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Abstract
This paper derives the seasonal factors from the US temperature, gasoline price, and
fresh food price data sets using theKalman state smoother and the principal component
analysis. Seasonality in this paper is modeled by the autoregressive process and added
to the random component of the time series. The derived seasonal factors show a
common feature: their volatilities have increased over the last four decades. Climate
change is undoubtedly reflected in the temperature data. The three data sets’ similar
patterns from the 1990s suggest that climate change may have affected the prices’
volatility behavior.

Keywords Kalman state smoother · Seasonal factor · Principal component analysis ·
Climate change · Temperature · Gasoline price · Fresh food price

1 Introduction

Climate change is currently one of themost critical global issues. It affects the physical
world in various ways: sea-level rise, flooding, harsh and extended droughts, extreme
weather events like heat waves and severe tropical storms, changes in the global fauna
and flora, etc. It also has an impact on the economy, as documented by Deke et
al. (2001), Deschênes and Greenstone (2007), Igbal (2022), Nordhaus (1991, 1994,
2019), Stern (2008), Tol (2009, 2011), among others.

Evidence for climate change has originated from scientific research. Masson-
Delmotte et al. (2021) report to IPCC (Intergovernmental Panel on Climate Change)
about the differences in the temperature in the last 170 years. According to them,
global surface temperature has increased by 0.99 ◦C from 1850–1900 to 2001–2020
and by 1.09 ◦C from 1850–1900 to 2011–2020. Moreover, the temperature rise has
been most pronounced since 1980, as shown in Figure 3.1 of Trenberth et al. (2007).
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Using climate proxies such as tree rings, ice cores, fossil leaves, researchers have
reconstructed global temperature for the last 2000 years. Most notably, (Mann et al.
1998, 2009) found using global temperature reconstructed from tree rings, coral, and
other temperature proxies that the twentieth century was warmer than any other time
during the last 400 years. PAGES et al. (2019) present 2000-year-long global mean
temperature reconstructions and conclude that the most significant warming trends
occur during the second half of the twentieth century, highlighting recent decades’
unusual global warming. One can find updates on the most recent changes in global
surface temperature from the GISS (Goddard Institute for Space Studies) Surface
Temperature Analysis (https://data.giss.nasa.gov/gistemp/). GISS provides evidence
for global warming using various kinds of data. The reader is referred to Chapter 6 of
Mathez (2018) for an accessible account of the history of climate change.

The evidence for climate change reported thus far is abundant, as discussed above
but confined to data from Mother Nature. No one has attempted to find evidence for
climate change using data generated by human activities, as far as we know. If the
climate change of the last few decades is truly unusual and vital for humanity’s living
environment, it must also be reflected in economic data.

The purpose of this paper is to try to find evidence for climate change in economic
data. For this purpose, we use the last four decades’ panel data of US gasoline and
fresh food prices and temperature data of several regions in the USA. We focus on
their seasonal variability rather than their trend. There are some intuitive reasons
why climate change makes gasoline and fresh food prices more variable seasonally.
It has been known that climate change has affected not only mean temperatures but
also their variances (see, for example, Olonscheck et al. (2021)). Higher temperature
variability is often believed to bring climate extremes (extended droughts, hot spells,
severe tropical storms, floods, etc.), which can have enormous impacts on agriculture,
forestry and aquafarming (see Katz and Brown 1992). These climate extremes can
cause the supply of agricultural products to fluctuate much, making their prices more
variable seasonally. On the other hand, the variability of mean temperatures affects
the demand side of economic activities too. Travels and leisure activities, for example,
are often affected by temperatures, and their variability can cause the prices of the
products related to those activities to change much seasonally. Gasoline is one of
those products.

The empirical strategy of this paper is to extract the seasonal component from each
time series by using the Kalman state smoother and construct the seasonal factor from
each panel data set by applying the principal component analysis to the collection of the
estimated seasonal components. Variability of the seasonal factor of the temperature
panel data has increased over the last four decades. Furthermore, we find that the
seasonal factors of the gasoline and fresh food price data follow a similar pattern. The
three data sets’ similar patterns from the 1990s suggest that climate change may have
affected the prices’ volatility behavior. However, this conclusion is undoubtedly not
definitive, and further research is needed to confirm or deny it.

