, z ∈ X we have x � z whenever both x � y and y � z.

We say that � is a partial order on X . A subset C of X is called a chain if for any two
elements x and y of C we have at least one of the two inequalities x � y and y � x .
A chain C of X is said to have an upper bound if there exists an element a of X such
that x � a for all x in C . An element a of X is called maximal if for any x in X the
inequality a � x only holds if x � a holds as well.

Lemma 4.5 (Zorn) Suppose that every chain of X has an upper bound. Then X has
a maximal element.

Using Zorn’s Lemma we can easily prove the following result, due to Hamel (1905).

Theorem 4.6 R
n has a basis over Q. Consequently, also Hα has a basis over Q.

Proof Let X be the set of Q-independent sets in R
n , ordered by set inclusion. Let C be

a chain in X . Then ∪B∈C B is an upper bound of C . Hence, by Zorn’s Lemma, X has
a maximal element, say B. It is straightforward to prove that B is a basis of R

n over
Q. The second part of the theorem follows from the observation that Hα is linearly
isomorphic to R

n−1. ��
We construct a multitude of WPO, IIA and COV bargaining solutions as follows.
Let B be a basis of Hα over Q. An assignment for B is a function f : B → R. It
is clear that every assignment f : B → R uniquely extends to an additive functional
f : Hα → R.17 Thus, there are as many additive functionals on Hα as there are assign-
ments on B. We already observed that each additive functional induces a WPO, IIA
and COV bargaining solution. Hence, we have the following theorem.

Theorem 4.7 For every assignment f for B there exists a unique WPO, IIA and COV
bargaining solution ϕ( f ) such that L f = Lϕ( f ), D f = Dϕ( f ) and R f = Rϕ( f ). Con-
sequently, for any two assignments f and g, ϕ( f ) �= ϕ(g) exactly if (L f , D f , R f ) �=
(Lg, Dg, Rg).

17 Formally we should use a different symbol to indicate the additive function, but we allow for a slight
abuse of notation here.
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Note that ϕ( f ) might still be equal to ϕ(g), even when f �= g (for example, when
g = 2 f ). Nevertheless, the qualification ‘plethora’ still applies for the following
reason.

Theorem 4.8 Assume the Axiom of Choice. Then there exists a WPO, COV and IIA
bargaining solution on F that is of type II. The cardinality of the collection of type II
bargaining solutions is strictly larger than the cardinality of the collection of iterated
Nash bargaining solutions.

Proof Notice that B is uncountable. Further, (L f , D f , R f ) is a different LDR decom-
position of Iα than (Lg, Dg, Rg) at least when there is a b ∈ B for which for exam-
ple f (b) > 0 and g(b) ≤ 0 (because in that case ρ−1(b) ∈ R f while ρ−1(b)
/∈ Rg).

Thus the number of different LDR decompositions that can be constructed this
way is still at least as large as the cardinality of 3B . On the other hand the set of
all iterated Nash bargaining solutions clearly has the cardinality of R

n . Now, B nec-
essarily has the cardinality of R

n , while, by the Cantor argument, 3B has a higher
cardinality than B. In particular, not every solution generated in the above way is an
iterated Nash bargaining solution, and type II bargaining solutions must necessarily
exist. ��

4.3 Not to be redux: definability

The fact that type II WPO COV and IIA bargaining solutions involve non-measur-
able sets is an interesting observation in itself, irrespective of the question whether
one accepts or rejects the Axiom of Determinacy. It shows that the “construction” of
type II bargaining solutions necessarily involves the construction of non-measurable
sets. It is not clear though what such a “construction” should entail, because non-
measurable sets can in a very real sense not be constructed using only elementary
construction rules.18 In this section we show that this observation can be made into a
formal statement. For notation we borrow heavily from Zame (2007) and refer to that
paper for an excellent discussion of the relevant recent advancements in axiomatic set
theory.

A set A ⊂ R
n is definable if there exists a set-theoretic formula�(t, r, α1, α2, . . .)

in which r is a real number, α1, α2, . . . is a sequence of ordinal numbers, and t is the
only free variable, such that

A = {
x ∈ R

n | �(x, r, α1, α2, . . .)
}
.

18 An interesting observation in this context (pointed out to us by Professor Jan Mycielski) is that, when
we assume ZFC plus the existence of a large cardinal, the subclass L[R] of the universe V of all sets forms
a model of ZF in which AD as well as a version of AC known as the Axiom of Dependent Choice (DC)
are true. DC still allows one to perform virtually all constructions known within analysis. A comprehensive
discussion can be found in Marek and Mycielski (2001).
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In Zame (2007) it is explained that the proposition “there exists a definable set that is
not Lebesgue measurable” is not provable from the Zermelo-Fraenkel Axioms together
with the Axiom of Choice. To flip this statement around, when we can prove in ZFC
that a set A is not measurable, then we cannot prove in ZFC that A is a definable
set.

