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Abstract We investigate the relationship between productivity growth and invest-
ment spikes using Census Bureau’s plant-level dataset for the U.S. food manufacturing
industry. There are differences in productivity growth and investment spike patterns
across different sub-industries and food manufacturing industry in general. Our study
finds empirical support for the learning-by-doing hypothesis by identifying some cases
where the impact of investment spikes on TFP growth presents a U-shaped investment
age—productivity growth pattern. However, efficiency and the learning period asso-
ciated with investment spikes differ among plants across industries. The most pro-
nounced impact of investment age on productivity growth (5.3 % for meat products,
4% for dairy products, and 2.8 % in all food manufacturing plants) occurs during the
fifth year of post-investment spike. Thus, in general, the productivity gains tend to be
fully realized with a 5-year technology learning period for this industry.
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1 Introduction

Investment’s role in stimulating growth is central to the evaluation (or initiation) of
government policies, such as investment tax credits, which is based on the assumption
that investment creates higher productivity. The theoretical models of technological
adoption provide some insight into the relationship between investment, technology,
and productivity. One common insight from these models is that a period of adjustment
exists after a new technology is adopted,! where production units engage in technol-
ogy-specific learning (Parente 1994; Klenow 1998; Yorukoglu 1998). This implication
aligns with Jovanovic and Nyarko (1996)’s learning-by-doing model where productiv-
ity can be lower than under the old technology after a new technological introduction
but productivity then increases as the firm learns how to use the new technology. The
installation of a new technology in a plant’s production process may create operational
inefficiency in the early stages of a new technology, since new skills and experience
need to be developed. This may lead to a drop in total factor productivity (TFP) imme-
diately after the introduction of new technology, but in later periods, plants and firms
can expect a gradual recovery.

The empirical evidence of the link between productivity and investment remains
unclear and the literature’s findings are partitioned into two categories. Studies such
as Power (1998) examine the link between investment and productivity empirically at
the plant level in the U.S. manufacturing industries and find no observable relationship
between labor productivity and investments. On the other hand, Sakellaris (2004) and
Huggett and Ospina (2001) find that lumpy investment episodes result in the costly
adoption of new technologies that involve new equipment leads to TFP falling after the
investment spike and starting to recover slowly in the US and Columbian manufactur-
ing plants, respectively. Bessen (1999) also finds that new plant productivity improves
as a result of learning-by-doing and indicates that new plant adjustment is not entirely
the same as mature plant adjustment after an investment spike; in particular, the large
new plant lowers its workforce as it grows older.

The production units such as firms or plants make purchases which increase their
real capital stocks by more than a critical fraction are considered to be adopting a
new technology which is embodied in the new equipment (Huggett and Ospina 2001).
This process is supported by the findings of plant-level studies where a large portion
of investments at the plant level is concentrated in a few investment episodes (Doms
and Dunne 1998; Cooper et al. 1999; Nilsen and Schiantarelli 2003). However, the
investments that production units undertake at the plant level can be in different types

1 Cooley et al. (1997) argue that new machinery embodies the latest technology, and studies such as
Greenwood et al. (1997), De Long and Summers (1991) and Huggett and Ospina (2001) consider an
equipment purchase as a mechanism to adopt a new technology.
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(e.g., expansionary, replacement, and retooling types of investments) and different
investment types may lead different productivity outcomes. For example, if a produc-
tion unit’s investment is a replacement (restoring depreciated capital with new capital)
or retooling (equipment purchases reflecting technology adoption) types, one would
expect an increase in productivity of these plants after these types of investments?; on
the other hand, if investment is of an expansionary type (reflecting the acquisition of
more capital of a technology known to the plant), then we would expect no change in
productivity after such an investment.

In the absence of a unifying theory relating investment spikes to productivity
growth, we undertake an empirical investigation into the link between investment
spikes and productivity growth by specifically identifying investment spikes through
plants’ lumpy capital investments and measuring TFP growth around such events.?
The aim of this article is two-fold: the first is to provide a basic description and unbi-
ased measurement of TFP growth, based on the industry average and quartile grouping
of plants’ productivity growth, to examine if there are wide productivity differences
across plants; the second is to investigate the empirical link between productivity
growth and large investments, and examine how productivity growth changes in the
presence of lumpy investments and the potential impact of learning-by-doing.

This study contributes to the literature in several ways. We find empirical evidence
of a link between productivity growth and investment when we look closely at the
most micro production unit—plant level—for one manufacturing industry instead of
pooling all industries together into a common technology. This allows us to investigate
the productivity—investment relationship in a more detailed manner by dividing the
plants into TFP quartile groups and assess the differences in this relationship among
high, medium (or middle quartiles) and low productivity growth plants. This reveals
an interesting relationship between investment spikes and productivity growth which
is masked in studies using a general pooled-industry base. Further, this study finds
empirical support for the learning-by-doing hypothesis by identifying some cases
where TFP growth drops immediately after the investment episodes, and then starts to
recover. However, our study emphasizes the importance of the investment types in sup-
porting the learning-by-doing hypothesis: due to different investment types, different
productivity outcomes are observed after plants’ lumpy investment events.

