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Abstract
This paper examines the efficiency of fourmajor COVID-19 social distancing policies:
(i) shelter-in-place orders (SIPO), (ii) non-essential business closures, (iii) mandatory
quarantine for travelers, and (iv) bans on large gatherings. Results suggest that the
average US state is highly inefficient in producing the fraction of the population that
does not have COVID-19 without social distancing policies put in place. We find that
having any of the four major social distancing policies increases conditional efficiency
by 9.7 (9.5) percentage points in the first 100 days (full sample). This corresponds
to 57 (172) fewer total COVID-19 cases per 100,000 population in the first 100 days
(full sample). We also find that population density accounts for a majority of uncondi-
tional state inefficiency. Evidence suggests considerable heterogeneity in conditional
efficiency improvement, indicating that no uniform national social distancing policy
would have been more effective; more effective strategies would have been to target
more densely populated areas. Conditional efficiency regressions suggest that bans
on large gatherings were the most effective policies, with SIPOs and non-essential
business closures having smaller impacts. States that implemented social distancing
policies except mandatory quarantine for traveler policies were highly effective for the
first 100 days, but had less effectiveness over the full sample. There is also preliminary
evidence that premature revocations of social distancing policies reduced conditional
efficiency, leading to COVID-19 case spikes.
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1 Introduction

The COVID-19 pandemic has led to unprecedented losses of life, and one of the
worst global recessions in decades, with the USA taking center stage as the country
with the largest number of deaths, and one of the highest per capita cumulative death
rates (Bilinski and Emanuel, 2020). The early onset of the pandemic gave rise to
reactionary mitigation measures across the world, ranging from outright international
border closures to various types of social distancing orders at local levels. Inmid-April,
to reduce the burden of COVID-19 on the healthcare system as well as to mitigate
its spread, the USA began implementing various social distancing policies, including
shelter-in-place orders, school closures, bans on large gatherings, seating limits in bars
and restaurants, mask mandates, and more, with nearly 95 percent of the American
public being affected by state at home orders (Baek et al. 2020). The burgeoning
literature on social distancing policies and their effectiveness in curbing the spread
of COVID-19 is not clear. Some studies (Gibson, 2020; Homburg, 2020; Williams
et al., 2021) find that lockdowns had no impact on COVID-19 mortality in a variety
of countries, while others have found that social distancing policies have generally
been credited with a reduction in the spread of COVID-19 (Abouk and Heydari, 2020;
Courtemanche et al., 2020;Dave et al., 2020a; Friedson et al., 2020), these containment
measures had detrimental economic impacts. Hence, the role of policy makers is to
strike a delicate balance betweenmitigating the loss of life versus the economic cost of
shutdowns (Acemoglu et al. 2020), as well as to establish the most efficient measures
of controlling the pandemic (Ibrahim et al., 2020).

Without the availability of vaccines and pharmacological treatments at the start of
the pandemic, social distancing policies became the first line of response. Since it was
up to states regardingwhich policies to implement, there was substantial heterogeneity
in the timing and type of policies, with shelter-in-place orders being the most common
containment measure. California was the first state to implement a shelter-in-place
order (SIPO) on March 19, 2020 and within a month, another 39 states followed suit
(Dave et al., 2020a). Additional complimentary policies adopted by states included
school closures, bans on large gatherings, entertainment venue closures, restricting
dine-in in restaurants, etc. (Courtemanche et al. 2020). Recent evidence suggests that
some of these policies, such as shelter-in-place orders, have been more successful
than others (e.g. bans on large gatherings and school closures) (Abouk and Heydari,
2020; Andersen, 2020; Courtemanche et al., 2020). Some of these policies, and most
specifically the shutdowns, however, have been linked to negative economic effects
(Baek et al., 2020; Baker et al., 2020; Coibion et al., 2020; Mulligan, 2020).

While recent literature has primarily focusedon examining the casual effect of social
distancing policies, emerging research has recognized the need to examine these poli-
cies in the context of efficiency analysis. For example, works by Ibrahim et al. (2020),

123



The efficiency of COVID cases to COVID policies: a robust conditional… 2905

Shirouyehzad et al. (2020), and Breitenbach et al. (2020) rely on a non-parametric data
envelopment analysis (DEA) methodology to analyze the cross-country efficiency of
contagion control, pointing out that many nations were not efficient in utilizing their
resources to “flatten the curve,” including the USA.

We are not aware of any studies within the US that analyze the efficiency of state-
level social distancing policies. Hence, the goal of this study is to contribute to the
ongoing discussion on designing the most efficient policies. We focus on four of the
most commonly analyzed social distancing policies: shelter-in-place orders (SIPO),
non-essential business closures, mandatory quarantines for travelers, and bans on large
gatherings. SIPO’s, also known as stay-at-home orders, require residents to stay at
home for activities that are deemed non-essential. Residents, however, can engage in
essential activities such as buying food, caring for others, travelling towork, exercising,
etc. (Castaneda and Saygili 2020; Dave et al. 2020a, 2020b). SIPO policies tend to be
American-specific. The term “lockdowns” has been used by the media to describe the
restriction on movement of people in attempts to mitigate COVID-19 in Europe and
China. While the terms are not technical they generally have the same meaning, but
might vary based on their severity or scope. For example, a major difference is that
shelter-in-place orders in the USA were regionally based, determined by localities or
states. Lockdown orders in non-US countries were (for the most part) determined at
the national level, and had significantly higher penalties for violators.

We rely on newer non-parametric order-m efficiency estimators developed by
Cazals et al. (2002), and estimate the efficiency of US states, both unconditionally and
conditionally, based on these four social distancing policies. Our estimation technique
allows us to circumvent technical issues pertaining to both parametric estimators and
non-parametric DEA estimator used in previous research. Our technique also allows us
to address pertinent and relevant policy issues as to the best and most efficient course
of action to take when designing policies to battle future pandemics. We estimate
efficiency over the first 100 days, as well as a full 185 day sample.1

Our results extend the literature by providing an insight as to which policies may
be more effective in combatting future pandemics. We first establish that the aver-
age US state was considerably inefficient in preventing the COVID-19 epidemic.2

Unconditionally, we see that in the first 100 days (full 185 day sample) of the COVID-
19 pandemic, the average US state was 38.6 (36.8) percent inefficient in the output
orientation. This suggests that there were 750,000 (over 2 million) more COVID-19
cases than there should have been in the first 100 days (full 185 day sample). This
also suggests that there is considerable inefficiency, even after controlling for popula-
tion density. Importantly, even if we use methods to adjust for uncounted COVID-19
cases, the average US state was 32.6 (33.9) percent inefficient in the first 100 days
(full 185 day sample).

1 We choose the first 100 days since this is a theme used in the literature and politics. We also note that
around day 100 is when the US eclipsed 50,000 deaths and 1,000,000 cumulative COVID-19 cases. We
stop after 185 days because California (and other states) started to adopt modified SIPO policies (such as
the colored tier system in California) after this time.
2 Other explanations for the apparent inefficiency of the average US state could related to unobserved or
omitted variables not controlled by the econometrician. For instance, Millimet and Parmeter (2021) note
that there is considerable undercounting of both COVID-19 cases and deaths.
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Second, we find that there exists considerable state-level heterogeneity in ineffi-
ciency. In the first 100 days (full sample), California was the most inefficient state in
the output direction, being 43.3 (42.0) percent inefficient. Other early hard-hit states,
including New York andWashington, were comparably inefficient in the output direc-
tion. On the other hand, relatively less populated states like South Dakota and North
Dakota were the most efficient states unconditionally, even though both were around
34 (30) percent inefficient unconditionally in the output direction in the first 100 days
(full sample).

Third, we find that a significant amount of the unconditional inefficiency of states
due toCOVID-19 is related to population density.3 For instance, California’s efficiency
improves by 18.3 (21.0) percentage points after controlling for population density in
the first 100 days (full sample). Given that California had 135,000 (718,000) total
COVID-19 cases 100 days (full sample) after the start of the pandemic, if California
had a population density more similar to North or South Dakota, there would have
been nearly 25,000 (100,000) fewer total COVID-19 cases by this date. We also see
that the impact of population density is much less in less densely populated states.

Fourth, we find that in the first 100 days (full sample), having any social distancing
policy led to conditional efficiency improving by 9.7 (9.5) percentage points, using
our estimates where we do not control for population density.4 Having a SIPO policy
alone led to conditional efficiency improving by 7.9 (4.8) percentage points. Having
any social distancing policy, therefore, led to 57 (172) fewer total COVID-19 cases
per 100,000 population in the first 100 days (full sample). Given that there were 588.7
(1,184.2) total COVID-19 cases in the first 100 days (full sample), this suggests con-
siderable benefits in bending the COVID-19 curve from social distancing policies.
Our results also hold if we utilize COVID-19 test rates per million population, sug-
gesting that increased testing would not have mitigated the pandemic. Fifth, we find
that conditional efficiency improvements reduced over time; the likeliest explanations
were either behavioral noncompliance, where individuals and businesses chose to
flaunt rules the longer they were in place, or states were too premature in revoking
their policies, leading to explosions in case rates. Sixth, using a quasi difference-in-
difference methodology, we find evidence that premature revocation of COVID-19
social distancing policies led to reductions in conditional efficiency, suggesting that
states relaxed COVID-19 policies too soon.

Seventh, partial regression plots suggest that conditional efficiency improved hav-
ing a SIPO policy, a ban on large gatherings, and/or non-essential business closures;
on the other hand, mandatory quarantines for travelers were ineffective in combat-
ting COVID-19, with productivity worsening in states that implemented these social
distancing policies. In fact, bans on large gatherings were the most effective social
distancing policy put into place. SIPO policies alone were effective in curbing the
spread of COVID-19; this suggests that having these policies in combination with
others reduced their efficacy. Lastly, we find that our results are qualitatively similar
if we use the unadjusted COVID-19 case data from our main efficiency estimates,

3 The inclusion of population density as a control variable is contested. We provide a discussion on this in
the “Data and Theory” section of the paper.
4 We report these estimates because these will be the most conservative. There is also debate as to whether
population density should be accounted for.
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or the methods used by Millimet and Parmeter (2021) to adjust for uncounted cases.
We find that conditional efficiency improvements using the “adjusted” data are about
70-percent that of the unadjusted data, suggesting that slightly over a quarter of inef-
ficiency is related to noise from uncounted COVID-19 cases. However, the similarity
in results using the unadjusted or adjusted COVID-19 case data is analogous to the
results from Orea and Alvarez (2022) and Orea et al. (2021), further providing proof
for our analysis.