This enables us to prove the following statement. We assume the ZF Axioms,
together with AC. So, indeed type II WPO, COV and IIA bargaining solutions exist
on domain F . For these we can show the following.

Theorem 4.9 Let ϕ : F � R
n++ be a WPO, COV, and IIA bargaining solution that

is not an iterated Nash bargaining solution. Then we cannot prove in ZFC that the
sets Lϕ, Dϕ and Rϕ are definable sets.

Proof Let ϕ : F � R
n++ be a WPO, COV, and IIA bargaining solution, and assume

that it is not an iterated Nash bargaining solution. Then, by Theorem 3.9 there exists
a (unique) iterated Nash bargaining solution N such that ϕ is a strict refinement of N
and Rϕ ∩ DN is dense in DN .

We show that Rϕ is not definable. Define the operation ρ : DN → R
n by

ρ(x1, . . . , xn) := (ln(x1), . . . , ln(xn)).

Write H := ρ(DN ). It is straightforward to check that H is a closed and additive,
and hence linear, subspace of R

n . Furthermore, L := ρ(Lϕ ∩ DN ), D := ρ(Dϕ) and
R := ρ(Rϕ ∩ DN ) form an LDR decomposition of H , and R is dense in H . So, by
Lemma 4.3 there is a line P in H through the origin such that P ∩ R is dense in P .
Then by Lemma 4.2 we know that P is not measurable. Hence, by the above line of
reasoning, we cannot show in ZFC that P is definable.

On the other hand, suppose that Rϕ is definable. Then, because DN is definable,
also Rϕ ∩ DN is definable. Hence, also P = ρ(Rϕ ∩ DN ) is definable. Contradiction.
Hence, Rϕ cannot be definable. ��

Since the graph of a bargaining solution ϕ is not an object in Euclidean space we
cannot, as is customary in most cases, directly prove that the graph of ϕ is not defin-
able, simply because the notion of definability does not apply to such an object as
the graph of a bargaining solution. Nevertheless, Theorem 4.9 implies the following.
Suppose we wish to construct WPO, COV and IIA bargaining solutions on domain
F by means of their encoding in quadruples

(
α, Lϕ, Dϕ, Rϕ

)
. Further suppose we

only wish to describe the ingredients of a quadruple by means of set-theoretic formu-
lae of the form �(t, r, α1, α2, . . .). Then the only solutions we can construct are the
iterated Nash bargaining solutions. All other solution necessarily involve the use of
sets that cannot be expressed in terms of such formulae. This shows in a very strong
sense that we cannot “explicitly” define WPO, COV and IIA bargaining solutions of
type II.
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5 Consequences of the characterizations

In this section we discuss some consequences of the characterizations in Sect. 3.

5.1 Nash bargaining solutions

We show that the class of Nash bargaining solutions is characterized by WPO, COV,
IIA and CON on any domain D containing the domain of finite bargaining problems
and contained in the domain of all compact bargaining problems.19

Thus, in this section we assume that D is a domain with F ⊂ D ⊂ C. Let ϕ : D �
R

n++ be a WPO, COV and IIA bargaining solution. With a slight abuse of notation we
will not distinguish between ϕ itself and its restriction ϕF to the domain F of all finite
bargaining problems because, by IIA, there is a simple one-to-one correspondence
between ϕ and ϕF . We need the following observation.

Lemma 5.1 Let ϕ : D � R
n++ be a WPO, COV and IIA bargaining solution. Then

ϕ is a Nash bargaining solution if and only if Dϕ = Iϕ .

Proof

A. Suppose that Dϕ = Iϕ . Let (α, Lϕ, Dϕ, Rϕ) be the characteristic quadruple of ϕ.
From Lemma A.5,

(α, Lϕ, Dϕ, Rϕ) = (α, φ, Iϕ, φ) = (α, φ, Iα, φ).

It is straightforward to check that Nα has the same characteristic quadruple.
Hence, by Theorem 3.6, ϕ = Nα .

B. Suppose that ϕ is a Nash bargaining solution. Then Iϕ ⊃ Dϕ . Take x ∈ Iϕ . We
show that x ∈ Dϕ . By assumption there is a non-zero vector α ≥ 0 such that
ϕ = Nα . Then clearly Iϕ = INα . Hence, ϕ(x, e) = Nα(x, e) = {x, e}. ��

Now we can prove the following characterization of Nash bargaining solutions.

Theorem 5.2 Let ϕ : D � R
n++ be a bargaining solution. Then ϕ satisfies WPO,

COV, IIA and CON if and only if ϕ is a Nash bargaining solution.