The article is organized as follows. The next section introduces the data sources
and a description of the dataset. This is followed by an introduction of the method-
ological and empirical specification which involves TFP growth estimates that are
purged of possible endogeneity when using a production function that account for
plant heterogeneity. The final section offers some concluding comments.

2 Generally retooling type of investments is considered as adopting better technology or major advances
in technology, and therefore, when a production unit invested in retooling type, it is expected to have long
lasting increase in its productivity. And since the replacement investment is generally restoring depreci-
ated capital with the new capital, this may result an immediate boost in productivity and then a decline in
productivity afterwards.

3 Investment spikes are defined typically as an absolute spike when the investment rate exceed 20 % and as
arelative spike when the investment rate exceeds the median investment rate by a factor which is typically
set between 1.5 and 3.75 (see Power 1998; Cooper et al. 1999) of each plant.
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2 Data sources and lumpiness in capital

We provide micro-evidence on the question of the link between investment and pro-
ductivity by analyzing confidentially the U.S. food manufacturing plant-level data.
Focusing on the U.S. food manufacturing industry is a good empirical application to
test this relationship for two reasons. First, previous studies mostly focus on all man-
ufacturing industries by pooling all plants together. We see a value of analyzing one
particular sector in depth would give us an insight of the link between lumpy investment
and productivity changes. By focusing on only one industry, we have the advantage to
control better for unobserved heterogeneity across sectors compared to studies which
pool all industries together. If these unobserved characteristics of industries cannot be
well controlled, then it will be harder to separate the effect of investment spikes on
productivity. Second, the U.S. food processing and kindred products industry has been
responsive to new technologies in processing, packaging, and marketing of food prod-
uct and has become increasingly high-tech over the past few decades (Morrison 1997).
The industry is a significant sector accounting for about one-sixth of the U.S. man-
ufacturing sector’s activity, and it has experienced significant reorganization through
mergers and acquisitions. In the industry, manufacturers attempt to increase sales,
profits, and market share through consolidation, industrialization, expanding exports,
foreign growth, and new value-added product development (Harris 2002). The food
and kindred products industry ranks sixth with respect to number of plants among the
20 operating manufacturing industries in the U.S. and produces nearly 14% of the total
value of output in the manufacturing sector. Third, the plants in the industry present
a lumpy nature of investments which makes this industry a good candidate to inves-
tigate the link between these spikes and productivity changes. The nature of lumpy
investments in the industry provides insight into the timing of capital investments and
to assess if plant productivity falls after a large investment project.

2.1 Data sources

We use annual plant-level data from the Census Bureau’s Longitudinal Research Data-
base (LRD). The LRD is a panel that contains detailed plant-level information from
the Annual Survey of Manufacturers (ASM) and Census of Manufacturers (CM) of
all the U.S. manufacturing industries.*

The balanced panel of plants in the Food and Kindred Products Industry (SIC=20)
focuses mostly on the large manufacturing plants over the time period 1972-1995.3-6

4 The CM, which is conducted every Syears, samples every U.S. manufacturing plant. The ASM contin-
uously samples plants with more than 250 employees. Continuous data exist for large plants and for small
plants that are selected to be part of the ASM panel. Small plants have missing information for all years
except CM, and ASM panel years if the plant is selected to be part of an ASM; therefore, comprehensive
time series information on small plants is not available.

5 This is the latest available data which was granted from Census Bureau for the purpose of this study. We
used the 4-digit Bartelsman-Gray industry deflators from NBER-CES manufacturing database to get the
real variables (Bartelsman and Gray 1996).

6 Entry and exit behaviors of plants during each CM period is available for this sample. We define
an entrant as an establishment that was not operating in the previous census ( — 5) but is operating
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Table 1 Number of

observations and plants by Three digit sub-industries? lgg[;:(a:t Brzo(;ilu)cts })Seil(r:y f;(())g;lcts
sub-industries and all food
industry plants together Number of plants 204 163

Number of observations 4,722 3,775

Percent of total plants 16 13

Machinery investments of the 10.4 6.1

total industry’s machinery
investments (%)

Building investments of the 15.6 72
total industry’s buildings
investments (%)

Combined machinery and 114 6.3
building investments of the
total industry’s combined
machinery and building
investments (%)

Material expenditure of the 28.6 11.2
total industry’s material
expenditures (%)

Energy expenditure of the 13.3 7.3
total industry’s energy
expenditures (%)

Labor expenditure of the total 25.2 6.1
industry’s labor
expenditures (%)

Total value of shipments of 21.1 9.3
the industry’s total value of
shipments (%)

2 There are 1,233 plants and Average employment of the 19 5.5
29,592 observations in all Food total industry’s employment
Industries (SIC = 20). (%)

The balanced nature of the dataset ensures that the capital stocks are constructed using
the perpetual inventory method and the lumpiness of investment is measured through
time.” The balanced panel is not a random sample of plants and includes a higher pro-
portion of large plants due to the ASM sampling strategy. Approximately one-third
of ASM sample is rotated in and out of the sample every 5 years to minimize the
reporting burden on small plants.