The method we use to extract seasonal components differs from the conventional
seasonal adjustment methods adopted by statistical agencies and researchers world-
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wide. The primary purpose of the traditional methods like X12-ARIMA,1 TRAMO
(time series regression with ARIMA noise, missing observations, and outliers), and
SEATS 2 (signal extraction inARIMA time series) is to eliminate seasonality from time
series, while we aremore interested in the seasonal component of the time series in this
paper. In conventional deseasonalization methods, one usually adopts the restriction
that the sum of the seasonal elements is zero over one year. It makes the deseasonalized
time series cohere with the original annual one when they are summed up over the
seasons. On the other hand, this practice implies that seasons and their characteristics
should not impact economic data. This seems unreasonable in the light of ample evi-
dence that climate change affects the economy (see, e.g., Deschênes and Greenstone
2007; Igbal 2022), in particular its agricultural sector. We model the seasonal compo-
nent in this paper to be free of such restrictions because we aim to find the impact of
seasons (or climate change more precisely) on economic data.

The seasonal component of this paper is stochastic and assumed to follow the
seasonal autoregressive model. Stochastic seasonality is not new in the time series
literature and was introduced in Chen et al. (2022), Mirantes et al. (2012, 2013), and
Proietti (2000). They use either stochastic processes based on trigonometric func-
tions or seasonal random walk processes. So and Chung (2014) employ the seasonal
autoregressive model but assumes that the sum of the seasonal elements is zero.

To extract the seasonal component from each time series, we employ the Kalman
state smoother. The seasonal component can be distinguished from the random part
using the Kalman state smoother. We focus on using the Kalman state smoother
because they provide a time series showing smoother behavior than the Kalman filter.
One may consider estimating the seasonal factor by applying the Kalman filtering
method to panel data (cf. Poncela et al. 2021). This procedure, however, requires
inverting large variance-covariance matrices and is not proper for the large data sets
we are dealing within this paper.

This paper is planned as follows. Section 2 introduces the model and estimation
methods. Section 3 reports empirical results. Section 4 provides summary and further
remarks. Appendix I contains mathematical derivations and Appendix II lists the data
used in Sect. 3.

A few words on our notation. 0a, 0a×b and Ib denote the null column vector of
dimension a, the a×b null matrix and the identitymatrix of dimension b, respectively.

2 Themodel and estimationmethods

We are concerned with the unobserved components model for the panel data {yit }
yit = sit + xit , (i = 1, . . . , N ; t = 1, . . . , T ), (1)

where i and t are indices for cross-sectional units (e.g., individuals, firms, countries,
etc.) and time, respectively; and sit and xit are seasonal and random components,

1 See Findley et al. (1998) and Dagum and Bianconcini (2016) for X-12 ARIMA. Pollock (2021) and
Lin20 provide methods that improve on the conventional deseasonalizing methods.
2 See Gomez and Maravall (1996, 1998) for TRAMO and SEATS.
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respectively. Most time series have a trend component, but we assume that the
trend component was already eliminated. We can consider the linear detrending, the
Hodrick–Prescott filter and Hamilton (2018) regression method to eliminate the trend
in the data. We will employ the linear detrending method in Sect. 3. The reason for
this is explained there.

The seasonal component is modeled as

sit = βi si,t−τ + eit , eit ∼ i id (0, σ 2
ei ),

where τ denotes the number of seasons (e.g., τ = 4 for quarterly data). We assume
|βi | < 1 for all i .3 The random component is modeled as either

xit =
p∑

k=1

φik xi,t−k + uit +
q∑

l=1

θilui,t−l , uit ∼ i id (0, σ 2
ui ) (2)

or

�xit =
p∑

k=1

φik�xi,t−k + uit +
q∑

l=1

θilui,t−l , uit ∼ i id (0, σ 2
ui ), (3)

where �xit = xit − xi,t−1. We assume that {xit } is stationary in the former case, and
that {�xit } is so in the latter case. Additionally, we assume that {eit } and {uit } are
independent temporally and cross-sectionally.

Our primary interest lies in estimating the seasonal component, while by contrast
most other studies focus on eliminating it. For our purpose, the Kalman filtering
and smoothing methods are appropriate because they can provide estimates of each
component separately. In Sect. 3, we will apply the Kalman smoothing method to each
individual, univariate time series and obtain the estimates of sit (more precisely, those
of their conditional expectations). Then, we will use the principal component method
to extract a common factor from all of them, which we call the seasonal factor.

2.1 The case of a stationary random component

This subsection deals with the stationary random component (2) for the Kalman filter
and smoother.