Proof We only prove the only-if direction. Let ϕ satisfy the axioms in the theorem. By
Lemma 5.1 it suffices to show that Dϕ = Iϕ . Take an x ∈ Iϕ . Then, for any positive
λ < 1, ϕ(λx, e) = {e} by Lemma 3.2. Hence, by CON, e ∈ ϕ(x, e). Conversely, for
any λ > 1, ϕ(λx, e) = {λx} by Lemma 3.2. Hence, by CON, x ∈ ϕ(x, e). ��
In different but equivalent formulations this result was also derived in Kaneko and
Nakamura (1979) and Naumova and Yanovskaya (2001).

Imposing SYM instead of CON singles out the symmetric Nash bargaining solution
Nα with αi = 1/n for every i .

19 With some slight modifications this assumption can easily be relaxed, e.g., by assuming that D contains
all finitely generated comprehensive problems.
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Theorem 5.3 Let ϕ : D � R
n++ be a bargaining solution. Then ϕ satisfies WPO,

COV, IIA and SYM if and only if ϕ is the symmetric Nash bargaining solution.

Proof We only prove the if-direction. Let ϕ be a bargaining solution with these prop-
erties. Obviously, αi = 1/n for all i . Take x ∈ Iϕ . It is sufficient to prove that x ∈ Dϕ .
It is not difficult (cf. Xu and Yoshihara 2006) to find an a ∈ R

n++ such that a = ae can
be obtained from ax by a permutation of coordinates. Consider the finite bargaining
problem B consisting of ax and all vectors obtainable from ax by a permutation of
coordinates. By SYM, ϕ(B) = B. In particular, a, ax ∈ ϕ(B). By COV and IIA,
ϕ(x, e) = {x, e}, hence x ∈ Dϕ . ��
This result was also derived in Mariotti (1998a) and Xu and Yoshihara (2006).

5.2 Compact domain

In this subsection we show that any WPO, COV and IIA bargaining solution on the
domain C of all compact bargaining problems is an iterated Nash bargaining solu-
tion. As already established, under the Axiom of Determinacy a WPO, COV and IIA
bargaining solution defined on any domain D that includes F is an iterated Nash bar-
gaining solution. Theorem 3.1 of Naumova and Yanovskaya (2001) shows that on the
domain C this remains true even without the Axiom of Determinacy. Their proof is
based on a theorem of Birkhoff (see the next section for a discussion of that theorem).
Using Theorem 3.9 we show the above result by arguing directly that WPO, COV and
IIA bargaining solutions of type II cannot be extended to the domain C of all compact
bargaining problems.

Theorem 5.4 A bargaining solution ϕ on the domain C of all compact bargaining
problems satisfies WPO, COV and IIA if and only if it is an iterated Nash bargaining
solution.

Proof It is clear that any iterated Nash bargaining solution satisfies WPO, COV and
IIA. Let ϕ be a WPO, COV and IIA bargaining solution on C. Let N be the iterated
Nash bargaining solution defined in the proof of Theorem 3.9. It suffices to show that
Rϕ ∩ DN cannot be dense in DN .

Suppose Rϕ ∩ DN is dense in DN . We derive a contradiction. Write L := Lϕ ∩ DN

and R := Rϕ ∩ DN . Clearly DN is an Abelian multiplicative group, and L and R
are dense subsets of DN . So, at least there exists an r ∈ R. Since L is dense in DN

we can take an l1 ∈ L with d(ρ(r), ρ(l1)) <
1
2 , where d(x, y) denotes the Euclidean

distance between x and y, and ρ : Iα → Hα is the isomorphism defined in Sect. 4.2.
Recursively, suppose for m ∈ N,m ≥ 2 that l1, . . . , lm−1 have been chosen in L .

Since r
m−1∏
k=1

l−1
k is an element of DN , we can take an lm ∈ L such that

d

(
ρ

(
r

m−1∏
k=1

l−1
k

)
, ρ(lm)

)
<

(
1

2

)m

.
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Write Lm := ∏m
k=1 lm for each m ∈ N. Then, by translation invariance of the Euclid-

ean distance and preservation of group structure by ρ,

d(ρ(r), ρ(Lm)) = d

(
ρ(r),

m∑
k=1

ρ(lk)

)
= d

(
ρ(r)−

m−1∑
k=1

ρ(lk), ρ(lm)

)

= d

(
ρ

(
r

m−1∏
k=1

l−1
k

)
, ρ(lm)

)
<

(
1

2

)m

.