The reminder of the paper is organized as follows. Section 2 compiles a list of
previous literature, while Sect. 3 presents the data and methods used in the paper.
Section 4 presents the empirical results, while Sect. 5 concludes the study.

2 Literature review

This study relates to several strands of literature examining the effectiveness of
COVID-19 containment policies, as well the growing body of literature focusing on
those social distancing policies that are deemed most efficient.

The growing literature on the effectiveness of social distancing policies on curbing
the spreadofCOVID-19 (or reducing itsmortality rate) is contradictory. Several studies
have found that these economic “lockdowns” were highly ineffective. Williams et al.
(2021) find that lockdown in England andWales had no significant impact on COVID-
19 related mortality. Under their preferred specification, the lockdown was associated
with a positive increase in netmortalities. The authors explain that increasingmortality
as a potential case of a Peltzman offsetting effect, where people change their behavior
in response to changes in perceived level of risk. For instance, lockdowns might have
altered people’s perception of risk associated COVID-19, consequently leading them
not to seek care for non-COVID-19 illness, and potentially resulting in additional
deaths. Overall, their results indicate that the effectiveness of the COVID-19 lockdown
inEngland andWaleswas limited.Gibson (2020) examines policy response toCOVID-
19 inNewZealand,which implemented theworld’smost stringent lockdown. Focusing
on variation in lockdown policies across US counties, the study finds that lockdowns
do not reduce COVID-19-related deaths. Drawing conclusions from the US data,
Gibson (2020) concludes that due to its stringent lockdown, New Zealand suffered
substantial output losses of around 10 billion dollars. Similarly,Homburg (2020), using
cross section data from several countries, finds that lockdowns were “superfluous and
ineffective.”

Other studies have found that “lockdown” policies were effective, though at an
economic cost. Within the context of the effects of SIPO polices, Friedson et al.
(2020) focuses on the effects of SIPO policies in California over 29 days; they find
that SIPOs led to a reduction in COVID-19 cases by 125.5 to 219.7 positive cases per
100,000 population, and led to 1,661 fewer COVID-19 related deaths. Their analysis
also suggests that there were 400 jobs lost per each one life saved. Abouk and Heydari
(2020) find that SIPOs were effective at keeping people at home as well as reducing
mobility outside of homes, and thus led to a steady decline in COVID-19 cases. On the
other hand, less restrictive policies had no statistically significant effect on reducing
the spread of the infection. Similarly, Dave et al. (2020a) find substantial heterogeneity
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in the effect of SIPOs across US states. More specifically, their results indicate that
statewide SIPOs were associated with a 5 to 10 percent increase in the fraction of
population that sheltered in place on a given day. This does imply that these policies
were considerably effective in reducing social mobility. Along with this, even with
substantial state-level heterogeneity, SIPOs were associated with a 44 percent decline
in COVID-19 cases, with the early adopter states enjoying the largest declines in
positive COVID-19 cases.

Though COVID-19 social distancing policies were effective in reducing social
mobility and, on average, the spread of the disease, the same containment measures
had detrimental economic ramifications: these include declines in employment, GDP,
consumer spending, debt and loan payments (Baker et al. 2020; Bick and Blandin,
2020; Coibion et al., 2020). For instance, Coibion et al. (2020) find that declines
in spending and employment can be largely attributed to lockdowns rather than to
COVID-19 infections, with lockdowns accounting for a nearly sixty percent decline
in the employment-to-population ratio. Baek et al. (2020) find that each additional
week of being exposed to SIPOs leads to a 1.9 percentage point increase in a state’s
unemployment claims.Walmsley et al. (2020) estimate that, for a three-month closure,
GDP losses are $4.3 trillion, with an employment decline of 35.2 million workers.
Baker et al. (2020) find sizable declines in consumer spending, with the declines
being twice as large in those states that implemented SIPOs. Acemoglu et al. (2020)
indicate that keeping theCOVID-19mortality rate below0.2 percentwould necessitate
full or partial lockdowns for one and a half years, with economic costs of upwards
of 38 percent of GDP; while keeping economic damages to less than 10 percent of
annual GDP would mean accepting a mortality rate of over 1 percent. These highlight
the quite substantial economic costs that may negate the potential health benefits from
COVID-19 social distancing policies.

Given the costs of social distancing policies, additional research has focused onopti-
mal policies to improve the tradeoff been losses to the economy and saving lives within
the framework of a Susceptible-Infected-Recovered (SIR) epidemiological model
(Acemoglu et al., 2020; Alvarez et al., 2020; Berger et al., 2020; Farboodi et al., 2020;
Eichenbaum et al., 2020). Within the context of COVID-19, the effects of social dis-
tancing policies enter the model through the case transmission rate; the goal of optimal
policy design is to achieve a given case transmission rate while minimizing economic
costs (Atkenson, 2020; Stock, 2020;). Alvarez et al. (2020), using a variation of the
SIR model, find that an optimal policy prescribes a severe lockdown two weeks after
the beginning of an outbreak, covering 60 percent of the population after one month,
and then eased to 20 percent of the population after three months. Berger et al. (2020),
using a similar SEIR (Susceptible-Exposed-Infectious-Recovered) model, show that
testing at a higher rate alongside targeted quarantine policies dampens the economic
consequences of COVID-19, while simultaneously reducing peak symptomatic infec-
tions. Unfortunately, these highly targeted COVID-19 social distancing policies suffer
from two notable flaws: (i) they require participation of nearly all of the covered pop-
ulation; and (ii) the effectiveness will be limited if there exists a substantial fraction of
the population that is asymptomatic or do not receive regular testing. The second point
is notable, as many papers have attempted to adjust reported COVID-19 numbers to
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account for cases that are not captured (Flaxman et al., 2020; Gibbons et al., 2014;
Hortascu et al., 2020; Li et al., 2020; Millimet and Parmeter, 2021).

These worries are codified by Eichenbaum et al. (2020), who note that relaxing a
containment policy prematurely will reduce the burden on the economy but lead to
higher infection rates, consequently resulting in subsequent future economic declines
with the need for additional containment policies. Acemoglu et al. (2020), using a
variation of the epidemiological SIR model, find that optimal non-uniform policies
such as strict lockdowns for the most vulnerable groups, can be more effective than
uniform policies in minimizing economic loss and the loss of life; compared with a
GDP loss of 38 percent annually from a full lockdown, targeted lockdowns would
keep the mortality rate at 0.2 percent, while limiting economic losses to 24.8 percent
of annual GDP.

Another strand of literature has been focusing on the efficiency of COVID-
19 response policies, relying on non-parametric data envelopment analysis (DEA)
methodology. DEA is a performance evaluation methodology that transforms multi-
ple input and output variables into a single measure of productive efficiency (Akazili
et al. 2008). These studies, conducted at the international level, find considerable inef-
ficiency in combatting the COVID-19 pandemic (Breitenbach et al., 2020; Ibrahim
et al., 2020; Shirouyehzad et al., 2020). However, there are considerable limitations to
these papers. For example, DEA estimators suffer from well-known statistical issues,
including a curse of dimensionality and sensitivity to outliers, both of which will be
present in an analysis of COVID-19 social distancing policies.

The sensitivity of theDEAestimator to outliers, is likely to be problematic in studies
at the international level. The variation in access to healthcare facilities, “experimen-
tal” treatments for severe illnesses, expectations for vaccine adoption, as well as a
country’s governance structure make it likely that there will be outliers that will bias
the results. With respect to the curse of dimensionality, the DEA non-parametric esti-
mator has less than root-n convergence, suggesting that it needs more datapoints than
parametric investigations. For instance, using all 194 internationally recognized coun-
tries with daily data from March 1, 2020 to May 1, 2021 would lead to 82,644 unique
datapoints. However, if the DEA specification in these papers had 1 output and just 4
inputs, this would be analogous to a regression equation with just 1,898 unique dat-
apoints suggesting considerable data loss. Therefore, it is unlikely that these papers
provide meaningful insight. To address these non-parametric issues, we use newer
nonparametric estimators, which have none of the canonical DEA limitations.

3 Data and theory

Data on COVID-19, including cumulative (or daily) cases, deaths, and testing at the
state level are accumulated by the Center for Systems Science and Engineering at
Johns Hopkins University, as a free repository.5 These data are corroborated by the
Centers for Disease Control (CDC) in the USA. We also utilize the Kaiser Family

5 The data can be found at https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_
data/csse_covid_19_time_series.
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Foundation database on state social distancing action effective and rollback dates.
The four main social distancing policies that we use are: (i) SIPOs; (ii) non-essential
business closures; (iii) mandatory quarantine for travelers; and (iv) bans on large
gatherings.6 Data are collected from March 1, 2020 to September 1, 2020.

Efficiency estimation utilizes three types of variables: (i) inputs; (ii) outputs; and
(iii) environmental variables. Our main output measure of interest is the percent of
the population that is not considered a COVID-19 case. We utilize a variety of mobil-
ity measures as inputs. Social mobility inputs are provided from SafeGraph, Inc.
SafeGraph has anonymized population movement data from cellphones of nearly 45
million devices. We use two state-by-day measures of mobility: (i) the percent of
the state-day population that remains at home for the entire day; and (ii) the average
distance, in meters, the average person moves outside the home in a state-day, stan-
dardized so that bigger values are associated with traveling less outside of the home.7

We include two additional proxies for work mobility. The first is state-by-week initial
unemployment claims; the second is state-by-week continued unemployment claims.
Given the considerable unemployment impact caused by both COVID-19 and social
distancing policies, we believe that the transmission of COVID-19 due to work could
be impacted; therefore, the inclusion of these inputs. Later, as a robustness check, we
include the number of COVID-19 tests performed per million population. We do not
include this as a main input because not all states reliably report these numbers each
day. For instance, only 38 states (out of 51 states plus Washington D.C.) have full
observations.

For our environmental variables, we utilize a variety of state-level policies aimed at
reducing the spread of COVID-19, largely through decreasing social contact (White
House, 2020). These policies have been studied on the heterogeneity of state policies
between early COVID-19 policy adopters and high population density states (Dave
et al., 2020a); their effectiveness (Abouk and Heydari, 2020; Friedson et al., 2020);
and their impact on health outcomes (Dave et al., , 2020a, 2020b; Friedson et al.,
2020). We use a variety of state-level social distancing policy sets to investigate the
impact of these policies on COVID-19 outcomes: (i) having any of the four major
social distancing policies in place (Any 4); (ii) having all of the four major social
distancing policies (All 4); (iii) a SIPO policy, non-essential business closure policy,
and ban on large gatherings (S/B/L); or (iv) a SIPO policy (SIPO only).