2.1.1 State space form

The transition equation for the seasonal component is written as

ξi,t+1 = Viξi t + Eei,t+1, (4)

3 According to some experienced researchers whom the author knows personally, most economic time
series do not seem to have seasonal unit roots, although they show quite persistent behavior. See also Chapter
6 of Choi (2015).
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where

ξi t =

⎛

⎜⎜⎜⎝

sit

βi

⎡

⎢⎣
si,t−τ+1

...

si,t−1

⎤

⎥⎦

⎞

⎟⎟⎟⎠ , Vi =
[
0τ−1 Iτ−1
βi 0′

τ−1

]
, E =

(
1

0τ−1

)
,

and that for the random component is

ςi,t+1 = Wiςi,t +Uiui,t+1, (5)

where

ςi t =

⎡

⎢⎢⎢⎢⎢⎣

xit
φi2xi,t−1 + ... + φir xi,t−r+1 + θi1uit + ... + θi,r−1ui,t−r+2
φi3xi,t−1 + ... + φir xi,t−r+2 + θi2uit + ... + θi,r−1ui,t−r+2

...

φir xi,t−1 + θi,r−1ui,t

⎤

⎥⎥⎥⎥⎥⎦
,

Wi =

⎡

⎢⎢⎢⎣

φi1
... Ir−1

φi,r−1
φir 0′

r−1

⎤

⎥⎥⎥⎦ , Ui =

⎛

⎜⎜⎜⎝

1
θi1
...

θi,r−1

⎞

⎟⎟⎟⎠ ,

and r = max(p, q + 1). In the special case r = 1, Wi = φi1 and Ui = 1.
Let

αi t = [
ξ ′
i t ς ′

i,t

]′
,

Ti =
[

Vi 0τ×r

0r×τ Wi

]
,

ηi t =
(
ei,t+1
ui,t+1

)
, Ri =

⎡

⎣
1 0

0τ−1 0τ−1
0r Ui

⎤

⎦ .

Putting (4) and (5) together, we may write model (1) in state space form as

yit = Zαi t , Z = [1 0′
τ−1 1 0

′
r−1],

αi,t+1 = Tiαi t + Riηi t , ηi t ∼ i id (02, Qi ), Qi =
[

σ 2
ei 0
0 σ 2

ui

]
. (6)

2.1.2 Kalman filter and state smoother

This Subsubsection briefly introduces the Kalman filter and state smoother for model
(6) with a stationary random component, referring the reader to Durbin and Koop-
man (2012) for the detailed explanations on these procedures. The Kalman filter is
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recursions for calculating ai,t+1 = E(αi,t+1 | yit , ..., yi1) and Pi,t+1 = Var(αi,t+1 |
yit , ..., yi1), and the state smoother is those for α̂i,t+1 = E(αi,t+1 | yiT , ..., yi1) and
Vi,t+1 = Var(αi,t+1 | yiT , ..., yi1).

The initial state vector is written as

αi1 = ai + λi0,

where ai = 0τ+r and λi0 ∼ N (0τ+r ,i0). Due to the assumed independence of {eit }
and {uit }, we may write

i0 =
[

Si0 0τ×r

0r×τ Xi0

]
. (7)

Since {sit } and {xit } are weakly stationary, Si0 and Xi0 should satisfy the equations

Si0 = Vi Si0V
′
i + σ 2

ei

[
1 0′

τ−1
0τ−1 0(τ−1)×(τ−1)

]
,

Xi0 = Wi Xi0W
′
i + σ 2

uiUiU
′
i .

Solving these equations for Si0 and Xi0 is not easy in most cases. Alternatively, we
may use the linear process representations of ξi t and ςi t to obtain Si0 and Xi0 in
practice.

The variance of αi1 is given as Pi1 = i0, and the Kalman filter is

vi t = yit − Zait , Fit = Z Pit Z
′,

ai,t+1 = Tiai,t + Kitvi t , Pi,t+1 = Ti Pit L
′
i t + Ri Qi R

′
i , (8)

with ai1 = 0τ+r , Kit = Ti Pit Z ′F−1
i t and Lit = Ti − Kit Z . The state smoother is

written as

α̂i t = ait + Pitri,t−1, ri,t−1 = Z ′F−1
i t vi t + L ′

i t ri t ,

Vit = Pit − Pit Ni,t−1Pit , Ni,t−1 = Z ′F−1
i t Z + L ′

i t Nit Lit , (9)

where riT and NiT are the null vector and matrix, respectively.
The log-likelihood function for the estimation of unknown parameters is

log L(yi1, ..., yin) = c − 1

2

n∑

t=1

(ln |Fit | + v′
i t F

−1
i t vi t ),

where c is a constant. The maximum likelihood estimators of the unknown parameters
βi , σ