In particular

B := {e, r, L1, L2, . . .}

is a compact set. Thus, B ∈ C. We show that ϕ(B) must be empty, which contradicts
the assumption that ϕ is a bargaining solution. Firstly notice that ϕ(e, L1) = {L1}
because L1 = l1 is an element of L ⊂ Lϕ . Hence, e /∈ ϕ(B) by IIA. Secondly notice
that ϕ(e, r) = {e} because r is an element of R ⊂ Rϕ . Hence, r /∈ ϕ(B) by IIA.
Thirdly, for any m ∈ N, by COV we have

ϕ(Lm, Lm+1) = Lm · ϕ(e, lm+1) = Lm · {lm+1} = {Lm+1}

because lm+1 is an element of L ⊂ Lϕ . Hence, for any m ∈ N, Lm /∈ ϕ(B) by IIA,
and none of the elements of B can be an element of ϕ(B). ��

Theorem 5.4 extends the main results in Zhou (1996) and Denicolò and Mariotti
(2000), who show that any single-valued bargaining solution satisfying WPO, COV
and IIA must select from some Nash bargaining solution. From Theorem 5.4 it fol-
lows that such a solution must be a single-valued iterated Nash bargaining solution. It
follows from Theorem 5.2 that these solutions cannot be continuous.

6 The additive case and Birkhoff’s theorem

The results in this section are the additive counterparts of the constructions in the pre-
vious sections. One could derive the third characterization in Sect. 3 and Theorem 4.4
by first proving the results in this section and then lifting these results to the bargain-
ing context. However, since this would require a long pre-discussion and several extra
lifting results before we could present our main observations, we decided not to pursue
this avenue, and simply to present the results on additive groups separately without
any further proofs.

We first formulate the Birkhoff Theorem (Birkhoff 1948). An ordering on R
n is a

binary relation � on R
n that is complete, reflexive, and transitive. We write x ≺ y

if x � y and not y � x . We write x ∼ y if x � y and y � x . An ordering � is
translation invariant if for all x, y, z ∈ R

n, x � y holds whenever x + z � y + z.
The ordering is positive homogeneous if for all x, y ∈ R

n and all λ > 0, x � y holds
whenever λx � λy.
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Let β = (β1, . . . , βm) a sequence of orthogonal vectors β ∈ R
n . For x, y ∈ R

n ,
the inner product 〈x, y〉 is defined by 〈x, y〉 := ∑

i xi yi . The binary relation �β on
R

n is defined as follows. For every x, y ∈ R
n, x � y when either 〈βk, x〉 = 〈βk, y〉

for all 1 ≤ k ≤ m, or there is an l, 1 ≤ l ≤ m with 〈βk, x〉 = 〈βk, y〉 for all k < l and
〈βl , x〉 < 〈βl , y〉.
Theorem 6.1 (Birkhoff) An ordering � is translation invariant and positive homo-
geneous if and only if there is a sequence β = (β1, . . . , βm) of orthogonal vectors
such that � = �β .

Using the techniques we developed in this paper we can prove the following gen-
eralization of Birkhoff’s theorem. For a sequence β = (β1, . . . , βm) of orthogonal
vectors, write

Hβ := {x ∈ R
n | 〈βk, x〉 = 0 for all 1 ≤ k ≤ m}.

Clearly Hβ is a linear subspace of R
n . Let L , D and R form an additive LDR decom-

position of Hβ . We say that the ordering � is induced by the quadruple (β, L , D, R)
if x � y holds precisely when one of the following two cases is valid.

(1) x ≺β y
(2) x ∼β y (so y − x ∈ Hβ ), and y − x ∈ R.

Theorem 6.2 An ordering � is translation invariant if and only if there exists a se-
quence β of orthogonal vectors and an LDR decomposition L , D and R of Hβ such
that � is induced by the quadruple (β, L , D, R) and either R = φ or R is dense in
Hβ .

The correspondence between translation invariant orderings � and quadruples
(β, L , D, R) with either R = φ or R dense in Hβ is one-to-one and onto up to
scalar multiplication of the orthogonal vectors in the sequence β.

Proof of Birkhoff’s theorem. It is straightforward to show that, for a sequence β =
(β1, . . . , βm) of orthogonal vectors, �β is translation invariant and positive homoge-
neous. We show the other implication.

Suppose that � is translation invariant and positive homogeneous. Let (β, L , D, R)
be the associated quadruple. We show that R is empty. Suppose it is not. Then R is
dense in Hβ . So, by Lemma 4.3 there is a line P in Hβ through the origin such that
P ∩ R is dense in P . Take a point r ∈ P ∩ R. Notice that r �= 0. Since L = −R, P ∩ L
is also dense in P . So, there must be a μ > 0 such that μr ∈ L . Then however 0 ≺ r
and μr ≺ 0. This violates positive homogeneity. ��
Theorem 6.3 Assume the Axiom of Determinacy. Then an ordering � is translation
invariant if and only if there is a sequence β = (β1, . . . , βm) of orthogonal vectors
such that � = �β .

Proof Suppose that � is translation invariant. Let (β, L , D, R) be the associated qua-
druple. We show that R is empty. Suppose it is not. Then R is dense in Hβ . So, by
Lemma 4.3 there is a line P in Hβ through the origin such that P ∩ R is dense in P .
This contradicts Theorems 4.2 and 4.1. ��
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If x ≺ y holds for all x, y ∈ R
n with x < y we say that � satisfies Weak

Pareto Optimality (WPO). For WPO orderings we obtain the same set of results,
with the only proviso that the first vector β1 in the sequence is non-zero and non-
negative.