Footnote 6 continued

in the current census (7). Similarly, we define an exiting plant as an establishment that was operating in the
previous census (¢ — 5), but it is not operating in the current census (7). Our results show that 15 % of plants
enter to and 17.9 % of plants exit from the food industry between 1972 and 1977. Similarly, 11.5 % (19.3 %),
11.7% (14.1 %) and 12.9 % (12.5 %) of plants enter to (exit from) the food industry during 1977-1982,
1982-1987 and 1987-1992, respectively. In these periods, although a higher percentage of plants exited
from the industry, total market share of the entrants is higher than that of the exiting plants except during
1982-1987. In general, our results indicate that entrants play an important role in the food industry.

7 We focus on the balanced panel to minimize the measurement error in TFP growth calculation and the
difficult measurement issues for capital variable in the unbalanced panel setting. Other studies which face
similar capital measurement difficulties use balanced panel (Caballero et al. 1995; Cooper et al. 1999;
Cooper and Haltiwanger 2006).
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We also analyze two of the major sub-industries in the food industry (meat and
dairy products) to investigate the differences in results due to the aggregate versus
disaggregate nature of the samples. The meat and dairy products sub-industries are
selected based on the relative importance and the type of products (homogenous prod-
ucts) among the sub-industries in the food industry. These two sub-industries differ in
two important aspects. The first is by the role of government pricing regulation. Where
meat products are free from direct government pricing influence, the dairy products
sector has the price of raw material (milk) regulated and regulation influencing the
pricing of fluid milk prices in some regions through marketing orders. The second
aspect is in terms of technology differences between the two sub-industries. The meat
products sub-industry prepares a range of products that flow off a common line of
production as products are further processed (e.g., cuts of meat processed into lunch
meats, sausages). Milk products tend to involve a wide range of different technologies
(e.g., cheese-making, yogurt, and ice cream) that have specialized equipment with milk
entering in these specific sub-product processes in a fairly unprocessed form. Table 1
presents a general industry overview based on the panel data used in the analysis.

2.2 Lumpiness in capital in the food industry

The studies analyzing the nature of investments at the plant and firm level document
irreversibility (zero investment episodes mixed with periods of investment) and lump-
iness (bursts of investments are surrounded by periods of low level of investment activ-
ity) (Doms and Dunne 1998; Power 1998; Cooper et al. 1999; Nilsen and Schiantarelli
2003). The evidence of lumpy investment can be explained by the presence of fixed
costs which can be aresult of the differences in capital vintages across firms and plants.
The intermittent and lumpy nature of investments creates a non-smooth adjustment
path for the capital stock which contrasts the standard neoclassical investment model
with convex adjustment costs. Since understanding the nature of capital adjustment
cost is important due to its influences on firm’s investment decision, studies search
for evidence about the shape of the adjustment cost instead of assuming a conven-
tional shape. One of the most recent studies which uses structural model of capital
adjustment costs finds that both convex and non-convex elements should be present
in modeling adjustment costs (Cooper and Haltiwanger 2006).

To assess the nature of investment patterns, we present main characteristics of the
investment rate distribution in our data series. Throughout this study, the ratio of
a plant’s investments on capital to its real capital stock (I/K) is used as the defini-
tion of the investment rate.® Capacity-improving investment activity is measured by
lumpy investments. The lumpy investments are defined as the relative measure if the
plant’s investment rate in a given year is greater than 2.5 times the plant’s median
investment rate. Since we measure lumpiness for the plants that are in the meat prod-
ucts sub-industry, dairy products sub-industry, and the food industry separately, we

8 This study focuses on expenditures data on capital and does not take into consideration of the capital
retirements. This is because LRD contains some data on capital retirements until 1988 which would limit
the time frame of our study to late 80s and these data contain some errors (Doms and Dunne 1998).
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define lumpy investments for plants as unusually high investment in relation to the
sectoral median investment rate over the sample period.’ The detailed study by Power
(1994) describes a relative spike as being where the plant’s investment is considered
lumpy if it is large relative to that plant’s other investments.'?

Table 2 presents the number of spike observations and their contribution to total
plant-level investment for machinery, buildings and their sum. In the food indus-
try, only 17 % of the observations present machinery investment spikes, but these
account for 84 % of the total investment. A similar pattern is revealed across other
industries. Even though the lumpy investment percentage is lower than the non-spike
investment percentage across investment types, the percentage of total sample invest-
ment accounted for by lumpy investments are significantly higher than those that are
not. This suggests that plant-level investment is quite lumpy, since a relatively small
percentage of observations account for a disproportionate share of overall investments.
Table 3 provides additional interesting information on investment spike concentration
and documents the lumpiness of plant-level investment in the sector. It shows the
number of investment spikes over a 24-year period and the percentage of plants with
spikes across three different food industries.!! In the food manufacturing industry,
97 % of the plants experience between 1 and 6 machinery investment spikes over the
sample period, suggesting that, at most, only 3 % never have lumpy investments. Of
those plants engaged in lumpy investments between 1 and 6 times over the sample
period, the median number of investment spikes is four.