2
ei , φi1, ..., φi p, θi1, .., θ1q and σ 2

ui are obtained by maximizing this function.
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2.2 The case of a random component with a unit root

This subsubsection considers the Kalman filter and state smoother for model (6) with
the random component (3) having a unit root. We will use the diffuse initialization for
the random component. Some US time series seem to have two unit roots (cf. Choi
and Jeong 2020), but extending the case of a unit root to that of double unit roots is
straightforward and will be mentioned very briefly in due course.

2.2.1 State space form

Only the parts related to the random component need to be changed in the state space
form. Letting x∗

i t = �xit , the random component in the state vector is written as

ς̃i t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

xi,t−1
x∗
i t

φi2x∗
i,t−1 + · · · + φir x∗

i,t−r+1 + θi1uit + · · · + θi,r−1ui,t−r+2

φi3x∗
i,t−1 + · · · + φir x∗

i,t−r+2 + θi2uit + · · · + θi,r−1ui,t−r+2
...

φir x∗
i,t−1 + θi,r−1ui,t

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

which follows the dynamic relation

ς̃i,t+1 = W̃iςi,t + Ũi ui,t+1,

with

W̃i =

⎡

⎢⎢⎢⎢⎢⎣

1 1 0′
r−1

φi1

0r
... Ir−1

φi,r−1
φir 0′

r−1

⎤

⎥⎥⎥⎥⎥⎦
and Ũi =

⎛

⎜⎜⎜⎜⎜⎝

0
1
θi1
...

θi,r−1

⎞

⎟⎟⎟⎟⎟⎠
.

If there are two unit roots in the random component, xi,t−1 and �xi,t−1 should be the
first two elements of ςi t and x∗

i t should be redefined as x∗
i t = �2xit . Some obvious

changes should follow for Wi and Ui too.
The state space form is now written as

yit = Zαi t , Z = [(1 0′
τ−1

) (
1 1 0′

r−1

)]
αi,t+1 = Tiαi t + Riηi t , ηi t ∼ i id (02, Qi ), Qi =

[
σ 2
ei 0
0 σ 2

ui

]
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with

αi t = [
ξ ′
i t ς̃ ′

i,t

]′
,

Ti =
[

Vi 0τ×(r+1)

0(r+1)×τ W̃i

]
,

ηi t =
(
ei,t+1
ui,t+1

)
, Ri =

⎡

⎣
1 0

0τ−1 0τ−1

0r+1 Ũi

⎤

⎦ .

2.2.2 Exact initial Kalman filter and state smoother

The initial state vector is written as

αi1 = ai + Aδi + Bλi0,

where ai = 0τ+r+1, A =
⎡

⎣
0τ

1
0r

⎤

⎦ , δi = xi1, B =
⎡

⎣
Iτ 0τ×r

0′
τ 0′

r
0r×τ Ir

⎤

⎦ and λi0 ∼

N (0τ+r ,i0) with i0 defined by Eq. (7). We assume δi ∼ N (0, κi ) with κi → ∞.
This assumption, together with the initial state vector given above, constitutes the
diffuse initialization of the filter. See Durbin and Koopman (2012)’s Chapter 5 for the
details of the diffuse initialization.

The variance of αi1 is given as

Pi1 = κi Pi,∞,1 + Pi,∗,1, (10)

where Pi,∞,1 = AA′ and Pi,∗,1 = Bi0B ′. Analogously to (10), we have

Pit = κi Pi,∞,t + Pi,∗,t ,

where P∞,t and P∗,t do not depend on κ . For t > d (a positive integer), we should
have Pi,∞,t = 0 under the assumption κi → ∞. Otherwise, it is a contradiction to the
finiteness of Pit . For t > d, the usual Kalman filter (8)applies.