INDEPENDENCE OF AXIOMS. In fact these results show that the independence
of the axiom of positive homogeneity in the characterization of orderings of the form
�β is debatable. When we accept the Axiom of Choice, positive homogeneity is
indeed an independent axiom. However, when we accept the Axiom of Determinacy,
Theorem 6.3 shows that the axiom of positive homogeneity can be dropped from the
formulation of Birkhoff’s theorem.

ADDITIVE FUNCTIONS. As a final curiosity, we observe that under the Axiom
of Determinacy, every additive function on the reals is necessarily linear. However,
under the Axiom of Choice, there are many more non-linear additive functions than
linear functions.

7 Discussion and conclusion

In this final section we discuss independence of the basic axioms, and we further
discuss related literature. We end with some concluding remarks.

7.1 Independence of the axioms

We show the independence of the basic axioms used in this paper.

Not WPO The bargaining solution ϕ : F � R
n++ defined by ϕ(F) := F for all

F ∈ F satisfies IIA, COV and CON, but not WPO.
Not IIA The bargaining solution WPO : F � R

n++ defined by, for all F ∈ F ,

WPO(F) := {x ∈ F | x < y implies that y /∈ F}

satisfies WPO, COV and CON, but not IIA.
Not COV The bargaining solution ϕ : F � R

n++ defined by, for all F ∈ F ,

ϕ(F) :=
{

x ∈ F |
∑

i

xi ≥
∑

i

yi for all y ∈ F

}

satisfies WPO, IIA and CON, but not COV.
Not CON Bargaining solutions of Type II as constructed in Sect. 4.2, or iterated Nash

bargaining solutions that are not Nash bargaining solutions, satisfy WPO,
COV and IIA but not CON.

Note that the first three counterexamples can be extended to any domain D with
F ⊂ D ⊂ C. As for the continuity axiom, on the domain C the independence follows
from Theorems 5.2 and 5.4.
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7.2 Related literature

We continue and extend the discussion started in Sect. 2.
Kaneko (1980) characterizes the symmetric Nash (multi-valued) bargaining solu-

tion on the domain of all compact n-person bargaining problems by the axioms PO,
IIA, COV, SYM, and CON. A recent improvement of this result is obtained by Xu
and Yoshihara (2006), who are able to drop CON from this set of axioms. Both results
follow from Theorem 5.3, which, in turn, is a relatively straightforward consequence
of the results in Sect. 3.

Mariotti (1998a) characterizes the two-person20 symmetric Nash bargaining solu-
tion on the domain of finite bargaining problems by WPO, COV, SYM, and an axiom
called ‘Pareto monotonicity’, which is implied by WPO and IIA. Hence, this char-
acterization follows from Theorem 5.3. Theorem 4.3 in Mariotti (1998a) about the
symmetric two-person Nash bargaining solution on a larger domain also follows from
our Theorem 5.3. Likewise, Observation 5.3.1 in Mariotti (1998a) about the nonexis-
tence of a two-person symmetric single-valued solution with the usual properties on
a domain of compact connected problems follows from this result.

Zhou (1996) shows that, on the domain of compact n-person bargaining problems,
any single-valued solution satisfying COV, IIA, and strict individual rationality refines
some Nash bargaining solution. As in Roth (1977) it can be shown that these condi-
tions imply WPO, and thus Zhou’s result follows from our basic results in Sect. 3.
Moreover, Theorem 5.4 shows exactly how this refinement works. This also applies
to Denicolò and Mariotti (2000), who derive a similar result as Zhou (1996) under
somewhat stronger conditions. Their proof is based on a result of d’Aspremont (1985),
characterizing orderings.

For a discussion of Naumova and Yanovskaya (2001) see, in particular, Sect. 5.2.
For the relation with Kaneko and Nakamura (1979) see Sect. 5.1.

To our knowledge the papers mentioned so far are the ones that are most directly
related to our work. Herrero (1989) and Maschler et al. (1988) consider the symmetric
Nash bargaining solution on domains of compact bargaining problems from a more
geometrical point of view, and complement it by a noncooperative game (Herrero
1989) or by a dynamic system (Maschler et al. 1988). Conley and Wilkie (1996) and
Mariotti (1998b) study a different single-valued extension of the symmetric Nash
bargaining solution to non-convex bargaining problems.

7.3 Concluding remarks

The basic distinguishing features of the present paper are the possible non-convexity
of the bargaining problems under consideration and the possible non-continuity of
bargaining solutions. Omitting continuity as a basic requirement for solutions has
enabled us to give a detailed analysis of the consequences of the basic conditions
in this paper, viz. WPO, COV and IIA. The generality of the analysis is indicated

20 The paper also indicates how to extend this result to the n-person case.
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by the fact that much of what is known about bargaining solutions under these three
conditions follows from it.