We conduct an analysis on more policies than a simple SIPO as many states had
multiple policies occurring at the same time. For instance, California had the nation’s
earliest SIPO on March 19, 2020, but also instituted essential business closures on
March 19, 2020 and placed a ban on large gatherings on March 16, 2020. We plan on
investigating efficiency in the output orientation, as policymakers are worried about
bending the COVID-19 curve by reducing COVID-19 cases.

In addition to using these social mobility measures as environmental variables, we
include state-level population density measures, then compare estimates to models

6 The data can be found at https://github.com/KFFData/COVID-19-Data/tree/kff_master/State%
20Policy%20Actions/State%20Social%20Distancing%20Actions/Social%20Distancing%20Order%
20Effective%20Dates%20and%20Rollback%20Dates.
7 SafeGraph’s definition of the home is a 153-m by 153-m area that receives the most frequent GPS pings
between 6 PM to 7 AM.
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where population density measures are not included. The inclusion of population
density is contested in the literature. According toMeijer et al. (2021) there is a positive
association between population density and mortality. This is especially relevant in
the context of virus transmission since population density facilitates virus spread via
close person-to-person contact. Prior research showed that COVID-19 transmission is
more likely to occur in higher density cities. Wong and Li (2020) find that county level
population densitywas an important predictor of COVID-19 cases across counties, and
should be explicitly included inCOVID-19models that predict transmission. Similarly,
Sy et al. (2021) show that dense areas are more susceptible to disease transmission,
with a substantial increase in case rates and COVID-19 transmission rates. This is
corroborated by Rubin et al. (2020).

Other studies have found the opposite. Hamidi et al. (2020) finds that COVID-
19 death rates were lower in more dense counties possibly due to better access to
healthcare and easier management of social distancing policies. Carozzi et al. (2020)
find that while population density impacts the timing of an outbreak, it has no impact
on COVID-19 cases or deaths. The authors note that there are mediating factors; more
dense areas are younger and more likely to engage in social distancing. Similarly,
Hashim et al. (2020) find that population density is not related to cumulative mortality
rates, while Dreher et al. (2021) find that population density was not a factor in the
COVID-19 reproductive rate.

The work by Althoff et al. (2021) finds that areas with higher population density
have a higher share of jobs that can (and were) performed remotely, and that these
jobs tended to be higher paid. Therefore, it is possible that population density could
be associated with worse COVID-19 outcomes, better COVID-19 outcomes, or no
difference in COVID-19 outcomes.

These suggest the use of two specification s: one with and another without the
inclusion of a population density variable, given the considerable disparity in the liter-
ature. If population density does matter, then public health authorities can target areas
with higher levels of density for higher levels of testing and contact tracing, while
reducing efforts in less dense areas. One other concern with the inclusion of popula-
tion density would be that it is a highly imperfect proxy for a number of other related
variables that could influence social mobility: use of public transportation, degree of
urbanization, connectivity to other states, and employment patterns in certain indus-
tries (among others). Mattson (2020) provides evidence that population density has
relationships to broader environmental variables. Though population density is not a
perfectly all-encompassing variable to measure population spread and contact, Matt-
son (2020) notes that higher population density is associated with increased demand
for public transit, more land use mix, and better accessibility.

One area of concern is that the social distancingpolicies influenceCOVID-19 spread
indirectly, via socialmobility.We run a regression of state-level demographic variables
(age, race, gender), state-level socioeconomic variables (median income, unemploy-
ment rate), four social distancing policy indicators, day and state fixed effects, with
regressions weighted by state-level population, on our measures of social mobility.
Our results are reported in the Appendix Table 9. We find that none of our major
social distancing policies have any influence on travel distance from home, while
the SIPO policy increases the median time spent at home (while population density
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decreases it). Therefore, it appears that the impact of these SIPO policies on time spent
at home accounts for about 17.4 percent of our estimated impact of SIPO policies on
COVID-19 case rates.

3.1 Estimators

This paper uses non-parametric estimators for a variety of reasons. Parametric esti-
mators require potentially untenable specification assumptions or have other serious
drawbacks. For instance, the distribution of the composite error term must be spec-
ified, often by a half-normal or truncated normal distribution, for use in stochastic
frontier analysis (SFA).8 Simar and Wilson (2013) provides a comprehensive analy-
sis on data envelopment analysis (DEA) estimators, while Parmeter and Kumbhakar
(2014) provides one for SFA estimators.9

Non-parametric estimators are often used by researchers because they do not require
a priori specification of the functional relationship that is being estimated. Similarly,
because of the lack of distributional assumption, incorporating multiple outputs is
seamless. However, certain non-parametric estimators, such as DEA estimator suffer
fromwell-known shortcomings that make validity and inference a problem. The short-
comings include the DEA estimator having less than root-n convergence due to the
curse of dimensionality, where the number of observations required to obtain mean-
ingful estimates increases with the number of production inputs and outputs used in
the estimation, and the estimator being sensitive to outliers (Kneip et al. 1998).

Two newer non-parametric estimators have been developed in recent years: the
order-α and order-m estimators. Both estimators eliminate many of the issues found in
other non-parametric estimators, like the DEA estimator, and are not sensitive to out-
liers and have the classical, parametric, root-n rate of convergence (Cazals et al., 2002;
Simar and Wilson, 2008; Wheelock and Wilson, 2009). Thus, the order-α and order-
m estimators offer the distributional flexibility of non-parametric estimators, while
simultaneously providing traditional statistical features found in parametric estima-
tors. We utilize the order-m estimator. We next briefly discuss the statistical features
of the order-m estimator, noting that we have a set χ of n state-day observations,
characterized by p inputs x

(
x1 . . . xp

)
and q outputs y

(
y1 . . . yq

)
.

3.1.1 Unconditional order-m estimator

The order-m estimator was developed by Cazals et al. (2002), and denotes the best
production set as the free disposal hull (FDH) of undominated input–output combina-
tions

�FDH =
{
(x, y) ∈ R

p+q
+ |x ≤ Xi , y ≤ Yi ∈ χ

}
(1)

8 The composite error term being specified allows the researcher to make a distinction between statistical
noise and true inefficiency.
9 Oftentimes for the researcher, the choice between DEA and SFA estimators are preference or familiarity,
rather than one estimator being statistically or empirically superior.
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We choose an output-orientation for the order-m estimator; that is, given a fixed
level of inputs, what is the output shortfall for a county relative to the best practice
frontier.10 We choose an output orientation since policymakers have attempted to
minimize the total number of COVID-19 cases, which is the reciprocal of our output
measure.

As in Fried et al. (2008), the output-oriented efficiency estimates measure the dis-
tance to the best practice frontier

λ(x0, y0) = sup{λ|xo, λyo ∈ �FDH } (2)

In the output-orientation, an inefficient observation has an efficiency score, λ, larger
than 1. The value (λ − 1) indicates the potential percentage increase in output if the
observation would produce as efficient as its reference partner. Unfortunately, the
model in (2) is deterministic, and may be influenced by outliers. Cazals et al. (2002)
mitigate these outlier issues by drawing from the sample population, with replacement,
subsamples of sizem < n among those Yi such that x0 ≥ Xi (observations with fewer
inputs than the evaluated observation).

Details of this method are shown in Cazals et al. (2002), who note that the order-m
estimator achieves the parametric root-n rate of convergence. This partial sample size,
m, is determined as the value for which the number of super-efficient observations
is constant. The sampling and efficiency estimations are done B times (where B is
sufficiently large), and the order-m efficiency estimates, λm(x0, y0) are obtained as
the arithmetic average of the B inefficiencies or, conversely, an integral formulation
of this bootstrap.

3.1.2 Conditional order-m efficiency measures

Order-m efficiency estimates can be adapted to take into account exogenous variation,
denoted by a vector of exogenous variables z, between states, that do not require the
separability assumption that is found inSimar andWilson (2007, 2011). Thesemethods
were developed by Daraio and Simar (2005) who proposed drawing subsamples of
size m by a given probability, which is determined by a Kernel function around the
variables Z , drawn B times with replacement. The B efficiency estimates are averaged
to obtain the conditional order-m estimates λm(x0, y0|z0), where interpretations are
similar to the unconditional order-m estimator. However, the estimation allowed only
continuous exogenous variables to be included in the estimation. As shown in Daraio
and Simar (2005), the conditional order-m estimator may not have root-n convergence,
as the convergence rate depends on the dimension of Z , necessitating a parsimonious
specification of the vector of exogenous variables that influence efficiency scores.

DeWitte andKortelainen (2013) extend the conditional order-mestimator to include
discrete exogenous variables, which do not influence the convergence rate of the
conditional order-m estimator any further, since econometric theory states that the
convergence rate of non-parametric estimators for conditional density and distribu-
tion functions involving mixed variables only depend on the number of continuous

10 In the appendix, we provide unconditional input, output, and hyperbolic efficiency estimates.
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variables. Similar to De Witte and Kortelainen (2013), we construct a ratio of uncon-
ditional to conditional estimates, λm (x0,y0)

λm (x0,y0|z0) , which are regressed on the Z exogenous
variables.

Since the regression of exogenous variables Z is on a ratio, the marginal coefficient
is less meaningful than a standard regression. If Z is multivariate, one can utilize
partial regression plots for the visualization of the effect to determine how a single
exogenous variable in Z affects the production process, holding the other variables
in Z constant. In the output-orientation, a horizontal line implies no effect, and an
increasing (decreasing) smoothed regression curve shows that Z improves (decreases)
efficiency in the production process. De Witte and Kortelainen (2013) obtain p-values
of the significance of the influence of Z on the efficiency scores, based on the work
of Li and Racine (2007), by utilizing a local linear regression estimation and a non-
parametric naive bootstrap procedure. Unlike the second-stage efficiency regression
proposed by Simar and Wilson (2007), this model does not need a full separability
assumption for proper inference to be determined.

4 Results

For the output-oriented order-m estimator, the choice of m is found where the per-
centage of super-efficient observations decreases smoothly with m, as explained in
Daraio and Simar (2007a).11 In our analysis, we choose a value of m = 500 for the
first 100 days, andm= 1,000 for our full 185 day sample.12 To interpret our efficiency
estimates, a value greater than 1 indicates inefficiency in the output direction; in other
words, it is the percent increase in output that is feasible given the input levels, if there
was perfect efficiency. To calculate the percent potential increase in output, subtract
one from the efficiency value and multiply by 100-percent.