As κi → ∞, we have the following recursive relations for t = d, . . . , 1

Pi,∞,t+1 = Ti Pi,∞,t L
(0)′
i t ,

Pi,∗,t+1 = Ti P∞,t L
(1)′
i t + Ti Pi,∗,t L

(0)′
i t + Ri Qi R

′
i , (11)

where

L(0)
i t = Ti − K (0)

i t Z , L(1)
i t = −K (1)

i t Z ,

K (0)
i t = Ti Pi,∞,t Z

′F (1)
i t , K (1)

i t = Ti Pi,∗,t Z
′F (1)

i t + Ti Pi,∞,t Z
′
t F

(2)
i t ,

F (1)
i t = F−1

i,∞,t , F (2)
i t = −F−1

i,∞,t Fi,∗,t F
(1)
i t ,

Fi,∞,t = Z Pi,∞,t Z
′, Fi,∗,t = Z Pi,∗,t Z

′.
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In addition, as κi → ∞,

a(0)
i,t+1 = Ta(0)

i t + K (0)
i t v

(0)
i t (12)

with a(0)
1 = a and v

(0)
t = yt − Zta

(0)
t . The detailed derivations of (11) and (12) can

be found in Koopman (1997) and Durbin and Koopman (2012).
For model (1), we have Pi,∞,2 = 0(τ+r+1)×(τ+r+1) as reported in Appendix I.

Thus, for t = 2, 3, . . . , the usual Kalman filter (8) can be applied using ai2 and Pi,∗,2
(given in Appendix I) as initial variables.

Next, we consider the exact initial state smoother. As κi → ∞, we have for
t = d, . . . , 1

α̂i t = a(0)
i t + Pi,∗,t r

(0)
i,t−1 + Pi,∞,t r

(1)
i,t−1,

where

r (0)
i,t−1 = L(0)′

i t r (0)
i t , r (0)

id = rid ,

r (1)
i,t−1 = Z ′F (1)

i t v
(0)
i t + L(0)′

i t r (1)
i t + L(1)′

i t r (0)
i t , r (1)

id = 0,

and rid is obtained from (9) below.
Let Vit = Var(αi t | yiT , . . . , yi1). Letting κi → ∞, the smoothed state variance

for t = d, . . . , 1 is given by

Vit = Pi,∗,t − Pi,∗,t N
(0)
i,t−1Pi,∗,t − (Pi,∞,t N

(1)
i,t−1Pi,∗,t )

′

−Pi,∞,t N
(1)
i,t−1Pi,∗,t − Pi,∞,t N

(2)
i,t−1Pi,∞,t ,

where

N (0)
i,t−1 = L(0)′

i t N (0)
i t L(0)

i t ,

N (1)
i,t−1 = Z ′F (1)

i t Z + L(0)′
i t N (1)

i t L(0)
i t + L(1)′

i t N (0)
i t L(0)

i t ,

N (2)
i,t−1 = Z ′F (2)

i t Z + L(0)′
i t N (2)

i t L(0)
i t + L(0)′

i t N (1)
i t L(1)

i t

+L(1)′
i t N (1)

i t L(0)
i t + L(1)′

i t N (0)
i t L(1)

i t

with N (0)
id = Nid and N (1)

id = N (2)
id = 0. For t > d, the usual state smoother (9) can

be used with ai,d+1 = a(0)
i,d+1 and Pi,d+1 = Pi,∗,d+1. Because d = 1 for model (1),

the usual state smoother can be used for t = 2, 3, . . ..
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The diffuse log-likelihood function for the estimation of the unknown parameters
βi , σ

2
ei , φi1, . . . , φi p, θi1, . . . , θ1q and σ 2

ui is

log L(yi1, . . . , yin) = c − 1

2
ln

∣∣Fi,∞,1
∣∣ − 1

2

n∑

t=2

(ln |Fit | + vi t F
−1
i t vi t )

= c − 1

2

n∑

t=2

(ln |Fit | + vi t F
−1
i t vi t ),

since Fi,∞,1 = 1 as shown inAppendix.Weobtain themaximum likelihood estimators
of the unknown parameters bymaximizing this function with respect to the unknowns.

2.3 Estimation of seasonal factors

Suppose that we have the estimates of sit , ŝi t . We assume that ŝi t follows the factor
model with the number of factors being equal to one. Then, we may write

ŝi t = li st + vi t ,

where li is the factor loading, st is the seasonal factor and vi t is the error term (cf. Bai
and Ng 2002). Note that li and st are not identified because li st = l∗i s∗

t with l∗i = clt
and s∗

t = st/c for a nonzero constant c. In matrix notation, this model is written as

X = SL ′ + v, (13)

where X =
⎡

⎢⎣
ŝ11 · · · ŝ1N
...

...