Our discussion concerning the use of the Axiom of Determinacy versus the Axiom
of Choice may be interpreted as making a case for the former. Accepting the Axiom
of Determinacy leaves the class of iterated Nash bargaining solutions on any domain
containing the domain of finite—or finitely generated—bargaining problems, allowing
considerably more flexibility than is obtained by imposing continuity. The Axiom of
Choice allows for many more bargaining solutions but these can only be obtained by a
construction which cannot be carried out in practice. This point of view is corroborated
by the fact that these additional solutions are not definable.
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A Appendix: basic facts and proofs for the first characterization

Proof of Lemma 3.1 Because all coordinates of x are strictly positive, by WPO and
the non-emptiness of ϕ(x, λy) there exists a μ > 0 such that ϕ(x, λy) = {x} for all
0 < λ < μ. Hence, λ(x, y) > 0. Similarly, because all coordinates of y are positive,
there is a λ > 0 such that ϕ(x, λy) = {λy}. Hence λ(x, y) < ∞. ��
Proof of Lemma 3.2 We only show the first statement. Let λ < λ(x, y) and suppose
that λy ∈ ϕ(x, λy). Take a μ with λ < μ < λ(x, y). Notice that ϕ(λy, μy) = {μy}
by WPO and the non-emptiness of ϕ(λy, μy). Thus, μy ∈ ϕ(x, μy) by transitivity
of ϕ, which contradicts the definition of λ(x, y). Hence, λy /∈ ϕ(x, λy) and then
ϕ(x, λy) = {x} by non-emptiness. ��
Throughout the remainder of this appendix, let ϕ : F → R

n++ be a bargaining solution
that satisfies WPO, IIA and COV.

Clearly, by WPO, x itself is an element of the generalized indifference curve Iϕ(x),
and each ray emanating from the origin into R

n++ intersects this curve at most once.
We show that each ray also intersects this curve at least once.

We need a few more facts about the generalized indifference curve. First, general-
ized indifference curves partition R

n++. Another way of saying this is that generalized
indifference curves are the equivalence classes of an equivalence relation.

Lemma A.1 Let x, y ∈ R
n++ such that y ∈ Iϕ(x). Then Iϕ(x) = Iϕ(y).

Proof

(a) Suppose that z ∈ Iϕ(y). We show that z ∈ Iϕ(x). Take λ > 0.
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(a1) Suppose λ > 1. Then ϕ(y,
√
λz) = {√λz} by Lemma 3.2. So, by COV,

ϕ(
√
λy, λz) = {λz}. However, since y ∈ Iϕ(x), ϕ(x,

√
λy) = {√λy}.

Hence, ϕ(x, λz) = {λz} by transitivity.
(a2) Suppose λ < 1. Then ϕ(y,

√
λz) = {y} by Lemma 3.2. So, by COV,

ϕ(
√
λy, λz) = {√λy}. However, since y ∈ Iϕ(x), ϕ(x,

√
λy) = {x}.

Hence, ϕ(x, λz) = {x} by transitivity.
(b) By (a1) and (a2), λ(x, z) = 1 and hence Iϕ(y) ⊂ Iϕ(x). We show that x ∈ Iϕ(y).

Take λ > 0.
(b1) Suppose λ> 1. Then, since y ∈ Iϕ(x), ϕ(

1
λ

y, x)= {x}. Hence, ϕ(y, λx)=
{λx} by COV.

(b2) Supposeλ< 1. Then, since y ∈ Iϕ(x), ϕ(
1
λ

y, x)={ 1
λ

y}. Hence,ϕ(y, λx) =
{y} by COV.
By (b1) and (b2), λ(y, x) = 1 and x ∈ Iϕ(y). ��

Lemma A.2 For every x ∈ R
n++, Iϕ(x) is closed.

Proof Let (ym)m∈N be a sequence in Iϕ(x) that converges to y.

(a) Take λ > 1. Since ym → y there must be a k ∈ N such that yk < λy. Then there
exists μ > 1 such that μyk < λy also holds. Now, since ϕ(x, μyk) = {μyk} and
ϕ(μyk, λy) = {λy}, we have ϕ(x, λy) = {λy} by transitivity.

(b) Take λ < 1. Since ym → y there must be a k ∈ N such that yk > λy. Then there
exists μ < 1 such that μyk > λy also holds. Now, since ϕ(x, μyk) = {x} and
ϕ(μyk, λy) = {μyk}, we have ϕ(x, λy) = {x} by transitivity.

From (a) and (b) it follows that λ(x, y) = 1 and hence y ∈ Iϕ(x). ��
Lemma A.3 Let a ∈ R

n++ and y ∈ Iϕ(x). Then ay ∈ Iϕ(ax).

