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Abstract The Pareto distribution is often used in many areas of economics to model
the right tail of heavy-tailed distributions. However, the standard method of estimat-
ing the shape parameter (the Pareto tail index) of this distribution—the maximum
likelihood estimator (MLE), also known as the Hill estimator—is non-robust, in the
sense that it is very sensitive to extreme observations, data contamination or model
deviation. In recent years, a number of robust estimators for the Pareto tail index have
been proposed, which correct the deficiency of the MLE. However, little is known
about the performance of these estimators in small-sample setting, which often occurs
in practice. This paper investigates the small-sample properties of the most popular
robust estimators for the Pareto tail index, including the optimal B-robust estimator
(Victoria-Feser and Ronchetti in Can J Stat 22:247–258, 1994), the weighted maxi-
mum likelihood estimator (Dupuis and Victoria-Feser in Can J Stat 34:639–658, 2006),
the generalized median estimator (Brazauskas and Serfling in Extremes 3:231–249,
2001), the partial density component estimator (Vandewalle et al. in Comput Stat Data
Anal 51:6252–6268, 2007), and the probability integral transform statistic estimator
(PITSE) (Finkelstein et al. in N Am Actuar J 10:1–10, 2006). Monte Carlo simulations
show that the PITSE offers the desired compromise between ease of use and power to
protect against outliers in the small-sample setting.
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2 M. Brzezinski

1 Introduction

Distributions of many economic variables are characterized by heavy right tails. Such
tails are often modelled in economics and other fields of science using Pareto distribu-
tion, which was originally introduced late in the nineteenth century by Vilfredo Pareto
in the context of modelling income and wealth distributions (Pareto 1897). Since then,
the Pareto distribution has become the most popular model to describe top income
and wealth values (see, e.g. Drăgulescu and Yakovenko 2001; Kleiber and Kotz 2003;
Clementi and Gallegati 2005; Klass et al. 2006; Cowell and Flachaire 2007; Cowell
and Victoria-Feser 2007; Ogwang 2011; Alfons et al. 2013).1 However, the model is
also heavily used in several other areas of economics to model the right-hand tails of
fluctuations in stock prices (Lauridsen 2000; Gabaix et al. 2003, 2006; Balakrishnan
et al. 2008), exchange rates (Wagner and Marsh 2005), firm sizes (Axtell 2001; Luttmer
2007), city sizes (Soo 2005), countries’ interactions in international trade (Hinloopen
and van Marrewijk 2012), CEO compensation (Gabaix and Landier 2008), supply of
regulations (Mulligan and Shleifer 2005), tourist visits (Ulubaşoğlu and Hazari 2004),
claims in actuarial problems (Ramsay 2003), macroeconomic disasters (Barro and Jin
2011), and macroeconomic fluctuations (Gaffeo et al. 2003). In addition, Pareto dis-
tribution appears widely in physics, biology, earth and planetary sciences, computer
science, and in other disciplines (Newman 2005).

The maximum likelihood estimator (MLE) for the shape parameter of the Pareto
distribution (also known as the Pareto tail index or the Pareto exponent) was introduced
by Hill (1975) and is referred to as the Hill’s estimator.2 If the Pareto distribution is the
true model for a given sample, then one can safely estimate the Pareto tail index using
MLE, which has the optimal asymptotic variance. However, in the presence of data
contamination or when the sample deviates from the Pareto model, the MLE is not
robust and becomes severely biased (Victoria-Feser and Ronchetti 1994; Finkelstein
et al. 2006). To make matters worse, even small errors in estimation of the Pareto
exponent can produce large errors in estimation of quantities based on estimates of the
exponent such as extreme quantiles, upper-tail probabilities and mean excess functions
(Brazauskas and Serfling 2000). Similarly, inequality measures computed for the data
simulated from the Pareto model are largely affected by even small or moderate data
contamination (Cowell and Victoria-Feser 1996).

In recent years, a number of appealing robust estimators for the Pareto exponent
have been proposed. These estimators perform better than the MLE in the presence of
outliers, while retaining high asymptotic relative efficiency (ARE) with respect to the
MLE.3 Although asymptotic properties of most of these estimators are well known,

1 The Pareto distribution is also known as power-law distribution and Zipf’s law, see Newman (2005).
2 Other non-robust methods of estimation the Pareto tail index, including regression estimators, Bayesian
estimators, methods based on moments or order statistics, are discussed in Arnold (1983), Johnson, Kotz,
and Balakrishnan (1994, cha. 20), and Kleiber and Kotz (2003, cha. 3). See also Gabaix and Ibragimov
(2011) for a recent regression-based estimator, which has a reduced bias in small samples.
3 Robust methods are used in the context of heavy-tailed distributions not only for the purpose of reducing
the bias of the tail index estimate. Another purpose is to measure the impact of the influential observations
(see, e.g. Dell’Aquila and Embrechts 2006; Hubert et al. 2013). I would like to thank a referee for pointing
this out.

123



Robust estimation of the Pareto tail index: a Monte Carlo… 3

their performance in the small-sample setting is less clear. However, as observed
recently by Beran and Schell (2012), researchers and practitioners studying problems
such as operational risk assessment, reinsurance and natural disasters often have to fit
heavy-tailed models to sparse samples with the number of observations ranging from
20 to at most 50. In another context, Barro and Jin (2011) have estimated the upper-tail
exponent of the distribution of macroeconomic disasters using samples of only 21–22
observations. Soo (2005) applied the Pareto model to the distribution of cities for a
number of countries; in case of 22 countries the number of observations was less than
50 and it was even less than 20 in four cases. A recent study of Ogwang’s (2011),
which analyses the Pareto behaviour of the top Canadian wealth distribution is based
on a rather small sample of about one hundred observations. Therefore, it seems that
in practical applications the Pareto tail index is indeed quite often estimated using
sparse data.