Table 1 presents our unconditional efficiency findingswherewe estimate how effec-
tively social mobility measures provided by SafeGraph Inc. are in limiting COVID-19
cases, in the first 100 days. Table 1 also provides conditional efficiency estimates,
where our unconditional efficiency estimates are conditioned on state-level social dis-
tancing policies (environmental variables) that are put into place: (i) Any 4, which is
having any social distancing policy on day j; (ii) All 4, which is having all four social
distancing policies on day j; (iii) S/B/L, which is having all of the SIPO, closure of
non-essential business, and bans on large gathering policies on day j; and (iv) SIPO,
which is having a SIPO on day j. We provide estimates where population density is
not included as an environmental variable, and estimates where it is.

11 An alternative way to choosem is provided byDaouia andGijbels (2011), who link the order-m estimator
and the order-α estimator.
12 For the full samplewithm= 50, about 88-percent of the observationswere used to determine the expected
maximum output production of order m. As m increases, the number of observations used to determine the
expected maximum output production frontier increases, until about 7-percent of observations are left out
for larger values of m. Our choice of m is based on the fact that the fraction of observations that are left
out around this value is relatively stable (from m = 750 to m = 1,250). Regardless of whether we pick m
= 50, 100, 200, 250, 500, 750, 1,000, 1,250, or 1,500, there is a high degree of correlation between the
efficiency estimates. The analysis is similar for the first 100 days of our sample. These figures are available
upon request from the authors.
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In the first 100 days, the average state is 38.6-percent inefficient unconditionally.13

This would suggest that there were nearly 750,000 more COVID-19 cases than there
should have been in that first 100 days, given the level of social mobility found in the
USA. We believe that behavioral noncompliance is one of the leading explanations
for this phenomenon. Given the importance of “superspreader” events in COVID-19
transmission (Dave et al. 2020b) and the evidence that post-April, movement patterns
increased (O’Donoghue et al., 2020), it does suggest that the reopening of America in
late April, 2020 and early May, 2020 led to significant rises in COVID-19 cases.

We see that a variety of states that are unconditionally inefficient, including Cali-
fornia, Washington D.C., Hawaii, Massachusetts, New Jersey, and Pennsylvania, have
some of the highest population densities in the USA, with a minimum density of over
200 people per square mile. On the other hand, the least inefficient states, including
Alaska, North Dakota, and South Dakota, have some of the lowest population densi-
ties in the USA, with Alaska (North Dakota; South Dakota) having 1 (10; 11) people
per square mile. If we focus on conditional efficiency estimates that do not take into
account population density, having any of the four social distancing policies (Any 4)
leads to California (Washington D.C.) being 26.1 (28.2) percent inefficient; Alaska
(North Dakota; South Dakota) would be 26.5 (30.7; 32.7) percent inefficient. This
suggests that, in California, there should have been 26.1 percent more of the popu-
lation not having ever been a positive COVID-19 case. This also does suggest that
population density may play a role in high levels of unconditional inefficiency.

Focusing on efficiency estimates that condition for population density, California
(Washington D.C.) is now 7.8 (7.5) percent inefficient. Alaska, North Dakota, and
South Dakota, some of the least dense states, are now 19.5, 25.5, and 25.2 percent
inefficient, respectively. In California, there should have been 7.8 percent more of
the population not having ever been a positive COVD-19 case. Importantly, we see
that even conditioning for having any social distancing policy (Any4) and population
density, the average US state is nearly 12-percent inefficient. This amounts to the
average state having about 69.8 more COVID-19 cases per 100,000 population than it
should have, given how socially mobile the population was. These results also accord
with Dave et al. (2021), who found that states with higher population densities reaped
more of the benefits of social distancing policies. In fact, it appears that conditioning
for population density improves conditional efficiency more than social distancing
policies. Results also suggest that weather could play a role in these findings, where
colder states are more likely to benefit from conditioning for population density.

We see that conditioning our efficiency estimates on various social distancing poli-
cies leads to an elimination of 9.6 to 18.9 percent of the inefficiency gap, depending on
the type of social distancing policy implemented; this would correspond to 187,000 to
368,000 fewer COVID-19 cases in the first 100 days in total. Having any of the four
social distancing policies (Any 4) leads to the largest efficiency improvement of nearly
19 percentage points. Having all four of the social distancing policies (All 4) leads

13 Appendix Table 9 provides unconditional efficiency estimates in both the input- and hyperbolic orien-
tation. In the full sample, in the input direction, the average state is nearly 25-percent inefficient. In the
hyperbolic direction, the average state is nearly 27-percent inefficient. Though smaller than the inefficiency
in the output direction, these do provide robustness checks that we are not picking up an “output” effect.
Conditional efficiency estimates in the input direction are available, upon request, from the author.
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to the smallest efficiency improvement of under 10 percentage points. In case values,
this means that having any of the four social distancing policies led to over 54 fewer
total COVID-19 cases per 100,000 population in the first 100 days. Having all four of
the social distancing policies, the least effective policy set, led to nearly 31 fewer total
COVID-19 cases per 100,000 population in the first 100 days. This compares to a total
COVID-19 case count of 588.7 cumulative COVID-19 cases per 100,000 population
on the 100th day of the pandemic.

These results suggest the incredibly effective nature of the social distancing policies
in limiting the COVID-19 pandemic in the first 100 days. It also suggests that there was
not a national policy set that would have uniformly reduced COVID-19 cases from the
level found in the first 100 days, and that the piecemeal approach adopted by states was
likely the superior option.We also find that having multiple policies may have actually
harmed attempts to curb the COVID-19 pandemic. This last point has interesting
implications; the two likeliest explanations are: (i) behavioral noncompliance, where
individuals and/or businesses chose to purposefully ignore laws (if they felt that they
were not legal and/or the economic costs were too high); or (ii) confusion about
what was allowed with the restrictions due to different laws being put into place at
different times. Lastly, we do see that the impact of population density on conditional
efficiency suggests that a national social distancing policy set would not have been
effective, especially in less densely populated areas.

One area of potential concern is that we have transformed a “bad” output, the
COVID-19 case rate, to a “good” output. Similarly, we have transformed “bad” inputs
to “good” inputs. To ensure that our results are not spurious due to our transformation,
we utilize methods that incorporate “bad” inputs and outputs in the analysis, similar
to Cordero et al. (2015) and Seiford and Zhu (2002). In the latter, a “bad” output is
multiplied by -1, where a translation vector of sufficient size is added to ensure the
output is now positive (with a similar transformation for a “bad” input). Our results
for our transformed estimates, as well as the Seiford and Zhu (2002) transformed
estimates, for the first 100 days are presented in Appendix Table 10. Importantly, we
see that the efficiency results are qualitatively the same. Due to ease of interpreting
“good” inputs and outputs, we therefore focus on our transformation.

When we focus on our full sample, which includes data through September 1,
2020, our results are qualitatively similar to both Dave et al. (2020a) and Friedson
et al. (2020), though lower in magnitude.14 These results are presented in Table 2. This
suggests that the impacts of social distancing policies were immediate and moderately
long-lasting, but that the effects declined over time. In fact, we do see that for SIPO
policies, consistent with Dave et al. (2020a) and Friedson et al. (2020), the earliest
adopters of SIPOs saw the biggest conditional efficiency gains.

In unconditional terms, the average state is 36.8 percent inefficient; this means that
there were 2 million more COVID-19 positive cases than there should have been,
given levels of social mobility. This would again suggest that the average state was
unprepared for the COVID-19 pandemic, and hints that even if early policies were
effective in curbing the COVID-19 pandemic, this unpreparedness was a significant
source of COVID-19. Though lower in magnitude than our estimates in Table 1, we

14 We stop at September 1, 2020, as California adopted a modified, regional SIPO policy around this date.
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see that conditioning our efficiency estimates on a variety of social distancing policies,
without taking into account population density, eliminates a not-insubstantial amount
of inefficiency. For instance, having Any 4 (All4) of the social distancing policies
leads to conditional efficiency seeing improvements of 9.5 (2.9) percentage points. In
terms of cases, having Any 4 (All 4) of the social distancing policies leads to 172.3
(52.6) fewer COVID-19 cases per 100,000 population on September 1, 2020; on this
date, the total COVID-19 case rate was 1,814.2 total cases per 100,000 population.
Similar to our conclusions from Table 1, not accounting for population density makes
certain states look inefficient in combatting COVID-19; it also suggests again that
implementing national social distancing policies would have been ineffective in less
densely populated states, which could have further heightened resistance to other
national mandates, including mask mandates.

When we condition for population density, similar findings emerge; COVID-19
social distancing policies were effective in curbing the COVID-19 pandemic, though
not as effective as in the first 100 days. Having any of the four social distancing
policies (Any 4) led to conditional efficiency improving by 10.1 percentage points;
this corresponds to nearly 187 fewer COVID-19 cases per 100,000 population on
September 1, 2020.Having all of the social distancing policies (All 4) leads to nearly 65
fewer COVID-19 cases per 100,000 population. Intriguingly, we see that the efficiency
gains from having social distancing policies falls, the longer sample we estimate. For
instance, in the first 100 days, having Any 4 (All 4) of the social distancing policies
improves conditional efficiency by 9.7 (6.0) percentage points. For the full 185 day
sample, conditional efficiency improves by 9.5 (2.9) percentage points. This again
suggests that long-lasting COVID-19 social distancing policies may have had lowered
effectiveness as time wore on, as individuals grew weary of the mandates and perhaps
became more behaviorally noncompliant.

One potential source of unconditional efficiency present in both Tables 1 and 2
could be a lack of testing; Table 3, therefore, uses the number of COVID-19 tests
performed per million population as an additional input.

Compared to efficiency estimates where we do not control for COVID-19 tests per
million population, we see that unconditional efficiency in the first 100 days improves
by 0.6 percentage points when we add in tests per million population as an additional
input, and unconditional efficiency over the full sample improves by 2.3 percentage
points. Given the lack of reliable (and available) testing in the first 100 days of the
COVID-19 pandemic, this suggests that testing was woefully inadequate during this
time. In the first 100 days of the pandemic, cumulative testing was 4,351 per 100,000
population. By September 1, 2020, cumulative testing was 16,203 per 100,000 pop-
ulation. This nearly four-fold increase suggests that unconditional efficiency should
improve. Focusing on our full-sample estimates that condition for population density,
even with inadequate testing rates, inefficiency after conditioning for any of the four
major social distancing policies is only about 11.6-percent, compared to an uncondi-
tional value of nearly 35-percent inefficiency. This corresponds to having nearly 1.4
million fewer individuals with COVID-19.