Proof Follows immediately from COV. ��
Lemma A.4 Let a ∈ R

n++. Suppose that ax ∈ Iϕ(x). Then aq x ∈ Iϕ(x) for all
q ∈ Q.

Proof Take a ∈ R
n++ and q ∈ Q. Suppose that ax ∈ Iϕ(x).

(a) First we show that ak x ∈ Iϕ(x) for all k ∈ N. Since x, ax ∈ Iϕ(x), this is true
for k = 0, 1. Suppose ak x ∈ Iϕ(x) for 0 ≤ k ≤ l. Since Iϕ(ax) = Iϕ(x) by
Lemma A.1, we have

al+1x = a · al x ∈ Iϕ(ax) = Iϕ(x)

by Lemma A.3. Hence, ak x ∈ I (x) for all k ∈ N.

(b) Next, take a k ∈ N, k �= 0. We show that a
1
k x ∈ Iϕ(x).

(b1) Take λ > 1. Suppose that x ∈ ϕ(x, λa
1
k x). Then, because of COV, multi-

plication by λla
l
k shows that

λla
l
k x ∈ ϕ

(
λla

l
k x, λl+1a

l+1
k x
)
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for all 0 ≤ l ≤ k − 1. So, iterated application of transitivity yields that
x ∈ ϕ(x, λkax). This contradicts the assumption that ax ∈ Iϕ(x). Hence,

ϕ(x, λa
1
k x) = {λa

1
k x}.

(b2) Take λ < 1. Suppose that λa
1
k x ∈ ϕ(x, λa

1
k x). Then, because of COV,

multiplication by λla
l
k shows that

λl+1a
l+1

k x ∈ ϕ
(
λla

l
k x, λl+1a

l+1
k x
)

for all 0 ≤ l ≤ k − 1. So, λkax ∈ ϕ(x, λkax) by transitivity. This contra-

dicts the assumption that ax ∈ Iϕ(x). Hence, ϕ(x, λa
1
k x) = {x}.

From (b1) and (b2) it follows that a
1
k x ∈ Iϕ(x).

(c) Since ax ∈ Iϕ(x), we know that x ∈ Iϕ(ax) by Lemma A.1. Hence, by
Lemma A.3, also a−1x ∈ Iϕ(a−1ax) = Iϕ(x).
From (a), (b) and (c) it follows that aq x ∈ Iϕ(x). ��

Lemma A.5 Let α = (α1, . . . , αn) be as defined in Sect. 3.1. Then, for all x, y ∈ R
n++

we have y ∈ Iϕ(x) if and only if

∏
i

xαi
i =

∏
i

yαi
i .

Proof Define H as the set of vectors y ∈ R
n++ with

∏
i yαi

i = 1. By COV it suffices
to show that Iϕ(e) = H . We prove this as follows. Write b j := λ(a j )a j . Let B be the
collection of vectors in R

n++ that can be written as

n∏
j=1

(b j )μ j

with μ1, . . . , μn ∈ R. First we show that B = H . Then we show that B ⊂ Iϕ(e).
Finally we argue that Iϕ(e) = H .

A1. Take b = ∏n
j=1(b

j )μ j ∈ B. Then

∏
i

bαi
i =

∏
i

⎛
⎝∏

j

(b j
i )
μ j

⎞
⎠
αi

=
∏

i

⎛
⎝∏

j

(λ(a j ) · a j
i )
μ j

⎞
⎠
αi

=
∏

i

∏
j

(λ(a j ) · a j
i )
αiμ j

=
∏

j

∏
i

λ(a j )αiμ j ·
∏

i

∏
j

(a j
i )
αiμ j
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=
∏

j

λ(a j )μ j
∑

i αi ·
∏

i

(ai
i )
αiμi

=
∏

j

λ(a j )μ j ·
∏

i

(
1

2

)αiμi

=
∏

j

λ(a j )μ j ·
∏

i

(
1

2

)μi · 2log λ(ai )

=
∏

j

λ(a j )μ j ·
(∏

i

λ(ai )μi

)−1

= 1,

where the fifth equality follows from the definition of a j , while the sixth equality
follows from both the definition of a j and Lemma 3.3. Hence, b ∈ H .

A2. Conversely, let y ∈ H . So, y ∈ R
n++ and

∏
i yαi

i = 1. We show that there are
μ1, . . . , μn ∈ R such that for all i

yi =
n∏

j=1

(b j
i )
μ j . (1)

Write zi := 2log yi . Since b j
i = λ(a j )a j

i by definition, we have b j
i = λ(a j ) for

all j �= i and bi
i = 1

2λ(a
i ). Thus, taking base 2 logarithms in (1) shows that we

have to find μ1, . . . , μn ∈ R such that for all i

zi = −μi +
∑

j

α jμ j .

Write

A =

⎡
⎢⎢⎢⎣
α1 − 1 α2 · · · αn

α1 α2 − 1 · · · αn
...