The existing literature that examines the small-sample performance of alternative
robust estimators for the Pareto exponent is fairly small (see Brazauskas and Serfling
2001b; Huisman et al. 2001; Wagner and Marsh 2004; Finkelstein et al. 2006; Alfons
et al. 2010). In addition, none of the existing studies compares all of the most pop-
ular robust estimators for the Pareto tail index. The present paper fills the gap in the
literature by providing an extensive comparison of the small-sample properties of the
most popular robust estimators for the Pareto tail index. We investigate the properties
of the estimators by Monte Carlo simulations under various data contaminations and
model deviations, which produce outliers that can be found in real data sets. In par-
ticular, the paper compares the optimal bias-robust estimator (OBRE) (Hampel et al.
1986; Victoria-Feser and Ronchetti 1994), the weighted maximum likelihood esti-
mator (WMLE) (Dupuis and Morgenthaler 2002; Dupuis and Victoria-Feser 2006),
the generalized median estimator (GME) (Brazauskas and Serfling 2000, 2001a), the
partial density component estimator (PDCE) (Vandewalle et al. 2007) and the prob-
ability integral transform statistic estimator (PITSE) (Finkelstein et al. 2006).4 The
OBRE, WMLE and PDCE have been applied in robust modelling of income distribu-
tion (Cowell and Victoria-Feser 2007, 2008; Alfons et al. 2013). The OBRE has been
also recently applied to study the distribution of large macroeconomic contractions
(Brzezinski 2015).

It is worth noting here that the alternative approach to modelling extreme economic
events relies on generalized Pareto distribution, which is a three parameter variant of
the classical two-parameter Pareto distribution. However, this paper focuses solely on
the latter distribution. The comparison of robust estimators for the generalized Pareto
model can be found in Ruckdeschel and Horbenko (2013).

The remainder of the paper is organized as follows. Alternative robust estimators
for the Pareto tail index, as well as the MLE treated as the benchmark in our study,
are described in Sect. 2. Section 3 presents the Monte Carlo design and discusses the
results of our Monte Carlo simulations. Section 4 applies the estimators to real income

4 In this paper, we are concerned with mainly with outliers at high quantiles in the right tail of the
distribution. Some of the robust estimators of the Pareto tail index are designed to provide protection
against departures in the lower quantiles (see, e.g. Beran and Schell 2012). They are not included in our
comparison, since this type of outliers is rather unusual.
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4 M. Brzezinski

distribution data from the European Union Statistics on Income and Living Conditions
(EU-SILC), while Sect. 5 concludes and gives recommendations for practice.

2 Alternative estimators for the Pareto tail index

2.1 The MLE

The classical (or type I) Pareto distribution P(x0, α) is defined in terms of its cumu-
lative distribution function as follows

Fα(x) = 1 − (x0/x)
α, x ≥ x0 > 0, (1)

where x0 is a scale parameter and α > 0 is the Pareto tail index describing the shape
of the distribution. It is a heavy-tailed distribution with the right tail becoming heavier
for smaller values of the Pareto tail index. The literature offers various methods to
estimate the value of the cut-off x0, above which the Pareto model can be fitted to
data. However, as Gabaix (2009) observes, in practice x0 is set usually using visual
goodness of fit or by assuming that a fixed proportion of top observations (e.g. 5 %) in
a given data set follow a Pareto model. A robust statistical procedure for choosing x0,
based on the robust prediction error criterion, was proposed by Dupuis and Victoria-
Feser (2006). In this paper, x0 is estimated as the first-order statistic of the sample
drawn from the Pareto model.

The simulation study presented in this paper uses the MLE for the Pareto tail index
as a non-robust benchmark, which allows to evaluate better the properties of robust
estimators. We also use the MLE as a starting value in numerical procedures used to
compute some of the robust estimators compared in this study.

For a random sample of n observations, x1, . . . , xn , the MLE for parameter α in
(1) is given by

α̂MLE = 1

n−1
∑n

i=1 log xi − log x0
. (2)

Actually, the paper uses the unbiased (and asymptotically equivalent) version of
MLE, which is defined as (Kleiber and Kotz 2003, p. 84)

α̂MLU =
(

1 − 2

n

)

α̂ML . (3)

The reminder of this section briefly introduces the most popular robust estimators
for α. Detailed discussions of these estimators, which include presentation of their
asymptotic properties, are offered in the original papers that introduced the estima-
tors. For all estimators under discussion, except for the PDCE, the trade-off between
robustness and efficiency is regulated by the estimator’s asymptotic properties. A com-
parison of the OBRE, GME and PITSE in terms of the upper breakdown point (UBP)
and gross error sensitivity (GES) is presented in Finkelstein et al. (2006).
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2.2 Optimal B-robust estimator

In the context of robust measurement of income inequality, Victoria-Feser and
Ronchetti (1994) introduced the optimal B-robust estimator (OBRE) for the Pareto
model, which is an M-estimator with minimal asymptotic covariance matrix. The class
of OBREs was defined by Hampel et al. (1986) in terms of the influence function (IF),
which allows for assessing the robustness of an estimator for a parametric model. IF
can be defined in the following way.

