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Abstract Recent studies debate how the unobserved dependence between the mon-
etary return to college education and selection into college can be characterised. This
paper examines this question using British data. We develop a semiparametric local
instrumental variables estimator for identified features of a flexible correlated random
coefficient model. These identified features are directly related to the marginal and
average treatment effect in policy evaluation. Our results indicate that returns to college
systematically differ between actual college graduates and actual college non-gradu-
ates. They are on average higher for college graduates and positively related to selection
into college for 96% of the individuals. The dependence between selection into col-
lege and returns to college education is strongest for individuals with low math test
scores at the age of 7, individuals with less educated mothers, and for working-class
individuals.
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1 Introduction

In labor economics it is well understood that estimating the returns to college education
is anything but straightforward.1 One reason for this is that an individual’s educational
choice is likely to be based on information that is superior to what is recorded in the
data. For example, if ability is unobserved and positively related to the return to a
college degree, then we might expect individuals with high ability to be more likely
to obtain a college degree. A direct consequence of this is that a simple regression
of wages on an indicator for college education yields upward biased estimates of the
average return to college education.

Neither matching techniques nor standard instrumental variables estimators
(referred to as 2SLS from now on) are able to overcome this problem because they pre-
clude any unobserved dependence between the return to a college degree and selection
into college education (Heckman and Vytlacil 1998; Heckman et al. 2006; Wooldridge
2007). However, following Imbens and Angrist (1994), Heckman and Vytlacil (1999,
HV in the remainder) show that the average return for a well-defined subgroup can be
estimated using a local instrumental variables estimator. It is local because it estimates
the return using only observations for which the probability to obtain a college degree
falls into a small neighborhood.2

In this paper we set up a flexible correlated random coefficient model that allows
for binary endogenous variables. We develop a semiparametric local instrumental
variables estimator for identified features of this model, among others the conditional
average structural function (CASF), which is the expected wage if (no) college edu-
cation is assigned to an individual. The CASF depends both on observed and unob-
served characteristics that lead to selection into college. The identifiable features that
are estimated are directly related to the marginal and average treatment effect in pol-
icy evaluation. Hence, the estimator is suitable for many other situations in which a
binary endogenous variable is related to its effect. One example is the estimation of
the effect of participation in a training program on unemployment duration, where
the participation decision is made in light of the idiosyncratic expected effect of the
program.

We implement this estimator using data from United Kingdom’s National Child
Development Survey (NCDS). Our results indicate that returns to college systemati-
cally differ between college graduates and college non-graduates. They are on average
higher for college graduates. We find that returns are positively related to selection into
college for 96% of the individuals. The difference in returns between those who actu-
ally attend college and those who do not is largest for individuals with low math test
scores, less educated mothers, and individuals whose father’s occupation is associated
with a lower social class. Many of those individuals actually do not attend college,
but would profit from doing so if they were to have high levels of unobserved ability.
Thus, within this well-specified subgroup of individuals, those with high levels of
unobserved ability should be encouraged to attend college.

1 See Griliches (1977) and Card (2001) for surveys on the returns to schooling and Solmon and Taubman
(1973) on the returns to college education.
2 See Heckman and Vytlacil (2001, 2005) as well as Heckman et al. (2006) for a comprehensive discussion.
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The remainder of this paper is organised as follows. Section 2 presents and discusses
the econometric approach. In Sect. 3 we describe the data set. Section 4 contains the
empirical results. In Sect. 5 we assess the validity of the instruments. Section 6 con-
cludes.

2 Econometric approach

2.1 Econometric model

Our point of departure is the correlated random coefficient model

Y = X ′ϕ(D, U, V ) (1)

D = 1{P(Z) ≥ V }. (2)

Y is the log hourly wage at the age of 33, X is a K -vector of covariates that includes a
constant term, a math test score, family background variables, and regional indicators.3

D is an indicator for having received college education. Z contains X and variables
that are excluded from the wage equation (instruments). In our analysis these excluded
variables are indicators for the parents’ interest in the education of the child. At least
one variable in X or Z is continuous. U is unobserved and possibly vector-valued.
V is an unobserved scalar random variable. ϕ(·, ·, ·) is a vector-valued function and
P(·) is a scalar-valued function. We will refer to (1) as the wage equation and (2) as
the selection equation. This model allows for unobserved dependence between wages
and selection into college because V enters both the wage equation and the selection
equation. We will later interpret low values of V as representing high unobserved
ability regarding formal schooling, and high values of V as representing low ability.

We impose the following stochastic restrictions.