3 Linking TFP growth to capacity-improving investment

Identifying the relationship between productivity growth and investment is challeng-
ing, and previous research has been only partially successful. The major complication
arises from the causality between investment and productivity. An investigation into
the relationship between lumpy investment and TFP growth can draw on the results of
the theoretical studies by Ericson and Pakes (1995) and Pakes and McGuire (1994).
Building a model to illustrate how total factor productivity (TFP) growth rates relate to
investment rates, Ericson and Pakes (1995) find that the high mortality rate of new firms
is associated with an initial learning period where most perform poorly and have low
levels of investment after the initial startup costs. There is a threshold of TFP growth
rates where firms decrease their investment after passing the threshold. Baumol and
Wolfe (1983) anticipated this result as they explore R&D investment feedback effects

9 For example, we use 0.184, 0.172, and 0.179 median machinery investment rates for plants in the meat
products, the dairy products and all food industry plants, respectively. We also tried the absolute spike
definition as a robustness check and our results were not strikingly different across definitions.

10" power (1994) defines spikes as abnormally high investment episodes relative to the typical investment
rate experienced within a plant and considers various hurdles over the median investment rates (such as 1.75,
2.5, and 3.5 times of median investment rate) to reflect abnormally high investment episodes. An excellent
extensive investigation of these alternative specifications of investment spikes and their comparisons can
be found in this study.

1 Confidentiality restrictions preclude us to report information for plants which present greater spike

episodes than the ones that are reported in this table.
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and productivity growth rates. In our study, the absence of plant-level R&D data pre-
cludes the specific empirical identification of the direct relationship between R&D
and investment spikes. However, R&D activity is associated with changes in how a
firm undertakes its production activities. These changes can involve significant addi-
tions and reorganizing of production processing and capacity which involves large
changes in capital stock. Initiatives to install additional capital may arise from a need
to enhance productivity growth.

We investigate the link between investment spikes and TFP growth without impos-
ing any causal relationship between them by using reduced form regressions. The
following sections will focus on the estimation of TFP growth using production func-
tion specification and investigate the relationship between TFP growth and lumpy
investments for all dairy, meat, and food plants.

3.1 Production function estimation and TFP growth findings

We measure TFP growth through production function estimation. In production func-
tion estimation, Marschak and Andrews (1944) raised the problem of simultaneity
between unobservable productivity and observable input choices. This simultaneity
is a result of the profit-maximizing firms’ response to positive productivity shock
by expanding output, in turn, using more inputs. Marschak and Andrews (1944)
suggested that the transmitted productivity shock would be positively correlated with
variable inputs, and the estimated coefficients on variable inputs from least squares
are likely to be biased upward (Levinsohn and Petrin 2003). Under this condition,
least squares estimates of production functions are biased which leads biased produc-
tivity estimates. Olley and Pakes (1996) address the simultaneity problem by using
investment as a proxy to control for the part of the error correlated with inputs and
thus eliminate the variation which is related with the productivity contribution. How-
ever, an investment proxy is only valid for plants reporting non-zero investment. A
difficulty arises with the Olley-Pakes approach when adjustment costs are non-con-
vex, which leads the non-responses in investment to some productivity shocks. This
is specifically a concern at the plant-level sample where one can come across many
zero investments. Levinsohn and Petrin (2003) address the simultaneity problem by
using an intermediate input (e.g., materials, fuel, and electricity) as a proxy controlling
for the error associated with simultaneity. They argue that these inputs respond more
smoothly to productivity shocks and are useful proxies for plant-level studies since
they are generally not equal to zero. From the perspective of adjustment costs, it is
less costly to adjust the intermediate input implying this input may respond more fully
than investment to the entire productivity term. Consequently, the Levinsohn—Petrin
approach presents a compelling remedy to the simultaneity problem in the presence
of frequent zero investment observations. 12

12° A recent review article by Ackerberg et al. (2006) offers a critique of the Olley—Pakes and Levinsohn—
Petrin approaches by arguing that labor may also not be optimally selected along with materials in the
current period which leads to the coefficient on labor being unidentified. Ackerberg, Caves, and Frazer
then develop a mixture of the Olley—Pakes and Levinsohn—Petrin approaches resulting in a Leontief-type
component with labor. As a result, labor is only related in a fixed proportion, and its parameter can be
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We estimate a Cobb-Douglas production function using this approach with inter-
mediate inputs to address the simultaneity problem. The estimated Cobb-Douglas
production function specified in logs as