Let Fθ be a parametric model with density fθ , where the unknown parameters
belong to some parameter space � ⊆ �p. For a sample of n observations, x1, . . . , xn ,
the empirical distribution function Fn(x) is

Fn(x) = 1

n

n∑

i=1

δxi (x), (4)

where δi denotes a point mass in x . For a parametric model Fθ , θ ∈ � ⊆ �p, and
estimators of θ , Tn , treated as functional of the empirical distribution function, i.e.
T (Fn) = Tn(x1, . . ., xn), the IF is defined as

I F(x; T ; Fθ ) = lim
ε→0

T [(1 − ε)Fθ + εδx ] − T (Fθ )

ε
. (5)

The IF describes the effect of a small contamination (εδx ) at a point x on the
estimate of Tn , standardized by the mass of the contamination. Linear approxima-
tion ε IF(x; T ; Fθ ) measures therefore the asymptotic bias of the estimator caused
by the contamination. In case of the MLE, the IF is proportional to the score
function s(x; θ) = ∂

∂θ
log fθ (x), which for the Pareto distribution is s(x;α) =

1/α−log x+log x0. Since this function is unbounded in x , the MLE for α is not robust.
A robust estimator possessing a bounded IF is called B-robust (or biased-robust).

The OBRE is the solution Tn of the system of equations

n∑

i=1

ψ (xi ; Tn) = 0 (6)

for some function ψ . The OBRE is optimal M-estimator with minimum asymptotic
covariance matrix under the constraint that it has a bounded IF. Victoria-Feser and
Ronchetti (1994) use the so-called standardized version of OBRE, which for a given
bound c on IF is defined implicitly by the solution θ̂ in

n∑

i=1

ψ(xi ; θ) =
n∑

i=1

{s(xi ; θ) − a(θ)}Wc(xi ; θ) = 0 (7)

with

Wc(x; θ) = min

{

1; c

‖A(θ) [s(x; θ) − a(θ)]‖
}

, (8)
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6 M. Brzezinski

where ‖·‖ denotes the Euclidean norm, and the matrix A(θ) and vector a(θ) are defined
implicitly by

E
[
ψ(xi ; θ)ψ(xi ; θ)T

]
=

[
A(θ)T A(θ)

]−1
, (9)

E [ψ(xi ; θ)] = 0. (10)

For efficiency reasons, OBRE uses the score as the ψ function for the bulk of the data
and truncates the score only if a robustness constant c is exceeded. The robustness
weights Wc given in Eq. (8) are attributed to each observation to downweight obser-
vations deviating from the assumed model. The matrix A(θ) and vector a(θ) can be
considered as Lagrange multipliers for the constraints due to a bounded IF and the
condition of Fisher consistency, T (Fθ ) = θ . Bound c is a regulator between efficiency
and robustness—for small c an OBRE is more robust but less efficient, and vice versa
for large c. If c = ∞, then OBRE is equivalent to the MLE. Simulations in this paper
were performed using c = (1.63, 2.73), which, for the Pareto model, gives a more
robust but only moderately efficient OBRE (78 % ARE) in the case of smaller c and
an efficient (94 % of ARE) but less robust estimator in the case of higher c.5

The OBRE is computationally complex as one has to solve (7) under (9) and (10). An
iterative algorithm to compute OBRE was proposed by Victoria-Feser and Ronchetti
(1994); see also Bellio (2007).

2.3 Weighted maximum likelihood estimator

Dupuis and Victoria-Feser (2006) introduced another robust M-estimator for the Pareto
tail index, which belongs to the class of WMLE of Dupuis and Morgenthaler (2002).
For a parametric model Fθ with density fθ , where for simplicity θ is assumed to be
one-dimensional, and a random sample of n observations, x1, . . . , xn , the WMLE is
defined as the solution θ̂ in θ of

n∑

i=1

ψ(xi ; θ) =
n∑

i=1

w(xi ; θ)
∂

∂θ
log fθ (xi ) = 0, (11)

where w(x; θ) is a weight function with values in [0,1]. Dupuis and Victoria-Feser
(2006) propose to use a weighting scheme based on the Pareto quantile plot (see, e.g,
Beirlant et al. 1996). The Pareto quantile plot shows that for the Pareto model (1) with
tail index α and for x > x0, there is a linear relationship between the log of the x and
the log of the survival function

log

(
x

x0

)

= − 1

α
log(1 − Fα(x)), x > x0. (12)

5 Since all robust estimators considered in this paper, except the PDCE, allow for the trade-off between
efficiency and robustness, the regulating parameters for these estimators were adjusted to match the assumed
common levels of ARE. The levels of 78 and 94 % were chosen because the regulating parameter for the
GME (see Sect. 2.4) takes only integer values, which restricts the range of admissible values of ARE.
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Let x∗[i], i = 1, . . ., k, be the ordered largest k observations and Yi = log(x∗[i]/x0)

be logarithms of relative excesses. For the Pareto model, the Yi may be predicted by
Ŷi = −1/α̂ log[(k + 1 − i)/(k + 1)], where α̂ is an estimator of α. The variance
of Yi may be estimated by σ̂ 2

i = ∑i
j=1 1/[α̂2(k − i + j)2]. Using the standardized

residuals defined as ri = (Yi − Ŷi )/σi , Dupuis and Victoria-Feser (2006) propose
Huber-type weight function in (11), which downweights observations deviating from
the Pareto model in terms of the size of the residuals, ri , i.e.

w(x∗[i];α) =
{

1, i f |ri | < c,
c/ |ri | , i f |ri | ≥ c,

(13)

with α estimated by the WMLE and where c is a constant regulating the robustness-
efficiency trade-off.