ŝT1 · · · ŝT N

⎤

⎥⎦ , S =
⎡

⎢⎣
s1
...

sT

⎤

⎥⎦ , L =
⎡

⎢⎣
l1
...

lN

⎤

⎥⎦ and v =
⎡

⎢⎣
v11 · · · v1N
...

...

vT 1 · · · vT N

⎤

⎥⎦.

The principal component estimator of the factor space, denoted as Ŝ, is
√
T times

the eigenvector corresponding to the largest eigenvalue of the matrix XX ′ (with the
standardization Ŝ′ Ŝ = T ), and that of the factor loading is obtained by L̂ = 1

T X ′ Ŝ.

3 Empirical results

This section reports some empirical results applying themethods described in previous
sections. The datawe use include temperature, gasoline price, and fresh food price data
of US temperatures are most directly connected to climate change. Therefore, their
behaviors need to be investigated and compared to those of any other time series data
being studied concerning climate change. Gasoline prices are deemed to be affected
by climate change because they are used for heating, transportation, and traveling. For
example, there tend to be more travelers if spring comes earlier than usual, prompting
more gasoline consumption. The supply of fresh food is also expected to be influenced
by climate change. For example, higher global temperature will increase the supply
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of tropical fruits in the long run, while that of fruits from colder regions will decrease.
This section will first study the US temperature data and compare its behavior with
those of the US gasoline price and fresh food price data. The sampling period of
the three data sets is commonly January 1980–June 2019, and they are seasonally
unadjusted, nominal, monthly time series. We deliberately excluded data from 2020
and 2021 because they are likely to be affected by Covid-19 and may contain many
unhelpful outliers for data analysis.

The data sets considered in this section are panel data. This section’s analysis aims
to extract the seasonal factors from the panel data and compare their properties. To
this end, we take the following steps for each data set:

(i) Regress each time series in the data set on the time polynomial with order zero or
one and calculate residuals.

(ii) Obtain the Kalman state smoother of the seasonal component for each residual
series from the previous step.

(iii) Estimate the seasonal factor from the Kalman state smoother using the principal
component analysis as in Bai and Ng (2002).

In Step (i), we used the time polynomial with order one when there are noticeable
upward trends in the data. Besides this, we can consider two other methods to detrend
the data: theHodrick–Prescott filter andHamilton (2018) regressionmethod.However,
according to Hamilton (2018), the Hodrick–Prescott filter may induce spurious cycles
in the seasonal and random components; it is not yet known how Hamilton (2018)
methods work for seasonal data. Thus, we used the linear detrending method for the
price data sets studied below.

In Step (ii), we focused on the Kalman state smoother because they show much
more stable behavior than the Kalman filters. The Kalman filters often generated series
with many outliers according to unreported results. In addition, we used BIC for the
model selection of the random component.

More precisely, the seasonal factor fromStep (iii) estimates the space of the seasonal
factor because that is what the principal component analysis delivers for the factor
model. Thus, we may use any multiples of the seasonal factors from Step (ii) in
practice. We examined whether the seasonal factor and the Kalman state smoothers
move close to each other, following a reviewer’s suggestion, and found that they indeed
do so.

3.1 Temperature

The temperature data of four US cities we use—Boston, Los Angeles, Austin TX, and
Springfield IL—were taken from the National Centers for Environmental Informa-
tion (https://www.ncdc.noaa.gov). They are the average temperatures of each month.
Although it is widely known that temperatures have gone up globally over the last
one hundred years, the data do not show any noticeable trends during the 40 years of
the sampling period. Thus, the data were only demeaned for subsequent analysis. In
addition, we assumed the presence of a unit root in the random component because

123

https://www.ncdc.noaa.gov


2950 I. Choi

Fig. 1 Seasonal factor from average temperatures

Fig. 2 Variances of seasonal factor from average temperatures

Fig. 3 Seasonal factor from gasoline prices

we could obtain a better fitting of the data by doing so.4 The Kalman state smoother
sometimes show quite irregular behavior under the stationarity assumption.

We plot the seasonal factor from the 4 Kalman state smoother in Fig. 1. The figure
indicates that the volatility of the time series changes over time: the series appears to
be more volatile during the last 15 years or so. The figure is typical of seasonal time
series because regular peaks and troughs are observed. But the time series in the figure
is also atypical seasonal time series because similar patterns are not repeated. This
aspect stems from the stochastic seasonal component modeled uniquely in this paper.
If the seasonal factors show identical patterns over time, they would not have much to
tell about climate change.