Yir = Bo + Brkit + Bumir + Bilis + Beeir + Bt + wir + N (D

where y;; is the log of the output (the total value of shipments is adjusted for inven-
tory changes) for plants i and time . The log of materials, labor, energy, and capital
are represented by mj;, l;;, ejr, and kj;, respectively. Capital is constructed using the
perpetual inventory measure, which is appropriate in a balanced panel. The inventory
measure of capital is accomplished by accumulating investment over time and requires
continuous observations for each plant. The productivity impact is represented by the
error term, w;; + ni;, where wj; is a transmitted error term and impacts the firm’s
decision rules, and 7;; is an i.i.d. shock not known to the analyst and does not have an
impact on the firm’s decisions. We use the energy variable as the proxy to control for
the error associated with simultaneity and proceed with the estimation by rewriting
Eq. (1) as'3

Vit = Bumir + Bilis + Bit + dir(eir, ki) + nis (2)

where

@it (eir, kir) = Bo + Beeir + Brkir + wir(eir, kir)

The demand for the intermediate input, e;;, is assumed to depend on the firm’s state
variables, e;; = e;; (wj;, kit). Using the Levinsohn—Petrin condition where the energy
function is monotonic function with respect to the productivity shock, w;;, the unob-
servable productivity term can be written as a function of two observed inputs, w;; =
(eit, kir). The first stage estimator is linear in variable inputs and non-parametric in ¢;;
where we can obtain consistent estimates of freely variable inputs. We employ Lev-
insohn—Petrin’s locally weighted quadratic least squares approximation (least squares
with a polynomial approximation approach) to obtain the coefficients of freely vari-
able inputs. In the second stage, since capital and energy variables enter ¢;;(.) twice,
Levinsohn—Petrin propose two moment conditions to identify 8; and S,. To identify
Bk, they assume that productivity shock is governed by a first-order Markov process,
w; = Elwilo;—1] 4+ & where & is an innovation to productivity that is uncorrelated

Footnote 12 continued

estimated properly. In the end, the theoretical suitability of the approach depends on the assumptions of the
data-generating processes for the application at hand, with the Ackerberg—Caves—Frazer remedy coming
at the cost of a major production technology restriction. While Ackerberg et al. (2006) find their estimator
appears to be more stable across different proxy variables compared to the Levinsohn—Petrin approach for
the same dataset as Levinsohn and Petrin (2003), no practical difference is found using the Olley—Pakes
approach for the labor coefficient by Iranzo et al. (2008).

13" We tried material and energy inputs as possible proxy variables in specifying the Levinsohn—Petrin
estimation. Based on the characteristics of the data (less nonzero values in energy) and the results from
least squares/Levinsohn—Petrin coefficients on variable inputs, we have chosen energy input as a proxy.
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Table 4 Coefficient estimates from least squares and Levinsohn and Petrin (LP) approaches across indus-
tries

Meat products industry Dairy products industry All food industry
OLS LP OLS LP OLS LP
Capital 0.0231 0.0700 0.0455 0.0800 0.0735 0.0100
(0.0061) (0.0324) (0.0112) (0.0321) (0.0050) (0.0050)
Labor 0.0741 0.0654 0.1286 0.1123 0.1840 0.1784
(0.0205) (0.0197) (0.0158) (0.0133) (0.0080) (0.0081)
Material 0.7621 0.7563 0.7687 0.7649 0.6532 0.6441
(0.0208) (0.0228) (0.0230) (0.0219) (0.0097) (0.0091)
Energy 0.1259 0.1100 0.0687 0.0900 0.0705 0.1000
(0.0217) (0.1268) (0.0225) (0.1046) (0.0089) (0.0173)

Standard errors are in parentheses. The Wald tests of constant returns to scale from Levinsohn and Petrin
(2003) method are as follows; Chi-squared=0.02 (p = 0.8949), Chi-squared = 0.27 (p = 0.6024),
Chi-squared =18.71 (p = 0.0000) for meat products, dairy products, and all food manufacturing indus-
tries, respectively. These results show that meat and dairy product industries have CRTS and all food
industry have DRTS

with k¢, E[(& +n:)k:] = E[&:k:] = 0 and to identify B,, they assume that last period’s
energy choice should be uncorrelated with the innovation in productivity this period,
E[( +n)e—1]1 = E[§rer—1]1 = 0.

Table 4 reports coefficient estimates from least squares and Levinsohn—Petrin
approaches. We find that parameter estimate on freely variable inputs from the least
squares procedure exceed the ones from the Levinsohn—Petrin method which are con-
sistent with the theoretical and empirical results discussed in their article.'*

We use coefficients from the production function estimation by Levinsohn and
Petrin (2003) method to generate productivity growth for each plant and each year,
across meat and dairy products as well as all food manufacturing industries.'