The WMLE is not in general unbiased, but the first-order bias-corrected WMLE
with weights defined by (13) is derived by Dupuis and Victoria-Feser (2006) as α̃ =
α̂ − B(α̂), where α̂ is the WMLE as defined in (11) and

B
(
α̂
)

=
−

k∑

i=1

(
w

(
x∗[i]; α

)
∂ log f

(
x∗[i]; α

)/
∂α

)
|α̂

(
Fα̂

(
x∗[i]

)
− Fα̂

(
x∗[i−1]

))

k∑

i=1

(
∂w

(
x∗[i]; α

)/
∂α∂ log f

(
x∗[i]; α

)/
∂α+w

(
x∗[i]; α

)
∂2 log f

(
x∗[i]; α

)/
∂2α

)
|α̂

(
Fα̂

(
x∗[i]

)
−Fα̂

(
x∗[i−1]

)) ,

(14)

with x∗[0] set to x0.
Dupuis and Victoria-Feser (2006) have shown in simulations that in the small-

sample setting the WMLE does not achieve high relative efficiency. For example, the
relative efficiency of the WMLE for samples of 100 observations is at most 81 %.
Other estimators that we compare in this paper do not suffer from this problem. For
this reason, we include the WMLE in our comparison only for the case of ARE =
78 %, while other robust estimators for the Pareto tail index are compared also for the
case of ARE = 94 %. The constant c that regulates the trade-off between efficiency
and robustness was estimated for the WMLE by simulation performed independently
for each sample size used in our Monte Carlo comparison.

2.4 Generalized median estimators

Another class of robust estimators for the Pareto tail index was developed by
Brazauskas and Serfling (2000, 2001a). Consider a sample x1, ..., xn drawn from
P(x0, α). The GME are, for a sample of size n and for a given choice of integer k ≥ 1,
defined as the median of the evaluations h(xi1, . . . , xik ), where {i1, . . ., ik} is a set of

distinct indices from {1, . . ., n}, of a given kernel h(X1, . . ., Xk) over all

(
n
k

)

subsets

of observations taken k at a time. In particular, Brazauskas and Serfling (2000, 2001a)
define the GME for the Pareto tail index as
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8 M. Brzezinski

α̂GM = Median
{
h

(
xi1 , . . . , xik

)}
, (15)

with two choices of kernel h(X1, . . ., Xk):

h(1)(X1, . . . , Xk) = 1

Ck

1

k−1
∑k

j=1 log X j − log min{X1, . . . , Xk}
(16)

and

h(2)
(
X1, . . . , Xk; x[1]

) = 1

Cn,k

1

k−1
∑k

j=1 log X j − log x[1]
, (17)

where Ck and Cn,k are multiplicative median-unbiasing factors. The choice of these
kernels is motivated by relative efficiency considerations—h(1) is the MLE based on
a particular subsample, while h(2) is a modification of the MLE that always uses the
minimum of the full sample instead of the minimum of the particular subsample. The
estimators corresponding to h(1) and h(2) are denoted, respectively, by α̂

(1)
GME and α̂

(2)
GME.

Brazauskas and Serfling (2001a, b) show that in the case of contamination at high
quantiles α̂

(2)
GME significantly outperforms α̂

(1)
GME with respect to asymptotic efficiency

even in the small-sample setting. Since this paper focuses on upper contamination,
only α̂

(2)
GME will be examined in our experiments.6 The multiplicative median-unbiased

factor for α̂
(2)
GME is defined as

Cn,k = Median((1 − k/n)χ2
2k + (k/n)χ2

2 (k − 1))

2k
, (18)

where χ2
d is Chi-squared distribution with d degrees of freedom. In our Monte Carlo

simulations, we use α̂
(2)
GME with k = 2 and k = 5, which correspond, respectively, to

the ARE = 78 % and ARE = 94 %.

2.5 Probability integral transform statistic

Finkelstein et al. (2006) noticed that since the distribution function of the Pareto model
(1) is continuous and strictly increasing, the random variables Fα(x1), . . . , Fα(xn)
form a random sample on the uniform distribution on the interval (0,1). They observed
that even an infinite contamination has a bounded effect on data transformed this way.
The new robust estimator of Pareto tail index was defined with the help of the following
statistic

Gn,t (β) = n−1
n∑

j=1

(
x0

x j

)βt

, (19)

6 Brazauskas and Serfling (2001b) have also compared their generalized median estimators with some
well-established robust and non-robust estimators including method of moments estimators, trimmed mean
estimators, regression estimators, least squares estimators, and quantile-based estimators. They concluded
that among these estimators the GMEs perform best with respect to the efficiency versus robustness trade-off.
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Robust estimation of the Pareto tail index: a Monte Carlo… 9

where t > 0 is the parameter regulating the trade-off between efficiency and robust-
ness. When β = α and t = 1, (x0/xi )α = 1 − Fα(xi ) is a random variable with
the uniform distribution. Denoting a random sample from the uniform distribution
by u1,…,un , and knowing that Pr(limn→∞ n−1 ∑n

j=1 u
t
j ) = 1/(t + 1), the PITSE,

α̂P IT SE , is defined as the solution of the equation

Gn,t (β) = 1

t + 1
. (20)

The balance between efficiency and robustness can be regulated by setting the
appropriate value of the parameter t . By taking t close to 0, ARE of PITSE can be
made arbitrarily close to 1; for higher values of t , PITSE gains robustness but loses
relative efficiency. Simulations in this paper use t = 0.324 and t = 0.883, which
correspond, respectively, to 78 and 94 % of ARE.

As stressed by Finkelstein et al. (2006), the PITSE is both conceptually and compu-
tationally simpler that other robust estimators for the Pareto tail index. Its computation
requires only solving Eq. (20), which for a given data set and the value of t has exactly
one solution. This relative computational simplicity of the PITSE can be considered
as an argument in its favour, especially if the results of our comparison would sug-
gest that it delivers a satisfactory degree of protection against data contamination and
model deviation.