Assumption 1 (Stochastic Restrictions) (i) (U, V ) are jointly independent of (X, Z)

and (ii) U is independent of V .

Assumption 1(i) prescribes that the distribution of V is unrelated to all variables in
X and Z . Assumption 1(ii) restricts the randomness in Y through U to be unrelated to
V .4

The approach taken here is inspired by the nonparametric identification result in
HV. They show nonparametric identification of various parameters of interest under
the assumption that (U, V ) is jointly independent of Z conditional on X , and that X
is is not affected by the choice of D.5 In addition they require that there is a contin-
uous variable in Z that is not in X . In practice, however, the typical situation is that

3 We will denote (vectors of) random variables by uppercase letters and their respective typical elements
by lowercase letters.
4 One can show that this is not restrictive because there exists an observationally equivalent model with
three unobservables, UD in the selection equation, U0 in the outcome equation for D = 0, and U1 in
the outcome equation for D = 1, that are not restricted to be independent of one another. Derivations are
available upon request from the author.
5 The requirement that X is is not affected by the choice of D is weaker than the assumption that X is
exogenous. See the discussion in Heckman and Vytlacil (2005) and Sect. 2.4.

123



138 T. J. Klein

researchers only have access to discrete instruments, e.g. when exogenous variation
in eligibility rules is used (Battistin and Rettore 2008). It is therefore worth noting
that under Assumption 1 we can instead exploit continuous variation in X . Another
difference is that HV require that Z shifts the probability to observe D = 1 from 0 to
1, given X , whereas we only require this for the unconditional probability to observe
D = 1. To summarise, the stochastic restrictions in HV are weaker but the support
conditions are stronger. In Sect. 2.4 we discuss how Assumption 1 restricts the set
variables that can be included in X .

Apart from the stochastic restrictions, we assume that the following regularity con-
ditions hold.

Assumption 2 (Regularity Conditions) (i) All first moments exist and (ii) the distri-
bution of V is absolutely continuous with respect to Lebesgue measure.

Assumption 2(i) ensures that all parameters of interest defined below exist. Assump-
tion 2(ii) implies that V is a continuous random variable. This allows us, without loss
of generality (w.l.o.g.), to normalise V from now on to be uniformly distributed on the
unit interval, see, e.g., Vytlacil (2002) for details. It then follows immediately from
Assumption 1(i) that P(Z) is identified since it is equal to Pr(D = 1|Z). For simplicity,
we will write P for P(Z) in the remainder, and denote its typical element by p.

The CASF is the average outcome when we assign D = d, X = x , and V = v, i.e.

G(d, x, v) ≡ x ′
E[ϕ(d, U, v)]. (3)

Here, we average over U . The terminology CASF is related to the one used by
Blundell and Powell (2003). They suggest to focus on recovering the average struc-
tural function,

Ḡ(d, x) ≡ x ′
E[ϕ(d, U, V )] (4)

in our case, where we also average over V .
We are further interested in

∂G(d, x, v)

∂x
= E[ϕ(d, U, v)], (5)

the vector of conditional average ceteris paribus effects, understanding the notion of
ceteris paribus as holding all other factors constant, including V , while again averaging
over U . Finally,

∂Ḡ(d, x)

∂x
= E[ϕ(d, U, V )] (6)

is the vector of average ceteris paribus effects, where we again average over V .
Equation 2 prescribes how the decision to attend college depends on V . For a

given P = p, those individuals with V ≤ p sort into college and those with V > p
do not. Hence, we can think of low values of V as representing high levels of abil-
ity, and high values representing low ability. The dependence of the CASF and the
conditional average ceteris paribus effects on V is therefore informative about the rela-
tionship between wages and selection into college, and how this relationship depends
on observed characteristics X .
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College education and wages in the U.K. 139

The parameters of interest that were defined above are directly related to the treat-
ment effect parameters in policy evaluation. The difference in the CASF between
D = 1 and D = 0 is Björklund and Moffitt (1987) marginal treatment effect (MTE)
for X = x ,

G(1, x, v) − G(0, x, v) = x ′(
E[ϕ(1, U, v)] − E[ϕ(0, U, v)]). (7)

This is the expected effect of a college degree on wages for a given level of unobserved
ability and for given values of the covariates. The average treatment effect (ATE) is
the average MTE when we average over the population distribution of unobserved
ability. For a given X = x it is

x ′
1∫

0

(
E[ϕ(1, U, v)] − E[ϕ(0, U, v)]) dv, (8)

recalling that we have normalised V to be uniformly distributed. It follows from
Assumption 1 that the unconditional ATE is equal to the expression in Eq. 8, eval-
uated at the mean of X . The average treatment effect on the treated (ATT) can be
obtained by integrating over the distribution of V , conditional on D = 1, and evaluat-
ing the expression at the mean of X conditional on D = 1. For the average treatment
effect on the untreated (ATU) we use the distribution of V conditional on D = 0 and
the mean of X conditional on D = 0.6