14 To see if the least squares coefficient on capital will be biased upward or downward depends on the
degree of correlation among inputs and the productivity shocks (Levinsohn and Petrin 2003). They suggest
that if capital also responds to the productivity shock, we also see upwardly biased capital coefficient;
however, there might be situation when capital is not correlated with the period’s transmitted shock (but
variable inputs are) or capital is much less weakly correlated with the productivity shock than the variable
inputs are—then, the least squares estimate on capital is likely to be biased downward (Levinsohn and
Petrin 2003). Our results show that, in meat and dairy industries, the least squares estimate is less than the
Levinsohn—Petrin estimate which indicates the least squares coefficient on capital is biased downward, and
in the entire food industry, the least squares estimate is higher than the LP estimate which indicates that the
least squares coefficient on capital is biased upward.

15 10 generate productivity growth, we use the well-known TFP growth decomposition which com-
prises the scale and the technical change components as follows, TEP = (—-1)F+A = (Z’L 1

Fx.X

FX X
—1) Z”_ STy X Fx X +A where T F' P refers the productivity growth; (¢ — D F denotes
i=1

the scale effect, in which, F presents input growth (Y is the output and X; are the inputs (I, m, e, k) of the

plant’s production function) and & presents scale elasticity; and A refers the technical change effect.Thus,
the productivity growth is generated by means of marginal products from the Levhinson-Petrin regression
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Table 5 TFP growth across industries and quartile groups

Quartile Mean TFP growth Mean TFP growth Mean TFP growth
in meat in dairy in all food

Lowest (I) —0.1826 —0.1836 —0.2056

Lower middle (II) —0.0291 —0.0383 —0.0272

Upper middle (III) 0.0228 0.0094 0.0345

Highest (IV) 0.1905 0.1547 0.2149

All 0.0005 —0.0142 0.0042

Dhrymes (1991) and Bartelsman and Dhrymes (1998) present TFP growth results
by deciles and their conclusions argue against characterizing the economy in terms of
the representative plant or firm. These studies suggest that evaluating TFP growth pat-
terns by quartiles can potentially reveal differing TFP growth impacts from investment
spikes. Thus, similar to Dhrymes (1991) contemporaneous rank procedure which is
applied to present TFP growth by deciles, after calculating a given plant’s TFP and
its growth, we rank all plants according to the magnitudes of their TFP in each year.
Then for each year, the plants are grouped by a quartile sampling procedure ranging
from I to IV (lowest to highest). Thus, we obtain TFP growth of plants in each quartile,
per year. This ranking allows us to classify plants exhibiting varying levels of TFP
growth, as well as to detect if productivity is growing over time.

Table 5 provides overall and quartile group specific average TFP growth across
industries. This shows that the average productivity growth over the years is 0.05 % in
meat products, — 1.4 % in dairy products and 0.4 % in all food manufacturing industries.
However, classifying plants based on their productivity quartiles reveals significant
variation in productivity growth. An analysis of the 3-digit sub-industry level presents
very different productivity growth rates even when each sub-group belongs to the same
2-digit-level aggregate industry. The meat product plants in the lowest quartile have
an average growth of —18 %, while the highest quartile plants are at 19 %. A similar
pattern is seen in the dairy products sub-industry and the entire food industry with the
average growth in the lowest quartile ranked plants is —18 % for dairy products and
—21 % for the food industry, while the average growth in the highest quartile is 15 and
22 %, respectively.

Overall in the U.S. food industry, the smallest- and the largest-sized plants are more
productive than the plants that are in the other size categories. Further, the older plants
have higher productivity growth compared to the productivity growth of the youngest
plants.

These results present several interesting observations about the industry, such that
there are large differentials in the rates of productivity growth across plants within
the same industry. The industry-level productivity growth presents a different picture
than growth based on a quartile plant group. Most interestingly, one expects poorly

Footnote 15 continued
estimation. Since the Cobb-Douglas production technology (with constant returns to scale) is estimated
here, the TFP growth is coming from the technical change component.
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performing plants to exit over the long run in a competitive environment. These results
find low productivity growth plants coexist with the highly productive ones. These
differences may be attributed to the quality of capital equipment, worker’s skills, or
the development and installation of new technology and the managerial abilities of
firms explain the wide variation in productivity growth.

3.2 The impact of investment spikes on productivity growth

We describe an econometric model to investigate the link between investment spikes
and TFP growth. For this analysis, we use the reduced form regression model as
follows,

Oir =a+yXi + &ir 3)

where the dependent variable Q;; is the productivity growth rate, and the indepen-
dent variables X;; (vector) are relevant plant characteristics (e.g., plant investment
age (lagged), plant size, plant age, year and industry controls).'® The investment
age variable measures the time since the plant’s most recent investment spike. After
identifying investment spikes for each plant over the years, the investment age variable
is constructed by measuring the time since the plant’s most recent investment spike.
Based on our panel from 1972 to 1995, we constructed the investment age dummies.
The range of investment age dummies is 0 to 9+, where 0 denotes consecutive spikes,
1 represents a one-year investment spike interval, and so on, up to the nine-or-greater
category. The time since the plant’s most recent investment spike can also be viewed as
an indicator of the plant’s capital vintage. The size variable is a set of dummy variables
defined as the number of employees at each plant. Plant size dummies are assigned
based on their average, size-weighted employment over the sample period to account
for each plant’s average employment in the long term and to avoid size fluctuation
through time. After finding the average size-weighted employment, plant size dummy
variables are created based on quartile groups. Table 6 reports the number of observa-
tions and plants, average size, and employment based on plant size quartiles. Table 7
presents the number of plants and observations by plant age. The construction of the
variables follows the protocol presented in the Appendix of Geylani and Stefanou
(2011).