2.6 Partial density component estimator

Vandewalle et al. (2007) introduced a robust estimator for the tail index of Pareto-
type distributions based on the so-called partial density component estimation, which
extends the integrated squared error approach (Scott 2001, 2004).7 In general, the
approach of Vandewalle et al. (2007) uses a minimum distance criterion based on
integrated squared error as a measure of discrepancy between the estimated density
function and the true but unknown density. More specifically, they use the approach
of Scott (2001, 2004), who considered estimation of mixture models by this method.
Given the unknown true density f , and a model fθ , the goal is to find a fully data-based
estimate of the distance between the two densities using the integrated squared error
criterion. Therefore, the estimated parameter θ̂ is given by

θ̂ = arg min
θ

[∫

( fθ (x) − f (x))2 dx

]

. (21)

For a sample of size n drawn from a model with density fθ , the criterion can be shown
to be equivalent to

7 It should be noted here that the estimator of Vandewalle et al. (2007) is designed for Pareto-type distrib-
utions defined as 1 − F(x) = x−αlF (x), where F(x) is the distribution function and lF is a slowly varying
function. The strict Pareto model (1) holds when lF (x) = xα

0 . The Pareto-type class includes also Fréchet,
Burr, log-gamma and many other distributions (see Beirlant et al. 2004).
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10 M. Brzezinski

θ̂ = arg min
θ

[∫

f 2
θ (x)dx − 2

n

n∑

i=1

fθ (xi )

]

. (22)

Following Scott (2004), Vandewalle et al. (2007) make use of the fact that in derivation
of (22) it is assumed that only f is a real density function, but not necessarily the model
fθ . Hence, also an incomplete mixture model wf θ can be considered

θ̂w = arg min
θ,w

[

w2
∫

f 2
θ (x)dx − 2w

n

n∑

i=1

fθ (xi )

]

, (23)

where the parameter w may be interpreted, with some restrictions, as a measure of the
uncontaminated proportion of the sample. It is estimated by

ŵ = n−1 ∑n
i=1 f

θ̂
(xi )

∫
f 2
θ̂
(x)dx

. (24)

For the strict Pareto model with density fα(x) = αx0x−(α+1), the integral∫ ∞
x0

f 2
α (x)dx can be calculated easily in closed form as α2/[(2α + 1)x0]. Therefore,

the so-called PDCE for the Pareto model is defined as

α̂PDCE = arg min
α

[

ŵ2 α2

(2α + 1)x0
− 2ŵ

n

n∑

i=1

fα(xi )

]

. (25)

3 Monte Carlo comparison

3.1 Simulation design

In most of the economic and other applications, the estimated Pareto tail index has a
direct economic interpretation or it is used to calculate some other index (e.g. inequality
measure) of interest. Obtaining an unbiased estimate of the Pareto tail index is therefore
crucial. From this perspective, our Monte Carlo comparison focuses on comparing the
bias of alternative estimators. Therefore, the performance of the estimators is assessed
in terms of the percentage relative bias (RB) and the percentage relative root-mean-
square error (RRMSE). For a given true value of the Pareto exponent, α, the relative
bias of an estimator is given by

RB = 100

α

1

m

m∑

i=1

(α̂i − α), (26)

where α̂i is the estimated value of the Pareto tail index for the i-th (i = 1, . . .m)

simulated sample and m is the number of simulations. The relative root-mean-square
error is defined as
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Robust estimation of the Pareto tail index: a Monte Carlo… 11

RRMSE = 100

α

√
√
√
√ 1

m

m∑

i=1

(
α̂i − α

)2
. (27)

Both measures are routinely used to assess the accuracy and precision of an estimator;
the smaller the values of each measure in absolute terms, the better the estimator.
The RB measures the extent of the bias of an estimator, while the RRMSE takes into
account both the bias and the dispersion of an estimator.

The data sets simulated from the Pareto distribution P(1, α) are contaminated
in two ways. Both methods of contamination were previously used in the literature
and rely on introducing “upper” outliers, which have more relevance in practical
economic applications. First, following Brazauskas and Serfling (2001b), we have
drawn contaminated data from the following model

F = (1 − ε)P(1, α) + εP(1000, α), (28)

where ε = 0.05, 0.1 is the proportion of contamination and α = 1, 2, 3.8 This way of
introducing “outliers” to the data allows to study how compared estimators are affected
by model deviation. Second, we multiply by 10 a fixed proportion (1, 2, 5 and 10 %)
of randomly selected observations simulated from P(1, α). This corresponds to the
“decimal point error”—a situation, when a person coding or cleaning the data inad-
vertently puts the decimal point in the wrong place and thus multiplies an observation
by a factor of 10 (Cowell and Victoria-Feser 1996). We compare the performance of
the estimators in two cases with respect to the ARE—setting it to 78 and 94 %.9 The
former case gives more protection against outliers at the cost of an efficiency loss; the
latter gives more preference to efficiency, but offers only moderate robustness. The
number of Monte Carlo simulations is 2,500 for each combination of parameters, sam-
ple sizes (ranging from 20 to 200), contamination types and AREs. This number was
chosen on the basis of the trade-off between the need to reduce simulation variability
and the required computation time, which is longer for some of the more complex
estimators such as the OBRE.

3.2 Monte Carlo results

Tables 1 and 2 give results for the uncontaminated Pareto distribution, with estimators
computed for ARE = 94 % (Table 1) and ARE = 78 % (Table 2). We do not present
results for the PDCE with very small samples (20 and 40 observations, and in some
cases even more), because in this setting the minimization procedure used to compute
the estimator did not converge (or diverged) in a significant number of replications.
However, the performance of the PDCE is much worse than that of other estimators
even in larger samples (100, 200). The bias of the PDCE in uncontaminated samples
decreases very slowly with increasing sample size, and it is still noticeable (in the

8 This range of α covers most of the Pareto exponents found in the empirical literature.
9 The only exception is PDCE, which does not have a tuning parameter regulating the efficiency vs.
robustness trade-off.
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range from 4 to 8 %) even in samples of 200 observations. In the case of contaminated
samples, the PDCE displays acceptable properties only for the biggest sample size
studied (200 observations). Thus, the first recommendation of our study is to avoid the
PDCE in practical small-sample settings (n < 200), when alternative robust estimators
can be used.10

The GME has the smallest bias in the uncontaminated case, but its performance
in terms of the RRMSE is similar to that of other robust estimators, especially for
larger samples. Other compared estimators—the OBRE, WMLE and PITSE—have
significant biases in very small samples, which disappear only in samples of 100–
200 observations. The ranking of the estimators is similar for both levels of the ARE
studied.