Next, we provide a basic test of the hypothesis that states ended social distancing
policies too early,which led to higher than expectedCOVID-19 cases given input levels
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and relative to states that did not end the policies (worsened conditional efficiency)
weeks after, in Table 4.

To do this, we measure 7, 14, or 21 day averages of conditional efficiency after
ending a social distancing policy. From this, we subtract the corresponding 7, 14, or
21 day average of conditional efficiency before ending the policy. To net out any pre-
existing trends, we also subtract from this the difference between the 7 (14; 21) day
average of the unconditional efficiency estimates after the policy change, minus the 7
(14; 21) day average of the unconditional efficiency estimates before the policy change.
A positive value indicates productivity regression, which would indicate higher than
expected COVID-19 cases given input levels, relative to states that did not relax social
distancing policies.

Ex-ante, we would expect that relaxing social distancing measures during the pan-
demic would worsen efficiency. In part, relaxing social distancing measures may
increase social mobility, which would potentially increase virus spread, reducing
efficiency. Similarly, there have been mentions that relaxation of social distancing
measures were done more based on political considerations than pandemic considera-
tions, which would also reduce efficiency. At best, relaxing social distancing measures
would lead to no change in personal behavior or virus spread, which would lead to no
change in efficiency.

For the 7 (14; 21) day rolling average, we see that 5 (5; 5) states did not have con-
ditional efficiency regression after revoking (or allowing to expire) a social distancing
policy. On average, the 7 (14; 21) day rolling average has a 9.0 (10.0; 10.5) percentage
point reduction in conditional efficiency after the revocation or expiration of any social
distancing policy. This means that the average state had 9.0 (10.0; 10.5) percent more
COVID-19 cases than expected, given input levels and relative to states that did not
relax social distancing policies, in the 7 (14; 21) days after revocation. In fact, there
is a moderate correlation between the date at which the first social distancing policy
expired (or was revoked) in a state, and the conditional efficiency regression from
the expiration or revocation of these policies. Though not causal, this is suggestive
evidence that premature revocation or expiration likely led to increases in COVID-19
transmissibility and COVID-19 rates.

While we can explore the impact of social distancing policies on efficiency mea-
surements, we also utilize the regression of unconditional to conditional efficiency
scores on exogenous social distancing variables, shown by Cazals et al. (2002), Daraio
and Simar (2005, 2007a, 2007b), and De Witte and Kortelainen (2013) for a variety
of exogenous variables. Point estimates in this type of regression analysis are less
meaningful than in traditional regressions, so we provide p-values. We set up par-
tial regression plots, where an upward sloping diagram represents improvements in
efficiency. Improvements in efficiency means having fewer COVID-19 cases than
expected, given input levels and compared to states without the social distancing poli-
cies; declines in efficiency (or productivity regression) means there were too many
COVID-19 cases, given the input levels and compared to states without the social
distancing policies.

Table 5 examines the impact of our different social distancing specifications for our
full sample, where we include population density as an environmental variable.
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Table 4 Estimates of impact of loosening social distancing restrictions on efficiency estimates

State 7 Day
Average

14 Day
Average

21 Day
Average

7 Day
Average

14 Day
Average

21 Day
Average

Alabama 8.84 11.35 14.63 Montana 4.35 3.71 2.56

Alaska 4.74 2.56 1.21 Nebraska 26.97 27.16 26.63

Arizona − 2.92 9.52 15.00 Nevada 2.56 2.73 2.85

Arkansas 17.03 18.18 19.03 New
Hampshire

12.23 12.30 12.05

California 4.25 4.75 4.47 New Jersey 6.85 17.93 21.74

Colorado 26.88 26.66 26.99 New Mexico 5.87 4.85 5.11

Connecticut 6.48 9.06 14.84 New York 10.83 17.57 20.12

Delaware − 2.86 − 1.73 − 1.93 North
Carolina

5.64 6.39 6.05

District of
Colombia

− 2.26 − 1.92 − 2.94 North Dakota 7.17 8.20 10.51

Florida 5.37 5.43 4.40 Ohio 0.61 − 0.20 1.66

Georgia 6.09 6.05 5.13 Oklahoma 9.04 8.95 8.34

Hawaii 2.52 3.02 2.02 Oregon 21.08 20.52 20.97

Idaho 5.27 4.83 1.94 Pennsylvania 30.36 30.57 30.17

Illinois 25.28 24.12 23.67 Rhode Island 0.67 0.04 − 1.37

Indiana 23.90 23.79 23.39 South
Carolina

4.58 4.66 7.01

Iowa 9.56 9.14 8.79 South Dakota 20.11 19.82 19.49

Kansas 6.89 5.40 5.53 Tennessee 5.66 5.49 5.69

Kentucky 3.84 4.85 5.94 Texas 3.70 3.10 2.42

Louisiana 16.56 14.13 15.95 Utah 20.38 19.86 19.55

Maine 6.67 5.63 4.13 Vermont − 8.23 − 7.35 − 6.75

Maryland − 0.17 − 0.82 − 0.83 Virginia 1.86 1.47 1.73

Massachusetts 9.22 8.58 7.18 Washington 9.30 8.09 8.87

Michigan 2.58 3.14 2.48 West Virginia 2.94 3.03 5.71

Minnesota 33.68 35.08 32.89 Wisconsin 16.68 21.80 23.75

Mississippi 7.38 7.99 8.49 Wyoming 7.71 17.43 21.62

Missouri 3.39 11.73 15.86

These represent quasi-difference-in-difference estimates. We define the impact of a revocation (or expiration)
of a social distancing policy as on the date was social policy was removed. The 7 Day Average is measured as
the percentage point difference between the Any 4 conditional efficiency estimates 7 days after the revocation
(or expiration) of any social distancing policy, minus the Any 4 conditional efficiency estimates 7 days before
the revocation (or expiration) of any social distancing policy; to ensure that these trends are not spurious, we
subtract from this the percentage point difference between the unconditional efficiency estimates 7 days after
the revocation (or expiration) of any social distancing policy, minus the unconditional efficiency estimates
7 days before the revocation (or expiration) of any social distancing policy. The 14 (21) Day Average are
calculated similarly, but 14 (21) days before/after the revocation (or expiration) of any social distancing
policy. We also control for population density. A positive value indicates conditional productivity regression
after the revocation or expiration of a social distancing policy
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Table 5 Conditional efficiency regressions, various social distancing policies, full sample

Panel A: Any Social Distancing Policy

Variable p-Value Better efficiency occurs when…

SIPO 0.010*** A state has a SIPO policy on day j

Non-Essential Business Closures 0.001*** A state has a non-essential business
closure policy on day j

Mandatory Quarantine for Travelers 0.001*** A state does not have a mandatory
quarantine for travelers policy on
day j

Large Gathering Ban 0.001*** A state has a large gathering ban
policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic, though
efficiency is highest about
40 days into the pandemic

Panel B: All Social Distancing Policies

All 4 Policies 0.001*** A state has a SIPO, non-essential
business closure, mandatory
quarantine for travelers, and large
gathering ban policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel C: SIPO/Business/Large

SIPO/Business/Large 0.001*** A state has a SIPO, non-essential
business closure, and large
gathering ban policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel D: SIPO Only

SIPO 0.001*** A state has a SIPO policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel A: Any Social Distancing Policy refers to if a state has any of the following policies on day j: (i)
SIPO; (ii) non-essential business closure; (iii) mandatory quarantine for travelers; and/or (iv) ban on large
gatherings. Panel B: All 4 Social Distancing Policies refers to if a state has all 4 of the following social
distancing policies on day j: (i) SIPO; (ii) non-essential business closure; (iii) mandatory quarantine for
travelers; and/or (iv) ban on large gatherings. Panel C: SIPO/Business/Large refers to if a state has all of the
following policies on day j: (i) SIPO; (ii) non-essential business closure; and (iii) ban on large gatherings.
Panel D: SIPO Only refers to if a state has a SIPO order on day j
***Refers to significance at the 1-percent level; ** refers to significance at the 5-percent level; * refers to
significance at the 10-percent level
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Panel A explores the impact of having any social distancing policy (Any 4). We see
that the presence of any policy except a mandatory quarantine for travelers improves
conditional efficiency which means having fewer COVID-19 cases than expected
in a population, relative to an area with no social distancing policies in place. One
explanation for the finding that having a mandatory quarantine for travelers leads
to having more COVID-19 cases than expected is the reduced travel traffic during
the height of the COVID-19 pandemic, suggesting that these policies were ineffective.
Another explanation is that the quarantines largely depended on behavioral compliance
of travelers self-isolating; this perhaps suggests that individuals who did travel likely
did not follow the full quarantine guideline.

Figure 1 provides the partial regression plot for Panel A.
The illustration on Fig. 1 implies that the most effective policy was bans on large

gatherings, with SIPOs and the closure of non-essential businesses being less effective
in curbing the spread of COVID-19.We do see that the partial regression plot indicates
that mandatory quarantine for traveler policies leads to a decrease in conditional effi-
ciency, which again suggests that there were more COVID-19 cases than expected in
states that adopted these policies, given social mobility levels and compared to states
with no mandatory quarantine for traveler’s policy in place. The decline in conditional
efficiency values was small, however, suggesting that any behavioral noncompliance
on the part of travelers was not significant.

Fig. 1 Regression of Ratio of Unconditional to Conditional Efficiency Estimates, Full Sample, Any Social
Distancing Policy. Note: effratio refers to the ratio of unconditional efficiency to conditional efficiency. This
figure analyzes the impact of having any of the social distancing policies in place on day j.We have set up the
figures so that an upward-sloping diagram indicates productivity improvement, while a downward-sloping
diagram indicates productivity regression
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We do see that efficiency was highest around 40 days into the pandemic, with
conditional efficiency declining after this point, which suggests that social distanc-
ing policies were most effective in curbing COVID-19 cases over this time span. This
correlateswith our findings fromTables 1 and 2,where conditional efficiency improve-
ments were highest in the first 100 days. This does indicate pandemic fatigue, where
individuals either unconsciously relaxed behaviors, or willingly started to operate in
violation of social distancing policies. Lastly, we see that considerable inefficiency
can be explained by population density.We see that conditional efficiency “improves”,
or COVID-19 cases were not as high as expected, the higher the population density of
a state. This result highlights the fact that more densely populated states had higher
COVID-19 transmission and case rates because of the density of their populations.