Our empirical estimation only focuses on machinery investment spikes, which are
the type of investment that usually incorporates the latest technology. Using Eq. (3),
we estimate a set of least-squares regressions with and without fixed effects to exploit
both cross-plant and within-plant productivity variations.!” Table 8 lists the estimation
results from Eq. (3) for each industry. We plot the plant investment age coefficients

16 our industry dummies are at the 4-digit SIC level, which shows a 4-digit output composition. We have
five such industries for Meat and Dairy products, and 51 for the entire food industry.

17 In plant-level estimation, if there is unobserved heterogeneity across plants, the estimated coefficient
using least squares without controlling for the fixed effects yields biased results. Therefore, we run a least
squares regression with plant-level fixed effects to eliminate this potential bias.
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Table 6 Number of observations and plants, organized by plant size quartile, in the entire food industry

Average size Number of Number of Average size Average size Average
quartiles observations plants by employment by employment employ-
index (size index as % of ment
variable) total average
employment
index (%)
0-25 7,392 308 1754.75 4.4 68.08
Quartile
group
(A)
25-50 7,392 308 5468.52 13.6 212.39
Quartile
group
(B)
50-75 7,416 309 9806.55 243 379.68
Quartile
group
©
75-100 7,392 308 23255.97 57.7 885.18
Quartile
group
(D)

Table 7 Number of observations and plants, organized by plant ages, in the entire food industry

Plant age? Number of Number of plants ~ Fractioninthedata Average
observations set (%) employment
Age 0 (newborn 4224 176 14 291.53
plants in 1972)
Age | (5-year-old 2,808 117 9.5 360.10
plants in 1972)
Age 2 (9-year-old 22,464 936 76.2 407.57

plants in 1972)

4 The first year of panel data, 1972, is taken as a benchmark to find plant age

from columns 2, 4, and 6 in the Table 8 for the meat products, the dairy products, and
the food industries in Figs. 1, 2 and 3, respectively.

A major finding from this analysis is the relationship between productivity growth
and investment age which is contrary to the findings of Power (1998), and holds even
when controlling for plant fixed effects. In general, the magnitude and significance
of the investment age coefficients is robust to the presence or absence of plant fixed
effects. Therefore, further discussions are based on these results, which control for the
unobservable heterogeneity across plants.

The impact of investment age on productivity growth exhibits a positive trend for
the meat products industry. This indicates productivity growth increases as a result of
an investment spike, which may suggest an efficiency gain or learning effect.'® For

18 Tnvestment age coefficients illustrate the relationship between productivity growth and investment age
for the average plant relative to the omitted investment age group 9+.
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Fig. 2 Investment age and productivity: dairy products industry

example, the impact of that investment for the meat products plants is a 4 % produc-
tivity increase 1 year after the investment spike, and increasing to 5 % 4 years after the
spike. The pattern is an inverted U-shape, suggesting that productivity growth initially
increases and then trails off (Fig. 1). The impact of investment age on productivity
growth becomes relatively flat after 1 year suggesting a rapid efficiency gain and/or
learning effect. Once the plants adopt the new capacity, it either increases efficiency
right away, or the technology learning period is not long, so that plants see the positive
effect of this technology on productivity right away.
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Fig. 3 Investment age and productivity: food manufacturing industry

The positive and significant effect of investment age on productivity growth may
indicate that plants in meat products industry may be introducing new technologies to
boost their productivity. Thus, these investments may be a replacement or retooling
type of investment. The idea that different types of investments (such as expansion-
ary, replacement, or retooling) have an effect on productivity shows up in previous
research, but this has never been tested since there were no data available distin-
guishing investment types precisely enough (Power 1998; Huggett and Ospina 2001;
Sakellaris 2004). The Power (1998) study could not find a relationship between pro-
ductivity growth and investment. This was attributed to the expansionary investment
type, which need not be associated with productivity increases. An increase in produc-
tivity is expected when there is replacement or retooling type of investment. While our
data do not distinguish between investment types, our results can be used to suggest
different types of investments in the food manufacturing industry.