Results for the contaminated Pareto models F = (1 − ε)P(1, α) + εP(1000, α),
with ε = 0.05, 0.1 are presented in Tables 3, 4, 5 and 6. We first discuss results
for the smaller degree of contamination (Tables 3, 4). We can observe that the MLE
for all sample sizes performs bad according to both evaluation criteria, reaching (in
absolute terms) more than 50 % for α = 3. Interestingly, the performance of the MLE
deteriorates significantly with the rise in α. All robust estimators provide at least some
protection against contamination, which seems to be independent of the value of α.
For this reason, the biggest gains from using robust estimators are observed for α = 3.
In the case of higher ARE (Table 3), the OBRE, PITSE and GME perform similarly for
all sample sizes. For higher robustness and lower ARE (Table 4), when the WMLE is
also included in the comparison, we can observe that the WMLE performs worse than
the alternatives, especially in terms of RRMSE. In this case, the OBRE, PITSE and
GME provide similar and higher level of protection than the WMLE. For the former
estimators, moving from higher efficiency and lower robustness to lower efficiency
and higher robustness reduces RRMSE from about 17–20 % to about 11–12 % (for
samples size of 200).

The results for higher degree of contamination (ε = 0.1) are shown in Tables 5, 6.
This type of contamination is rather extreme and not surprisingly it makes the MLE
useless. For example, the values of both evaluative criteria exceed 65 % for α = 3.
The performance of the OBRE, PITSE and GME is again roughly similar in case of
the higher ARE. Results for the case of lower ARE and higher robustness reveal an
interesting behaviour of the WMLE. For small sample sizes (n < 100), the WMLE
performs substantially worse than the alternatives, for n = 100 it performs compa-
rably, while for n = 200 it gives slightly better results than other robust estimators.
This behaviour is likely caused by the first-order bias correction term (14), which
works poorly in small samples, but does much better job in samples of at least 100
observations. The results from Table 6 provide the strongest evidence for the power of
robust estimators. Using them instead of the MLE allows to reduce the RRMSE from
more than 67 % to about 18–20 % in case of α = 3 and n = 200.

Tables 7, 8, 9, 10, 11, 12, 13 and 14 present results for Pareto distributions con-
taminated with multiplying by 10 randomly chosen 1 % (Tables 7, 8), 2 % (Tables 9,

10 For this reason, we do not discuss the performance of the PDCE further in this section. The bad
performance of the PDCE in our small-sample setting may be explained by the fact that the estimator was
designed for Pareto-type distributions, not only for the strict Pareto model.
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Table 7 Simulation results for
the Pareto tail index with data
drawn from a Pareto distribution
P(1, α) with randomly chosen
1 % of observations multiplied
by 10, ARE = 94 %

Estimator n = 100 n = 200

RB RRMSE RB RRMSE

α = 1

MLE −2.1 10.0 −2.5 7.0

OBRE −0.3 10.4 −1.8 7.1

PITSE 0.4 10.5 −1.3 7.0

PDCE 17.8 59.4 6.8 24.0

GME −2.2 10.4 −2.6 7.3

α = 2

MLE −4.9 10.3 −4.4 8.0

OBRE −1.6 10.2 −2.0 7.6

PITSE −1.4 10.1 −2.0 7.5

PDCE 11.3 33.1 5.6 19.1

GME −3.4 10.5 −2.9 7.8

α = 3

MLE −7.0 11.0 −6.4 9.1

OBRE −1.7 10.0 −2.0 7.6

PITSE −1.9 10.0 −2.4 7.7

PDCE 9.2 27.4 5.0 17.4

GME −3.6 10.3 −2.9 7.9

10), 5 % (Tables 11, 12) and 10 % (Tables 13, 14) of observations. In the case of the
smallest degree of data contamination, we can observe that all robust estimators, with
the exception of PDCE, perform slightly better than the MLE, but only for α = 3
and n = 200. Bigger advantage of robust estimators is visible for the moderate (2 %)
degree of contamination. In this case (Tables 9, 10), the OBRE, PITSE and GME per-
form similarly and significantly better than the MLE, but only for bigger sample sizes
(100, 200) and α > 1. For these values of n and α, the WMLE, which is included only
in the comparison of estimators with ARE = 78 %, has significantly higher RRMSE
than other robust alternatives (beside the PDCE).

In the case of large degree of contamination (5 %), which is presented in Tables 11,
12, we observe that for the ARE = 94 % (Table 11), the performance of robust estimators
is better than that of the MLE for samples of 40 observations and bigger and for α > 1.
All robust estimators, except for the PDCE, which performs well only for sample size
of 200, display similar, if rather small, improvement over MLE. When more robust
versions of estimators are considered (Table 12), the protection against outliers is
greater, but again only for α > 1. The OBRE, PITSE and GME perform similarly
and markedly better than the WMLE and PDCE. The WMLE gives much smaller RB
than the MLE, but it gives no or only very small improvement in terms of RRMSE.
Finally, Tables 13, 14 present results for the extreme case of 10 % contamination. In
the case of higher efficiency (Table 13), the PITSE seems to be the best choice, at
least when α > 1. When less efficient, but more robust versions of estimators are
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20 M. Brzezinski

Table 8 Simulation results for
the Pareto tail index with data
drawn from a Pareto distribution
P(1, α) with randomly chosen
1 % of observations multiplied
by 10, ARE = 78 %