Panels B, C, and D of Table 5 provide our regression estimates for states with all
social distancing policies (All 4), states with SIPO, non-essential business closure, and
bans on large gatherings (S/B/L), and states with SIPO policies only (SIPO only). We
see that efficiency increased in each case, where having these social distancing policies
means fewer COVID-19 cases than expected, given input levels compared to states
with none of these policies.We again see that efficiency worsened over time, or we had
more COVID-19 cases than expected given levels of social mobility, and that states
with higher population densities had fewer COVID-19 cases than expected, relative

Fig. 2 Regression of Ratio of Unconditional to Conditional Efficiency Estimates, Full Sample, a All Four
Policies,bSIPO/Business/Large, (c) SIPOAlone.Note: effratio refers to the ratio of unconditional efficiency
to conditional efficiency. This figure analyzes the impact of having any of the social distancing policies
in place on day j. We have set up the figures so that an upward-sloping diagram indicates productivity
improvement, while a downward-sloping diagram indicates productivity regression
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to their less densely populated counterparts. Figure 2 provides the partial regression
plots.15

Table 6 restricts our sample to the first 100 days, when conditional efficiency
improvements were higher than in our full sample. The results are qualitatively similar
to those found in Table 5.

In Panel A, when analyzing the impacts of having any social distancing policy (Any
4), having a mandatory quarantine for travelers leads to having more COVID-19 cases
than expected relative to states that did not have this policy, while having any of the
other three policies (non-essential business closures, bans on large gatherings, SIPOs)
leads to fewer COVID-19 cases than expected and relative to states that did not have
these social distancing policies. Figure 3 provides the partial regression plot for Panel
A. We also see that conditional efficiency worsened over time, and that having higher
population densities were associated with improved conditional efficiency, meaning
having fewer COVID-19 cases than expected, given input levels and relative to less
densely populated states.

It also shows that, similar to our full sample, having a SIPO leads to fewer COVID-
19 cases than expected, relative to states with no SIPO policy in place. Non-essential
business closures and bans on large gatherings had significant improvements in con-
ditional efficiency, improving by 4 and 30 percentage points, respectively. Again, in
the first 100 days, the most effective policy was a ban on large gatherings. These again
suggest that having these policies led to fewer COVID-19 cases than expected, relative
to states that did not implement them. In Panels B, C, and D, we see that, again, having
all four policies, having a SIPO, closure of non-essential business, and bans on large
gathering policies, as well as having a SIPO policy by itself, were all highly effective
in reducing COVID-19 cases. These are confirmed by the partial regression plots in
Fig. 4.

4.1 Stochastic Frontier analysis and COVID-19 case undercounting

As noted previously, it is likely that there is considerable undercounting of COVID-19
cases and deaths, which is a known issue in epidemiology (Gibbons et al., 2014).
For instance, Millimet and Parmeter (2021) determine that there are 2.6 times more
COVID-19 cases than reported, along with 2.0 times more COVID-19 deaths.16

Therefore, one of the main goals is to calculate a “multiplication factor”, which
is an area-time construct that determines the multiple of actual cases or deaths that
there are from reported cases and deaths. There have been a number of epidemiological
attempts tomodel uncounted cases and deaths in different areas of the world, including
China (Li et al., 2020), Europe (Flaxman et al., 2020), and the USA (Hortascu et al.,
2020).

15 The figures for population density look identical to that found in Fig. 1(f). Therefore, we have not
replicated this for Fig. 2.
16 Orea et al. (2021) and Orea and Alvarez (2022) note that estimates where COVID-19 cases are not
adjusted for undercounting yield similar conclusions to estimates where they take into account uncounted
COVID-19 cases using the SFA method of Millimet and Parmeter (2021), suggesting that undercounting is
likely to be uniform within a country. Therefore, unadjusted and adjusted estimates may be similar.
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Table 6 Conditional efficiency regressions, various social distancing policies, first 100 days

Panel A: Any Social Distancing Policy

Variable p-Value Better efficiency occurs when…

SIPO 0.010*** A state has a SIPO policy on day j

Non-Essential Business Closures 0.001*** A state has a non-essential business
closure policy on day j

Mandatory Quarantine for Travelers 0.001*** A state does not have a mandatory
quarantine for travelers policy on
day j

Large Gathering Ban 0.001*** A state has a large gathering ban
policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic, though
efficiency is highest about 40 to
45 days into the pandemic

Panel B: All Social Distancing Policies

All 4 Policies 0.001*** A state has a SIPO, non-essential
business closure, mandatory
quarantine for travelers, and large
gathering ban policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel C: SIPO/Business/Large

SIPO/Business/Large 0.001*** A state has a SIPO, non-essential
business closure, and large
gathering ban policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel D: SIPO Only

SIPO 0.001*** A state has a SIPO policy on day j

Population Density 0.001*** A state has a higher population
density

Date 0.001*** The day is closer to the beginning
of the pandemic

Panel A: Any Social Distancing Policy refers to if a state has any of the following policies on day j: (i)
SIPO; (ii) non-essential business closure; (iii) mandatory quarantine for travelers; and/or (iv) ban on large
gatherings. Panel B: All 4 Social Distancing Policies refers to if a state has all 4 of the following social
distancing policies on day j: (i) SIPO; (ii) non-essential business closure; (iii) mandatory quarantine for
travelers; and/or (iv) ban on large gatherings. Panel C: SIPO/Business/Large refers to if a state has all of the
following policies on day j: (i) SIPO; (ii) non-essential business closure; and (iii) ban on large gatherings.
Panel D: SIPO Only refers to if a state has a SIPO order on day j
***Refers to significance at the 1-percent level; ** refers to significance at the 5-percent level; * refers to
significance at the 10-percent level
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Fig. 3 Regression of Ratio of Unconditional to Conditional Efficiency Estimates, First 100Days, Any Social
Distancing Policy. Note: effratio refers to the ratio of unconditional efficiency to conditional efficiency. This
figure analyzes the impact of having any of the social distancing policies in place on day j.We have set up the
figures so that an upward-sloping diagram indicates productivity improvement, while a downward-sloping
diagram indicates productivity regression

Fig. 4 Regression of Ratio of Unconditional to Conditional Efficiency Estimates, First 100 Days, a All Four
Policies, b SIPO/Business/Large, c SIPOAlone. Note: effratio refers to the ratio of unconditional efficiency
to conditional efficiency. This figure analyzes the impact of having any of the social distancing policies
in place on day j. We have set up the figures so that an upward-sloping diagram indicates productivity
improvement, while a downward-sloping diagram indicates productivity regression
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Table 7 Marginal effects of
social distancing policies on
Frontier, SFA analysis

First 100 Days Full Sample

SIPO − 8.4447***
(0.3468)

− 7.3901***
(0.3336)

Business Closure − 3.4447***
(0.3751)

− 2.6750***
(0.3370)

Travel Ban − 0.8273***
(0.2901)

− 0.5077*
(0.3155)

Large Gathering Ban − 2.9598***
(0.2947)

− 1.9591***
(0.2775)

Any 4 − 15.6765***
(0.4428)

− 12.5319***
(0.4421)

To interpret themarginal effects, this is the percent change in new daily
cases from having any of the social distancing policies

It is important to determinewhether the inefficiency that we estimated in our sample
is due to inefficiency, or “noise” related to uncounted COVID-19 cases, which has
diametrically opposed policy conclusions. Similar to our analysis, both Millimet and
Parmeter (2021, 2022) and Orea et al. (2021) have modeled this multiplication factor
in terms of a stochastic frontier analysis (SFA) model, where the error term is a
composite term. One of the components is a traditional noise term, while the other
captures unobserved variables that measure the “inefficiency” in COVID-19 case or
death counting (in other words, it will capture undercounting of cases and deaths).
After taking into account these “uncounted” cases and deaths, Millimet and Parmeter
(2021) find that non-pharmaceutical interventions (NPIs), which would include our
four major social distancing policies, led to fewer COVID-19 cases and deaths. The
association goes away in Fall 2022 (andmay even be positive), in part due to pandemic
fatigue. Orea and Alvarez (2022) found that Spanish NPI’s reduced the spread of
COVID-19, therefore limiting cases.

As a robustness check, we replicate the analyses performed inMillimet and Parme-
ter (2021) and Orea and Alvarez (2022), utilizing stochastic frontier analysis and our
state-level analysis, then calculate the marginal effects of the social distancing poli-
cies.17 Estimates are shown in Table 7. For the first 100 days, having a SIPO policy
is associated with 8.4 percent fewer COVID-19 cases. Having any four of the social
distancing policies reduces COVID-19 cases by 15.7 percent. For the full sample, our
SFA estimates indicate that having a SIPO policy only reduces COVID-19 case rates
by 7.4 percent. Having any four of the social distancing policies reduces COVID-19
cases by 12.5 percent. Though large, our estimates are consistent with our mainline
efficiency estimates.

As a further robustness check, we “adjust” our COVID-19 case totals by state-
specific multiplication factors calculated via the method of Millimet and Parmeter
(2021), and then run our main conditional order-m analysis on this. Using our adjusted

17 Instead of using per capita GDP, we use per capita median household. Similarly, Millimet and Parmeter
(2021) include COVID-19 testing rates as a covariate; because of the lack of consistent reporting of this
metric across states, we do not include it.
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COVID-19 case total, we estimate state average unconditional and conditional effi-
ciency estimates, for having Any 4 policies, controlling for population density. We
then compare these with our unadjusted efficiency estimates from Tables 1 and 2.
These estimates are presented in Table 8. The last column provides the state-specific
multiplication factors, while Appendix Fig. 5 shows the time-varying multiplication
factors.

We see that, in the first 100 days, our unadjusted conditional efficiency improves
by 26.8 percentage points when accounting for Any 4 social distancing policies. Our
adjusted conditional efficiency estimates show improvement of 18.8 percentage points,
which is in line with the estimates provided in Table 7. Similar analysis holds for the
full sample. Therefore, even though the conditional efficiency improvements using the
adjusted COVID-19 case data is about 70-percent of the unadjusted conditional effi-
ciency improvements, which would suggest that a little less than a third of inefficiency
measures is from uncounted cases, we have confidence that our results are correct.