For dairy product plants in general, the impact of large investments on productiv-
ity growth is positive and is realized after the first year. For example, the impact of
that investment for dairy products plants is a 3 % productivity increase 1year after
the investment spike. For these plants, the trend is generally positive, even though
some coefficients are insignificant (Fig. 2). While this pattern is very similar to meat
product plants, the investment age impact in dairy product plants is about half the rate
found in meat plants. Some of the observed differences in the analysis of the large
investments impact on productivity growth across meat and dairy plants might be a
result of technological and product differences that we see in these sectors. '’

19" Meat products plants can offer a range of products based on how the processing is managed. For exam-
ple, boxed beef products (e.g., pre-processed choice cuts being shrink wrapped and boxed for delivery
to retailers) are new products developed over this period which required specialized handling but did not
require significant specialized capital. Dairy products can involve sophisticated technologies that require
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For the food industry, in aggregate, the most pronounced impact of investment age
on productivity growth (2.8 %) occurs during the fifth year after an investment spike.
For these plants, the impact of investment age on productivity declines gradually up to
investment age 4, then increases during investment ages 4 and 5 (U-shape investment
age-productivity pattern). We see this pattern for the food manufacturing plants in
Fig. 3. Large spikes generally require significant plant-level learning, and as a result,
the pronounce impact of investment spikes appears in later periods, and the produc-
tivity benefits from investment are realized more slowly. The learning period is longer
for these plants compared to plants observed in the meat and dairy products indus-
tries. The U-shape investment age-productivity pattern is consistent with the Jovanovic
and Nyarko (1996) learning-by-doing model in which productivity increases as firms
learn more about the given technology, implying that when plants abandon an old
technology in favor of one that is new, there is a period of technology-specific learn-
ing and productivity can be lower immediately after switching to a new technology.
Theoretical studies such as Klenow (1998), Yorukoglu (1998), and vintage human
capital models of Parente (1994) exhibit similar behavior. More recently, the machine
replacement problem (e.g., Cooley et al. 1997; Cooper et al. 1999) which considers
technological progress is investment specific and embodied in the form of new capital
goods. These models explain the plant-level investment patterns and lumpy invest-
ments and are consistent with the findings of this article. Further, our results show that
different learning curves (learning period of technology) can exist among different
plants in the industry. For example, while we observe longer learning period for the
plants in the food industry, in general (U-shape investment age—productivity pattern),
we observe a rapid learning curve for the meat and dairy products plants in the food
industry (almost an inverted U-shape). This finding is consistent with Greenwood and
Jovanovic (2001)’s learning curve model which implies a steeper learning curves for
plants during the times of rapid technological progress.2?

Across all food industries, the most pronounced impact of investment age on pro-
ductivity growth (5.3 % for meat products, 4 % for dairy products, and 2.8 % in all
food manufacturing plants) occurs during the fifth year post-investment spike. Thus,
the productivity gains tend to be fully realized with a 5-year technology learning period
for this industry.

4 Concluding comments

The main aim of this study is to examine empirically the widely assumed relationship
between productivity and investment spikes by means of a rich plant-level dataset, and
we investigate this link without imposing any causal relationship between productivity
growth and investment for the U.S. food manufacturing industry.

Footnote 19 continued

specialized equipment. For example, the emergence and growth of yogurt products are new dairy products
developed over this period which did require specialized processes and equipment.

20" Other studies which present the literature on learning curves and whose findings are consistent with
ours are Argote and Epple (1990) and Bahk and Gort (1993).
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This study offers several key results. First, there is a significant variation in produc-
tivity growth among plants in the same industry. Productivity growth at the industry
level is different from growth measurement based on a quartile group of plants. Second,
we find strong evidence of a link between productivity growth and investment age in
existing plants. Our results show that productivity growth increases after investment
spikes over time and then trails off, even after controlling for plant fixed effects in most
of the plants, suggesting a plant-level efficiency gain or learning effect. However, we
find that there are differences in productivity growth and investment spike patterns
across different sub-industries and the food manufacturing industry in general.

We also find that efficiency and the learning period associated with investment
spikes differs across industries. The meat and dairy industry plants see the positive
effects right away once the new technology is adopted. This suggests that these plants
experience an immediate increase in efficiency, or the new technology learning period
is relatively short. However, for the all food industry plants in general, the impact of
investment spike on productivity growth is positive but gradually declines after an
investment spike, which suggests that the learning period is longer and productivity
benefits from these investments are realized more slowly. By focusing on existing
plants, this study reveals that lumpy investments not only occur at new plants as most
of the existing studies emphasize, but also at surviving plants. This result coincides
with the Huggett and Ospina (2001) investigation of Columbian plants.

The natural next step is to focus more deeply on the unobserved heterogeneity
of firms to investigate how plant-level investment spikes and productivity growth are
linked. This involves a dynamic theory of firm capital adjustment and a structural mod-
eling framework to link different types of investments (e.g., expansionary, replacement
or retooling) to different innovation types (process versus product innovation). The
pace of firms to absorb the large scale investments is at issue as well as the duration
of the installation and overall adjustment of these investments.
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