...
. . .

...

α1 α2 · · · αn − 1

⎤
⎥⎥⎥⎦ , μ =

⎡
⎢⎣
μ1
...

μn

⎤
⎥⎦ and z =

⎡
⎢⎣

z1
...

zn

⎤
⎥⎦

We show that z = Aμ has a solution. Let Z be the set of vectors x ∈ R
n with∑

i αi xi = 0. Since
∑

i αi = 1, we have dim(Z) = n−1. Further, from A1, each
vector of the form

∏n
j=1(b

j )μ j is an element of H . Taking base 2 logarithms
this implies that each vector of the form Aμ is an element of Z . Thus, Im(A) is a
subspace of Z . However, subtracting the first row of A from its other rows yields
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the matrix

B =

⎡
⎢⎢⎢⎢⎢⎣

α1 − 1 α2 α3 · · · αn

−1 −1 0 · · · 0
−1 0 −1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎦ .

So, dim(Im(A)) = rank(A) = rank(B) ≥ n − 1, and Im(A) = Z . However,
since

∏
i yαi

i = 1, we have
∑

i αi zi = 0 and z is an element of Z . Hence, the
system z = Aμ of linear equations has a solution.

B. We show that B ⊂ Iϕ(e). Take q1, . . . , qn ∈ Q. First we show that
∏k

j=1 b( j)q j ∈
Iϕ(e) for k ≤ n. For k = 1 this follows immediately from Lemma A.4.
Now suppose that

∏k
j=1 b( j)q j ∈ Iϕ(e). Then, by Lemmas A.1, A.3 and A.4,∏k+1

j=1 b( j)q j ∈ Iϕ(b(k + 1)qk+1) = Iϕ(e). Hence, since Iϕ(e) is closed by
Lemma A.2, we obtain B ⊂ Iϕ(e).

C. From A and B we conclude H ⊂ Iϕ(e). However, since each ray in R
n++ ema-

nating from the origin clearly intersects H exactly once, and also intersects Iϕ(e)
exactly once by Lemma 3.1, necessarily Iϕ(e) = H . ��

B Appendix: basic facts for the third characterization

Let I be a (topologically) closed Abelian group. Let L , D and R be an LDR decom-
position of I . In this appendix we write the operation ∗ on I as an addition, +, for
clarity.21 We moreover assume that I is a (closed) subset of R

m . It is easy to see that
in this case I is a linear subspace of R

m of dimension n ≤ m. Write J := L ∩ R.

Theorem B.1 Suppose that L is not empty. Then the set J is a closed (and hence
linear) subspace of I with D ⊂ J . The dimension of J is either n or n − 1.

Proof It is straightforward to show that J is a closed linear subspace of I . We show
that D ⊂ J . Take d ∈ D. Since L is not empty, we can take x ∈ L . Then also 1

k x ∈ L
for every natural number k > 0. So, d + 1

k x ∈ L and d + 1
k x → d as k → ∞.

Therefore d ∈ L . Since −x ∈ R, the same line of reasoning yields d ∈ R. Hence,
D ⊂ J .

Suppose that the dimension of J is k < n − 1. We derive a contradiction. Let T
be the orthogonal space of J in I . Then 0 is the only element of J in T ; and, since
k < n − 1, the dimension of T is at least 2. So, we can take an x ∈ T \ J . Say, x ∈ L .
Then −x ∈ R ∩ T . However, since the dimension of T is at least 2, there exists a
continuous function f : [0, 1] → T \ J such that f (0) = x and f (1) = −x .

Define the image of f by F := { f (λ) | 0 ≤ λ ≤ 1}. Obviously F is path connected.
Then, since the sets F ∩ L and F ∩ R are not empty and form a partition of F , there
must be a point y ∈ F that is a cluster point of both F ∩ L and F ∩ R. Such a point
is necessarily an element of J . Contradiction. ��

21 Nevertheless, we need the following results only in the context of I as a multiplicative linear space.
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The final result in this appendix refers to the canonical coefficients defined in
Sect. 3.3.1.

Lemma B.2 Write Pk−1 := {x ∈ Jk−1 | ∏i x
βk

i
i > 1}. For every k with 2 ≤ k ≤ K ,

either Pk−1 ⊂ Lϕ ∩ Jk−1 or Pk−1 ⊂ Rϕ ∩ Jk−1.

Proof Suppose this is not the case. Then, since Dϕ ⊂ Jk , there is a point x ∈ Pk−1
with x ∈ Lϕ ∩ Jk−1 and a point y ∈ Pk−1 with y ∈ Rϕ ∩ Jk−1. Then there exists a
path22 W from x to y in Pk−1 which starts in Lϕ ∩ Jk−1 and ends in Rϕ ∩ Jk−1, while
it does not intersect Jk . This contradicts the definition of Jk . ��
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