Estimator n = 100 n = 200

RB RRMSE RB RRMSE

α = 1

MLE −2.4 9.9 −2.3 7.2

OBRE 0.2 11.4 −0.9 8.2

WMLE 0.7 11.0 −0.5 8.0

PITSE 0.8 11.4 −0.5 8.1

PDCE 16.6 53.9 6.9 24.3

GME −1.1 11.4 −1.5 8.3

α = 2

MLE −4.5 10.3 −4.3 7.8

OBRE 0.4 11.5 −0.8 8.1

WMLE 1.5 12.0 −1.7 9.2

PITSE 0.8 11.5 −0.7 8.1

PDCE 17.7 314.3 5.2 19.1

GME −1.0 11.4 −1.6 8.2

α = 3

MLE −6.3 10.9 −6.6 9.0

OBRE 0.5 11.6 −1.0 7.9

WMLE 4.0 12.9 −0.4 10.3

PITSE 0.9 11.7 −0.8 8.0

PDCE 10.3 29.4 4.5 17.1

GME −0.8 11.5 −1.6 8.0

considered (Table 14), the OBRE, PITSE and GME provide significant improvement
(especially in terms of RRMSE) with respect to the MLE when α > 1. For n < 200,
the WMLE usually performs worse than most of other robust estimators. It is only for
the case of n = 200 that the WMLE gives comparable or even slightly better results
than alternatives.

The main results of our Monte Carlo study can be summarized as follows. The
PDCE and WMLE are not reliable in small samples and can be considered only when
the sample size is at least 200. The remaining estimators—the OBRE, PITSE and
GME—offer in general a comparable level of protection against data contamination
or model deviation. Since the PITSE is the simplest estimator from the computational
point of view, it seems that it is the best choice for estimating the Pareto tail index in
small samples.

4 Empirical application

In this section, we apply the compared estimators to a real income distribution data
set taken from the European Union Statistics on Income and Living Conditions (EU-
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Table 9 Simulation results for
the Pareto tail index with data
drawn from a Pareto distribution
P(1, α) with randomly chosen
2 % of observations multiplied
by 10, ARE = 94 %

Estimator n = 50 n = 100 n = 200

RB RRMSE RB RRMSE RB RRMSE

α = 1

MLE −4.2 14.2 −4.4 10.4 −4.4 7.8

OBRE −0.8 14.8 −2.9 10.3 −3.7 7.7

PITSE 0.5 15.1 −2.0 10.3 −3.0 7.5

PDCE – – 17.9 50.4 7.7 24.7

GME −4.6 14.9 −4.7 10.8 −4.6 8.1

α = 2

MLE −8.9 15.0 −8.6 12.0 −8.5 10.3

OBRE −2.4 14.8 −4.1 10.9 −5.1 8.6

PITSE −2.0 14.5 −4.0 10.6 −5.1 8.4

PDCE – – 11.8 32.3 5.0 18.9

GME −6.2 15.4 −5.9 11.5 −5.9 9.0

α = 3

MLE −12.7 16.8 −12.6 14.8 −12.2 13.4

OBRE −2.4 14.6 −4.4 11.0 −5.1 8.6

PITSE −3.0 14.5 −5.2 11.2 −6.1 9.1

PDCE – – 10.9 30.0 4.7 17.4

GME −6.2 15.2 −6.3 11.7 −5.9 9.1

SILC) database. The EU-SILC is an annual survey providing harmonized micro-data
on income, poverty, social exclusion and living conditions for all the EU member
states.11 We focus on the distribution of disposable equivalized incomes for Belgium
in 2005.12 This data set was previously used by Alfons et al. (2013) in the context
of robust estimation of the Gini index of inequality from survey data. The reason for
robust estimation arises in this context because survey samples may contain extreme
observations, which have large influence on estimates on many of the standard inequal-
ity measures (Cowell and Flachaire 2007). In the presence of extreme outliers, both
estimation and inference for inequality indices can be unreliable. The extreme observa-
tions or outliers may be found in survey samples due to errors in data collecting or data
coding. On the other hand, they may also be non-representative unique observations
that belong to the true distribution on the population level. In both cases, outliers can
severely affect estimation and inference for inequality measures, so robust methods
may deliver more reliable results.

11 See Atkinson and Marlier (2010) for a detailed description of the EU-SILC survey.
12 Disposable income is post-tax post-benefit income. Household incomes are equivalized in order to
account for differences in the size and age composition of households. The equivalence scale used is the
standard EU-SILC scale, which gives a weight of 1 to the first adult household member, then a weight of
0.5 to any subsequent adult and a weight of 0.3 to every child (aged 14+).
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22 M. Brzezinski

Table 10 Simulation results for
the Pareto tail index with data
drawn from a Pareto distribution
P(1, α) with randomly chosen
2 % of observations multiplied
by 10, ARE = 78 %