5 Conclusion

Broadly, we see that, regardless of the time span, our results confirm that social distanc-
ing policies were important in reducing cumulative COVID-19 cases, by improving
conditional efficiency. However, based on our unconditional estimates, states were
broadly unprepared for the pandemic, which led to considerable inefficiency. For
instance, in the first 100 days of the COVID-19 pandemic, the average US state was
considered 38.6 percent inefficient, which suggested 750,000 more COVID-19 cases
than should have been. Conditioning our results on the types of social distancing
policies implemented, either the full sample or the first 100 days, eliminated a con-
siderable amount of the inefficiency. For instance, in the full sample, having any of
the four social distancing policies led to 172 fewer total COVID-19 cases per 100,000
population on September 1, 2020; there were 1,814.2 cumulative cases per 100,000
population on that date. However, even after controlling for population density, there
is still considerable state-level inefficiency in combatting COVID-19; in the full sam-
ple, the average state is still 15.6-percent inefficient relative to a hypothetically fully
efficient state. Given inputs, there could be 283.7 fewer total COVID-19 cases per
100,000 population. This suggests that the social distancing policies that were put into
place, while effective in curbing the COVID-19 pandemic, were not fully effective.
This may have been due to lax enforcement of the policies, behavioral noncompliance
on the parts of citizens and/or businesses, or the infectious nature of the disease itself.

Our results suggest that ex-ante policies, such as better emergency preparedness,
bans on international travel, and more aggressive mask enforcement early on in the
pandemic may have been able to reduce a significant fraction of the COVID-19 inef-
ficiency, which means having fewer COVID-19 cases than expected, relative to states
that did not enact these policies (or states that enacted them later). While a major-
ity of states adopted various, and often different, sets of social distancing policies,
there was considerable heterogeneity in state-level conditional efficiency improve-
ments. This finding suggests that federal mandates, with regards to social distancing

123



2936 R. Gearhart et al.

Ta
bl
e
8
U
nc
on
di
tio

na
la
nd

co
nd
iti
on
al
ef
fic
ie
nc
y
es
tim

at
es
,a
dj
us
te
d
fo
r
un
co
un
te
d
C
O
V
ID

-1
9
ca
se
s
an
d
st
at
e-
sp
ec
ifi
c
m
ul
tip

lic
at
io
n
fa
ct
or
s

St
at
e

FI
R
ST

10
0
D
A
Y
S

FU
L
L
SA

M
PL

E

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
M
F
by

St
at
e

A
la
ba
m
a

1.
34

92
1.
28

73
1.
28

65
1.
15

69
1.
32

31
1.
27

83
1.
28

79
1.
22

82
5.
04

78

A
la
sk
a

1.
34

24
1.
26

51
1.
28

16
1.
12

45
1.
32

44
1.
16

23
1.
29

32
1.
17

01
2.
36

46

A
ri
zo
na

1.
40

32
1.
29

33
1.
34

31
1.
14

08
1.
39

41
1.
34

59
1.
35

91
1.
23

48
4.
76

35

A
rk
an
sa
s

1.
35

73
1.
36

23
1.
29

41
1.
13

01
1.
32

98
1.
25

32
1.
29

58
1.
20

68
4.
01

99

C
al
if
or
ni
a

1.
43

32
1.
26

11
1.
37

60
1.
09

21
1.
42

06
1.
27

60
1.
39

02
1.
11

43
2.
31

86

C
ol
or
ad
o

1.
40

58
1.
32

99
1.
34

33
1.
20

53
1.
38

59
1.
37

84
1.
36

13
1.
26

77
1.
79

23

C
on

ne
ct
ic
ut

1.
41

63
1.
29

43
1.
35

79
1.
13

25
1.
40

54
1.
25

84
1.
38

11
1.
17

90
1.
83

55

D
el
aw

ar
e

1.
41

15
1.
26

28
1.
34

89
1.
10

07
1.
38

48
1.
29

10
1.
36

04
1.
21

35
2.
10

23

D
C

1.
40

80
1.
28

21
1.
34

93
1.
09

54
1.
40

27
1.
25

73
1.
38

01
1.
11

92
1.
75

46

Fl
or
id
a

1.
40

11
1.
33

06
1.
33

65
1.
10

80
1.
37

75
1.
23

09
1.
34

09
1.
14

71
6.
18

21

G
eo
rg
ia

1.
38

08
1.
32

11
1.
33

73
1.
14

87
1.
35

75
1.
33

66
1.
32

32
1.
23

25
4.
19

91

H
aw

ai
i

1.
40

50
1.
23

75
1.
35

31
1.
08

49
1.
40

70
1.
27

97
1.
38

06
1.
20

96
1.
81

76

Id
ah
o

1.
38

91
1.
25

82
1.
32

17
1.
14

67
1.
35

84
1.
28

34
1.
32

50
1.
23

21
4.
02

58

Il
lin

oi
s

1.
40

62
1.
26

51
1.
34

87
1.
12

55
1.
38

79
1.
32

66
1.
35

90
1.
22

79
2.
15

04

In
di
an
a

1.
38

58
1.
28

69
1.
31

71
1.
19

63
1.
35

14
1.
32

33
1.
32

13
1.
25

82
2.
31

40

Io
w
a

1.
36

38
1.
37

06
1.
30

14
1.
15

87
1.
33

37
1.
26

93
1.
30

05
1.
24

66
3.
64

08

K
an
sa
s

1.
37

35
1.
29

08
1.
31

43
1.
11

01
1.
35

37
1.
24

83
1.
31

98
1.
13

76
3.
49

60

K
en
tu
ck
y

1.
37

77
1.
38

20
1.
31

63
1.
13

03
1.
35

76
1.
28

12
1.
32

84
1.
23

25
2.
01

19

L
ou

is
ia
na

1.
36

42
1.
24

40
1.
29

88
1.
11

44
1.
33

77
1.
24

09
1.
30

43
1.
19

25
4.
64

44

123



The efficiency of COVID cases to COVID policies: a robust conditional… 2937

Ta
bl
e
8
(c
on

tin
ue
d)

St
at
e

FI
R
ST

10
0
D
A
Y
S

FU
L
L
SA

M
PL

E

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
M
F
by

St
at
e

M
ai
ne

1.
36

12
1.
23

56
1.
30

66
1.
10

80
1.
36

10
1.
19

02
1.
33

52
1.
17

35
1.
91

98

M
ar
yl
an
d

1.
41

12
1.
26

12
1.
36

19
1.
08

77
1.
40

72
1.
25

76
1.
37

64
1.
11

08
2.
68

84

M
as
sa
ch
us
et
ts

1.
41

17
1.
42

03
1.
35

18
1.
08

48
1.
40

24
1.
20

15
1.
37

63
1.
11

69
1.
66

69

M
ic
hi
ga
n

1.
41

01
1.
29

94
1.
34

29
1.
16

96
1.
37

99
1.
34

00
1.
35

73
1.
25

08
1.
81

97

M
in
ne
so
ta

1.
39

16
1.
23

53
1.
32

63
1.
18

55
1.
36

50
1.
21

64
1.
33

66
1.
20

55
1.
91

59

M
is
si
ss
ip
pi

1.
35

34
1.
29

50
1.
27

62
1.
12

64
1.
31

64
1.
26

34
1.
28

21
1.
21

55
5.
06

54

M
is
so
ur
i

1.
36

87
1.
30

13
1.
32

23
1.
17

97
1.
35

98
1.
31

67
1.
32

81
1.
25

12
2.
51

18

M
on

ta
na

1.
36

76
1.
28

73
1.
30

66
1.
13

01
1.
34

71
1.
24

66
1.
31

87
1.
23

66
2.
64

31

N
eb
ra
sk
a

1.
37

10
1.
37

51
1.
30

81
1.
13

02
1.
34

15
1.
27

06
1.
30

94
1.
23

22
3.
16

34

N
ev
ad
a

1.
40

46
1.
31

87
1.
36

11
1.
11

37
1.
40

33
1.
33

70
1.
37

03
1.
21

28
3.
46

65

N
ew

H
am

ps
hi
re

1.
38

91
1.
24

47
1.
32

54
1.
14

75
1.
37

69
1.
21

19
1.
35

35
1.
18

39
1.
81

71

N
ew

Je
rs
ey

1.
41

89
1.
24

89
1.
37

14
1.
13

97
1.
41

40
1.
29

46
1.
38

79
1.
16

52
1.
70

84

N
ew

M
ex
ic
o

1.
40

50
1.
23

39
1.
32

74
1.
09

44
1.
38

03
1.
22

14
1.
35

10
1.
13

85
2.
08

29

N
ew

Y
or
k

1.
40

36
1.
27

42
1.
35

83
1.
13

69
1.
40

78
1.
29

14
1.
38

14
1.
15

99
1.
81

97

N
or
th

C
ar
ol
in
a

1.
39

75
1.
23

53
1.
31

69
1.
12

43
1.
35

60
1.
21

16
1.
32

44
1.
14

57
2.
75

98

N
or
th

D
ak
ot
a

1.
34

18
1.
30

73
1.
26

56
1.
17

70
1.
30

27
1.
15

62
1.
26

90
1.
21

10
4.
08

75

O
hi
o

1.
36

97
1.
27

32
1.
33

51
1.
12

01
1.
37

28
1.
30

10
1.
34

58
1.
22

11
2.
66

09

123



2938 R. Gearhart et al.

Ta
bl
e
8
(c
on

tin
ue
d)