Figure 1 indicates that the seasonal factor may have a variance that grows with
time. To investigate this, we drew empirical variances of the seasonal factor in Fig. 2
using the rolling widows of the length of 120 months. The time difference between
the adjacent windows was set at 12 months. The horizontal axis of Fig. 2 denotes
the endpoints of the sampling period of each window. As we can expect from Fig. 1,
the rolling variances of the seasonal factor are shown to increase since the 1990s in
Fig. 2. Significant aspects of climate change are higher temperatures themselves and
greater volatilities of temperatures, which often bring unexpected weather conditions
like flooding and hurricanes. Figure 2 squares with these latter historical observations.

4 When stationarity is assumed for the random component, we often obtained ill-behaved Kalman state
smoother having many outliers. In addition, higher values of BIC are observed for some temperature
data sets. In the literature on climate change, some authors argued for the presence of a unit root in the
temperature; see Chang et al. (2020) and Kaufmann et al. (2013), among others.
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Fig. 4 Variances of seasonal factor from gasoline prices

Fig. 5 Seasonal factor from food prices

The patterns in Figs. 1 and 2, however, were obtained by using only the four areas’
temperature data in the USA. Whether they can be repeated in other regions, as asked
by one of the reviewers, is an important question we need to pursue in the future.

3.2 Gasoline prices

We performed the same analysis as the previous subsection using the 13 US gasoline
price time series taken from the FRED (https://fred.stlouisfed.org/). The list of the
data is reported in Table A.1 in Appendix II. The data contain average, seasonally
unadjusted monthly prices of leaded and unleaded types of gasoline in various parts
of the USA. Since all the time series appear to have upward trends, we used the time
polynomial of order one in Step (i) above. Moreover, we assumed the presence of a
unit root in the random component because most time series of nominal prices are
known to have a unit root.

We plot the seasonal factor from the 13 Kalman state smoother in Fig. 1. The
figure shows that the time series become more volatile beginning from 1999 and that
the volatility level has increased since then. The figure also displays regular peaks
and troughs, as in Fig. 1. Next, we drew rolling variances of the seasonal factor in
Fig. 4 using the same methods as Fig. 2. The seasonal factor’s rolling variances have
increased since the 1990s in Fig. 4, which is quite similar to Fig. 2.

3.3 Fresh food prices

The fresh food price data we use were taken from the FRED (https://fred.stlouisfed.
org/) and contain average, seasonally unadjusted monthly prices of 14 food items. The
list of the data is reported in Table 2 in Appendix II. The food prices are those of fruits
and vegetables in various parts of the USA. The same item has different prices in each
region but does not differ much.
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Fig. 6 Variances of seasonal factor from food prices

All the data show noticeable upward trends. So we used the time polynomial of
order one in Step (i) above. Additionally, we assumed the presence of a unit root in
the random component because most time series of nominal prices are known to have
a unit root.

We plot the seasonal factor from the 14 Kalman state smoothers in Fig. 5. We find
from this figure that the seasonal factor shows typical seasonal patterns and displays
more wild behavior over time. Next, we drew rolling variances of the seasonal factor
in Fig. 6 using the same methods as the previous subsections. The seasonal factor’s
rolling variances have increased steadily since 1980. Both Figs. 4 and 6 show an
upward trend. The value of the correlation coefficient between the two sets of the
variances is 0.77, confirming their similar patterns.

4 Summary and further remarks

We have derived the seasonal factors from the US temperature, gasoline price, and
fresh food price data sets using theKalman state smoother and the principal component
analysis. They have a common feature: their volatilities have increased over the last
four decades. Climate change is undoubtedly reflected in the temperature data. It is
uncertain yet that climate change caused the volatility behaviors of the price data sets.
However, the three data sets’ similar patterns from the 1990s suggest that climate
change may have affected the prices’ volatility behavior. We need to pursue further
studies to confirm their relationship.
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Appendix I: Derivation of ai2 and Pi,∞,2 for the unit root case

Here, X(a, b) and X(1) denote the (a, b)th element and the first column of the matrix
X , respectively. We will use almost the same notation as in Durbin and Koopman
(2012).
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We have by the given assumptions

ai1 = 0τ+r+1, Pi,∞,1 = AA′ =
⎡

⎣
0τ×τ 0τ 0τ×r

0′
τ 1 0′

r
0r×τ 0r 0r×r

⎤

⎦

and

Pi,∗,1 = Bi0B
′ =

⎡

⎣
Si0 0τ 0τ×r

0′
τ 0 0′

r
0r×τ 0r Xi0

⎤

⎦ .