Estimator n = 50 n = 100 n = 200

RB RRMSE RB RRMSE RB RRMSE

α = 1

MLE −4.4 14.2 −4.4 10.2 −4.1 7.8

OBRE 0.7 16.6 −1.7 11.4 −2.5 8.3

WMLE 1.5 15.8 −1.4 11.2 −3.2 8.4

PITSE 2.3 17.2 −0.9 11.5 −2.1 8.1

PDCE – – 18.0 62.8 7.5 25.2

GME −2.1 16.5 −3.0 11.6 −3.2 8.6

α = 2

MLE −9.0 14.9 −8.8 12.2 −8.6 10.5

OBRE 0.2 16.2 −2.0 11.5 −2.9 8.3

WMLE 3.0 17.2 −2.6 12.5 −4.0 12.5

PITSE 1.2 16.7 −1.6 11.7 −3.0 8.4

PDCE 55.6 403.0 12.1 36.1 – –

GME −2.5 16.0 −3.3 11.7 −3.6 8.6

α = 3

MLE −12.9 17.0 −12.6 14.7 −12.2 13.3

OBRE 0.1 16.7 −1.9 11.3 −2.7 8.2

WMLE 6.4 19.9 −1.5 12.1 −1.6 15.1

PITSE 0.8 17.2 −1.7 11.5 −2.7 8.3

PDCE – – 10.0 29.9 5.1 17.6

GME −2.6 16.5 −3.2 11.6 −3.3 8.4

The fit of the Pareto model using the MLE and robust estimators to the Belgian
income distribution in 2005 is shown on a log–log plot in Fig. 1.13 In order to stay
within our small-sample setting, we apply the estimators to the 40 highest incomes
in the data set. The figure confirms the observation of Alfons et al. (2013) that for
the data set at hand there is one extreme outlier, which can have a disproportionally
high influence on the estimate of a population parameter of interest. The MLE is
very seriously affected by the presence of the outlier. All robust estimators perform
much better than the MLE with the PITSE having a small edge over the OBRE and
the WMLE (the latter two estimators produce almost identical estimates, which are
indistinguishable on the figure). The GME does a slightly worse job.

Let us assume now that we are interested in the problem of measuring income
inequality among the rich persons and that the rich are represented in our sample

13 For better visibility, the figure shows the empirical complementary cumulative distribution function
rather than cumulative distributive function.
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Fig. 1 The empirical complementary cumulative distribution function, P(x), and the fitted various estima-
tors for the Pareto tail index, 40 highest disposable equivalized incomes for Belgium in 2005 (EU-SILC
data)

by the 40 top income observations.14 Since the total sample size for the Belgian
data from 2005 is 5,133, the rich defined in our way constitute about 0.8 % of the
total sample. The Gini inequality index for our 40 highest income observations, Ĝ,
computed nonparametrically, is 0.6481. However, the same index computed excluding
the outlying highest income, ĜE , is only 0.2468. This shows that the influence of the
extreme outlier on statistics computed using tail observations can be indeed very high.
Table 15 presents values of the Gini index for the rich implied by the fitted Pareto
models with different estimators of the Pareto tail index.15

All parametric estimates of the Gini index give much smaller values than the non-
parametric estimate Ĝ, which is destroyed by the presence of the outlier. However, the
parametric estimate implied by the MLE (0.3309) is still much higher than the non-
parametric estimate computed for the data set excluding the outlier ĜE . In general,
all parametric estimates of the Gini implied by robust estimators of the tail index are
similar and much closer to ĜE . However, the PITSE is able to reconstruct the value
of the Gini index, which is the closest to ĜE , and the variability of the Gini implied
by this estimator is comparable or slightly smaller than that of other estimators. This
evidence confirms the conclusion from our simulation study that the PITSE should be
the preferred choice in applied work using Pareto tail modelling in small samples.

14 We could be interested in estimating inequality among the rich for the purposes of computing an index
of richness, which evaluates the overall situation of the rich (see, e.g. Peichl et al. 2010) or for the purposes
of computing a semi-parametric inequality index. The latter is a sum of a nonparametric inequality measure
estimated for the non-rich and a parametric inequality index for the rich (see, e.g. Cowell and Flachaire
2007).
15 The Gini index of the Pareto model with the tail index α is: G = 1/(2α − 1).
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Table 15 Pareto tail indices estimated using MLE and robust estimators and implied Gini indices, 40
highest disposable equivalized incomes for Belgium in 2005 (EU-SILC data)

Estimator Pareto tail index Gini index

MLE 2.0111 0.3309 (0.1093)

OBRE 2.4778 0.2546 (0.0742)

WMLE 2.4818 0.2523 (0.0705)

PITSE 2.5665 0.2420 (0.0683)

GME 2.3782 0.2662 (0.0844)

The estimators are applied to the 40 highest incomes in the data set. The nonparametric Gini index for
all observations is 0.6481, excluding the highest income it is 0.2468. Standard errors for the Gini indices
implied by the fitted Pareto models appear in parentheses. They were computed using the standard bootstrap
with 1000 replications

5 Conclusions

The classical Pareto distribution is widely used in many areas of economics and
other sciences to model the right tail of heavy-tailed distributions. Since the most
popular method of estimating the shape parameter (the Pareto tail index) of this
distribution—the maximum likelihood estimation—is non-robust to model deviation
and data contamination, several robust approaches have been proposed in the liter-
ature. In this paper, we have provided an extensive Monte Carlo comparison of the
small-sample performance of the most popular robust estimators for the Pareto tail
index.

The main conclusions from our simulation study are the following.16 First, the
MLE indeed performs unreliably with even a moderate degree of model deviation or
data contamination. Our simulations suggest also that the performance of the MLE
deteriorates significantly with the rise in the value of the Pareto tail index. Second,
there are computational problems with the PDCE for small samples (n ≤ 80). The
performance of the PDCE is similar to that of other robust estimators only for the
largest sample size in our study (200 observations). For these reasons, we recommend
that the PDCE should be avoided in practical small-sample settings (n < 200). Third,
the WMLE usually performs worse than most of other robust estimators, but shows
good results in samples of size 200. Therefore, this estimator should be only used in
sufficiently large samples. Fourth, the OBRE, PITSE and GME offer a similar level of
protection in most of the studied settings. Taking into account the fact that the PITSE
is the simplest estimator from the computational point of view, while both remaining
alternatives (and especially the OBRE) are much more complex computationally, the
PITSE seems to give the desired compromise between ease of use and power to protect
against outliers in the small-sample setting.

16 One limitation of our study is that our simulated data are independent. However, in practice economic
and other data are often dependent (e.g. correlated across time or space), which could distort the behaviour
of Pareto tail estimators and imply a different ranking of the estimators compared in this paper. I would like
to thank a referee for this remark.
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