St
at
e

FI
R
ST

10
0
D
A
Y
S

FU
L
L
SA

M
PL

E

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

O
ri
gi
na
l

A
dj
us
te
d
by

M
F’
s

U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
U
nc
on

d
A
ny

4
M
F
by

St
at
e

O
kl
ah
om

a
1.
38

11
1.
25

83
1.
30

91
1.
12

25
1.
34

45
1.
24

56
1.
30

97
1.
14

16
3.
70

68

O
re
go

n
1.
39

60
1.
26

81
1.
36

43
1.
15

04
1.
40

82
1.
33

96
1.
38

39
1.
23

31
1.
81

74

Pe
nn

sy
lv
an
ia

1.
41

64
1.
25

80
1.
35

02
1.
16

21
1.
39

32
1.
34

89
1.
37

11
1.
24

98
1.
81

84

R
ho

de
Is
la
nd

1.
40

80
1.
32

22
1.
35

85
1.
11

66
1.
40

86
1.
18

97
1.
38

12
1.
15

73
2.
14

93

So
ut
h
C
ar
ol
in
a

1.
39

13
1.
31

13
1.
30

06
1.
11

25
1.
33

70
1.
23

68
1.
30

24
1.
15

23
4.
34

31

So
ut
h
D
ak
ot
a

1.
33

65
1.
32

67
1.
26

32
1.
27

27
1.
30

04
1.
28

43
1.
26

72
1.
32

36
3.
23

06

Te
nn

es
se
e

1.
35

47
1.
29

46
1.
30

57
1.
14

29
1.
34

30
1.
29

27
1.
30

88
1.
22

53
4.
21

91

Te
xa
s

1.
37

93
1.
31

65
1.
33

23
1.
12

56
1.
37

51
1.
30

64
1.
34

05
1.
22

81
4.
20

66

U
ta
h

1.
39

22
1.
31

35
1.
33

51
1.
23

58
1.
37

66
1.
33

81
1.
34

58
1.
29

78
2.
45

91

V
er
m
on

t
1.
34

47
1.
25

41
1.
28

74
1.
12

89
1.
35

47
1.
24

02
1.
32

98
1.
28

50
1.
92

00

V
ir
gi
ni
a

1.
39

15
1.
27

76
1.
33

69
1.
13

15
1.
38

27
1.
32

16
1.
35

43
1.
23

29
1.
95

22

W
as
hi
ng

to
n

1.
41

25
1.
25

36
1.
36

78
1.
08

66
1.
41

12
1.
26

34
1.
38

85
1.
12

67
1.
81

91

W
es
tV

ir
gi
ni
a

1.
40

06
1.
23

15
1.
31

30
1.
14

03
1.
35

96
1.
28

93
1.
33

50
1.
23

67
2.
01

99

W
is
co
ns
in

1.
38

23
1.
28

29
1.
32

90
1.
17

67
1.
36

39
1.
31

30
1.
33

39
1.
26

04
2.
20

88

W
yo

m
in
g

1.
36

53
1.
31

46
1.
29

46
1.
19

58
1.
33

33
1.
27

70
1.
30

98
1.
28

32
2.
44

28

M
ea
n

1.
38

63
1.
11

86
1.
32

62
1.
13

84
1.
36

82
1.
15

64
1.
33

88
1.
20

62
2.
57

24

To
in
te
rp
re
tt
he

ef
fic
ie
nc
y
es
tim

at
es
,a

va
lu
e
of

gr
ea
te
r
th
an

1
fo
r
th
e
un
co
nd
iti
on
al
an
d
co
nd
iti
on
al
or
de
r-
m

es
tim

at
or
s
co
rr
es
po
nd

to
be
in
g
“i
ne
ffi
ci
en
t”
,w

hi
le
a
va
lu
e
of

le
ss

th
an

1
co
rr
es
po
nd
s
to

“s
up
er
-e
ffi
ci
en
t”
.A

ny
4
re
fe
rs
to

an
y
of

th
e
4
po
lic
ie
s
in

pl
ac
e
on

da
y
j.
T
he

“O
ri
gi
na
l”
co
lu
m
ns

ar
e
re
pr
od

uc
ed

fr
om

Ta
bl
es

1
an
d
2.
T
he

“A
dj
us
te
d
by

M
F’
s”

co
lu
m
ns

ar
e
ef
fic
ie
nc
y
es
tim

at
es

af
te
r
ad
ju
st
in
g
fo
r
st
at
e-
sp
ec
ifi
c
m
ul
tip

lic
at
io
n
fa
ct
or
s,
th
en

re
-r
un
ni
ng

th
e
ef
fic
ie
nc
y
an
al
ys
is

123



The efficiency of COVID cases to COVID policies: a robust conditional… 2939

policies, would have been broadly ineffective in combatting COVID-19, and that con-
siderable regional differences led to different policies needed in different parts of the
country. In fact, states that were more densely populated had fewer COVID-19 cases
than expected relative to states that are less densely populated, shown via conditional
efficiency improvements. The policy implication is that targeted policies to combat
pandemics should focus on highly dense urban centers first; population density had a
larger impact on improving conditional efficiency than having any of the four major
social distancing policies.

Our finding that conditional efficiency improvements were higher in the first
100 days, indicating fewer COVID-19 cases than expected during this time period
given social mobility, suggests three potential explanations: (i) confusion about the
variety of laws and what was allowed or not; (ii) behavioral noncompliance, where
the longer social distancing policies lasted, the less likely that individuals complied
with the mandates; and/or (iii) premature revocation or expiration of social distancing
policies, which caused spikes in COVID-19 cases. Though we are unable to formally
test (i) and (ii), our results are indicative that both likely played a part.

Though not a formal test for (iii) above, we look at 7, 14, or 21 day conditional
efficiency averages after a state has eliminated a social distancing policy. From this,
we subtract the corresponding 7, 14, or 21 day conditional efficiency averages before
a state has eliminated a social distancing policy. We then subtract the unconditional
estimates, creating quasi difference-in-difference estimates. We see find evidence that
premature revocation of social distancing policies led to reductions in conditional
efficiency, which means higher levels of COVID-19 cases than expected, given inputs
and relative to states that kept policies in place. 14 (21) days after the revocation of a
social distancing policy, 5 (5) states did not see reductions in COVID-19 conditional
efficiency. In fact, 14 (21) days after the revocation of a policy, average conditional
efficiency decreased by 10.0 (10.5) percentage points. Though not causal, our results
are indicative of the considerable efficiency losses, which means higher than expected
COVID-19 cases given input levels, from dropping social distancing policies too early
(relative to those that did not).

While there has been considerable research in the economic literature on the impact
of COVID-19, our results suggest investigation in four areas that may help inform
and provide improved policy prescriptions. The first area is emergency preparedness;
our results indicate considerable inefficiencies in this area, suggesting that it was
unlikely that much could have been done once the pandemic started. The second
area is the optimal length of public health policies; there is suggestive evidence that
having these policies for both too short and too long of time spans reduced their
efficacy. In the former case, individuals chose to engage in riskier behaviors once
restrictions were relaxed. In the latter, it was likely that behavioral noncompliance
became a bigger factor the longer policies lasted, with both citizens and businesses
feeling that the economic costs of the shutdowns outweighed the public health benefits.
The third is to provide further evidence that combating a pandemic may depend on the
population density of an areas. Efforts and money should flow first to more densely
populated urban areas, which can have considerably more of an impact than enforcing
and instituting social distancing policies. In fact, more specifically targeted social
distancing policies, such as SIPOs in major urban centers, may have reduced later
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resistance to further (and continued) social distancing policies in many parts of the
country, perhaps reducing the cumulative impact of COVID-19 in America. Finally,
the role of weather and timing on the effectiveness of COVID-19 policies can be
studied further. Populations in colder regions such as North Dakota, South Dakota and
Alaska will respond differently to SIPOS enacted in cold months (such as February)
than those in California or Florida.
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Table 10 Comparison of Author’s Estimates with Seiford and Zhu (2002) “Bad Output” and “Bad Input”
Transformations

Author’s Transformations Seiford and Zhu (2002)
Transformation

State Uncond Any 4 Uncond Any 4

Alabama 1.3492 1.2873 1.3459 1.1252

Alaska 1.3424 1.2651 1.3815 1.1214

Arizona 1.4032 1.2933 1.4081 1.0788

Arkansas 1.3573 1.3623 1.4082 1.1507

California 1.4332 1.2611 1.4064 1.0835

Colorado 1.4058 1.3299 1.3886 1.1013

Connecticut 1.4163 1.2943 1.4065 1.0908

Delaware 1.4115 1.2628 1.3967 1.1312

DC 1.4080 1.2821 1.3651 1.1348

Florida 1.4011 1.3306 1.3708 1.1099

Georgia 1.3808 1.3211 1.3698 1.0846

Hawaii 1.4050 1.2375 1.4113 1.0695

Idaho 1.3891 1.2582 1.4011 1.1566

Illinois 1.4062 1.2651 1.3624 1.1265

Indiana 1.3858 1.2869 1.3687 1.1186

Iowa 1.3638 1.3706 1.3959 1.0977

Kansas 1.3735 1.2908 1.4132 1.1250

Kentucky 1.3777 1.3820 1.3977 1.1030

Louisiana 1.3642 1.2440 1.3512 1.1276

Maine 1.3612 1.2356 1.3910 1.0995

Maryland 1.4112 1.2612 1.4182 1.1233

Massachusetts 1.4117 1.4203 1.3973 1.1108

Michigan 1.4101 1.2994 1.3411 1.1837

Minnesota 1.3916 1.2353 1.3824 1.1256

Mississippi 1.3534 1.2950 1.3664 1.1612

Missouri 1.3687 1.3013 1.4150 1.0821

Montana 1.3676 1.2873 1.3901 1.1367

Nebraska 1.3710 1.3751 1.3388 1.2186

Nevada 1.4046 1.3187 1.4003 1.1628

New Hampshire 1.3891 1.2447 1.3835 1.1339

New Jersey 1.4189 1.2489 1.4179 1.1152

New Mexico 1.4050 1.2339 1.3810 1.0885

New York 1.4036 1.2742 1.4114 1.1099

North Carolina 1.3975 1.2353 1.3544 1.0957
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Table 10 (continued)

Author’s Transformations Seiford and Zhu (2002)
Transformation

State Uncond Any 4 Uncond Any 4

North Dakota 1.3418 1.3073 1.2990 1.1610

Ohio 1.3697 1.2732 1.3758 1.1711

Oklahoma 1.3811 1.2583 1.3397 1.0916

Oregon 1.3960 1.2681 1.4139 1.1831

Pennsylvania 1.4164 1.2580 1.4011 1.1998

Rhode Island 1.4080 1.3222 1.4112 1.1073

South Carolina 1.3913 1.3113 1.3324 1.1023

South Dakota 1.3365 1.3267 1.2972 1.2736

Tennessee 1.3547 1.2946 1.3388 1.1753

Texas 1.3793 1.3165 1.3705 1.1781

Utah 1.3922 1.3135 1.3758 1.2478

Vermont 1.3447 1.2541 1.3598 1.2350

Virginia 1.3915 1.2776 1.3843 1.1829

Washington 1.4125 1.2536 1.4185 1.0767

West Virginia 1.4006 1.2315 1.3650 1.1867

Wisconsin 1.3823 1.2829 1.3639 1.2104

Wyoming 1.3653 1.3146 1.3398 1.2332

Mean 1.3863 1.1186 1.3789 1.1392

Fig. 5 Multiplication Factor by State and Day
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