Using these, we obtain

Fi,∞,1 = Z Pi,∞,1Z
′ = 1,

Fi,∗,1 = Z Pi,∗,1Z
′ = Xi0(1, 1) + Si0(1, 1)

Mi,∞,1 = Pi,∞,1Z
′ =

⎡

⎣
0τ

1
0r

⎤

⎦ , Mi,∗,1 = Pi,∗,1Z
′ =

⎡

⎣
Si0(1)
0

Xi0(1)

⎤

⎦ ,

K (0)
i1 = Ti Mi,∞,1F

−1
i,∞,1 =

⎡

⎣
0τ

1
0r

⎤

⎦ ,

L(0)
i1 = Ti − K (0)

i1 Z =
⎡

⎣
Vi 0τ 0τ×r(−1 0′

τ−1

)
0 0′

r
0r×τ 0r Wi

⎤

⎦ ,

K (1)
i1 = Ti Mi,∗,1F

−1
i,∞,1 + Ti Mi,∞,1(−F−2

i,∞,1Fi,∗,1),

and

L(1)
i1 = −K (1)

i1 Z .

These results are used to derive

ai2 = K (0)
i1 v

(0)
i1 =

⎡

⎣
0τ

yi1
0r

⎤

⎦ ,

Pi,∞,2 = Ti Pi,∞,1L
(0)′
i1 = 0(τ+r+1)×(τ+r+1)

and

Pi,∗,2 = Ti Pi,∞,1L
(1)′
i1 + Ti Pi,∗,1L

(0)′
i1 + Ri Qi R

′
i .

123



2954 I. Choi

Appendix II: Data list

Table 1 List of gasoline price data

Series ID Title

APU000074714 Unleaded regular in US City Average

APU00007471A All types in US City Average

APU030074714 Unleaded regular in the South Census Region-Urban

APUS11A74714 Unleaded regular in Boston-Cambridge-Newton, MA-NH (CBSA)

APUS12A74714 Unleaded regular in New York-Newark-Jersey City, NY-NJ-PA
(CBSA)

APUS12A7471A All types in New York-Newark-Jersey City, NY-NJ-PA (CBSA)

APUS12B74714 Unleaded regular in Philadelphia-Camden-Wilmington,
PA-NJ-DE-MD (CBSA)

APUS37A7471A All types in Dallas-Fort Worth-Arlington, TX(CBSA)

APUS37B74714 Unleaded regular in Houston-The Woodlands-Sugar Land, TX
(CBSA)

APUS49A74714 Unleaded regular in Los Angeles-Long Beach-Anaheim, CA
(CBSA)

APUS49A7471A All types in Los Angeles-Long Beach-Anaheim, CA (CBSA)

APUS49B74714 Unleaded regular in San Francisco–Oakland–Hayward, CA
(CBSA)

APUS35B7471A All types in Miami-Fort Lauderdale-West Palm Beach, FL (CBSA)

The following table contains the list of gasoline price data studied in Sect. 3.2. The original source of all
the series is the US Bureau of Labor Statistics, and their units are US dollars. The prices denote cost per
gallon

Table 2 List of fresh food price data

Series ID Title

APU0000712211 Potatoes, white (Cost per Pound) in US City Average

APU0000712311 Tomatoes, field grown, Per Lb. in US City Average

APU0100711211 Bananas, PerLb. in Northeast Urban

APU0100711411 Grapefruit, PerLb. in Northeast Urban

APU0200711211 Bananas, PerLb. in Midwest Urban

APU0200711411 Grapefruit, PerLb. in Midwest Urban

APU0200711412 Lemons, PerLb. in Midwest Urban

APU0300711211 Bananas, PerLb. in South Urban

APU0300711411 Grapefruit, PerLb. in South Urban

APU0300711412 Lemons, PerLb. in South Urban

APU0300712211 Lettuce, Iceberg, PerLb. in South Urban

APU0400711211 Bananas, PerLb. in West Urban

APU0400711411 Grapefruit, PerLb. in West Urban

APU0400711412 Lemons, PerLb. in West Urban

The following table contains the list of fresh food price data studied in Sect. 3.3. The original source of all
the series is the US Bureau of Labor Statistics, and their units are US dollars
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