2.2 Identification

In this subsection, we show that the CASF is identified. Because of the multiplicative
structure of the wage equation, identification of the CASF at D = d, V = v, and
X = x , Eq. 3, is equivalent to identification of the conditional average ceteris pari-
bus effects, Eq. 5.7 The average structural function, Eq. 4, and average ceteris paribus
effects, Eq. 6, are identified at D = d if the CASF is identified at all v in the open unit
interval, recalling that we have normalised V to be uniformly distributed and that the
endpoints have probability measure zero. Finally, if the (conditional) average struc-
tural function is identified at both D = 0 and D = 1, then so is the average (marginal)
treatment effect.

From Eq. 1 it follows that

E[Y |D = 1, P = p, X = x] = x ′
E[ϕ(1, U, V )|D = 1, P = p, X = x] (9)

which is equal to

x ′
E[ϕ(1, U, V )|P ≥ V, P = p, X = x]

6 See Heckman and Vytlacil (1999, 2000) for the relationship between treatment parameters within a latent
variable framework.
7 Since X includes a constant, the intercept is identified once the conditional average ceteris paribus effects
are identified.
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by the selection model in Eq. 2. Assumption 1(i) implies that P is independent of
(U, V ) so that this is equal to

x ′
E[ϕ(1, U, V )|X = x, p ≥ V ].

By Assumption 1(i), we can reexpress this as

x ′
E[ϕ(1, U, V )|p ≥ V ] =: x ′β(1, p).

E[ϕ(1, U, V )|p ≥ V ] is a vector-valued function of p which we will denote by β(1, p)

in the remainder. Since the left hand side of Eq. 9 is identified at points x and p of the
support of X and P in the D = 1 population, respectively, β(1, p) is identified if we
observe at least K linearly independent values of X for D = 1 and P = p. β(0, p) is
defined in an analogous manner and a similar result holds for D = 0 and P = p.

Starting from this, we show that the CASF is identified.8 We call p a limit point of
the support of P , if P has a continuous density in a neighborhood around p which is
bounded away from zero. Notice that at P = p derivatives of differentiable functions
of P are identified.

Proposition 1 (Identification) Assume that β(0, p) and β(1, p) are continuously
differentiable with respect to p and that we observe at least K linearly independent
values of X for D = 0, D = 1, and all values of P in a neighborhood around p (rank
condition). Then, under Assumptions 1 and 2 the CASF is identified at V = p, where
p is a limit point of the support of P, and given by

G(0, x, v) = x ′
(

β(0, p) − (1 − p) · ∂β(0, p)

∂p

)

G(1, x, v) = x ′
(

β(1, p) + p · ∂β(1, p)

∂p

)
.

Proof We show identification of G(1, x, v). The proof for G(0, x, v) is similar. Recall
that we have normalised V to be uniformly distributed. By definition,

x ′
E[ϕ(1, U, V )|p ≥ V ] = x ′β(1, p).

From the normalization on V and Assumption 1(ii) it follows that

x ′
p∫

0

∞∫

−∞
ϕ(1, u, v) μ(du) dv/p = x ′β(1, p), (10)

8 We state the result in a proposition which resembles Theorem 1 in Carneiro and Lee (2009). Following
HV, they show nonparametric identification under weaker stochastic restrictions than the ones in Assump-
tion 1, at the price of stronger support conditions that need to hold for their result. Only when they estimate
the model they impose the restrictions in Assumption 1. We show the proof for two reasons. First, strictly
speaking, our identification result is not implied by their Lemma 1, even though their proof is similar to
ours. Second, our rank condition differs from theirs.
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where μ(du) is the marginal probability measure of u. Multiplying both sides by p
gives

x ′
p∫

0

∞∫

−∞
ϕ(1, u, v) μ(du) dv = p · x ′β(1, p)

and differentiating both sides with respect to p using Leibniz’ rule reveals that

x ′
∞∫

−∞
ϕ(1, u, p) μ(du) = x ′β(1, p) + p · x ′ ∂β(1,p)

∂p .

If p is a limit point of the support of P then the rank condition implies that β(1, p)

and ∂β(1, p)/∂p are identified at P = p. The left hand side is the object of interest.

Finally, notice that identification relies on the monotonicity of D in P , which is
implied by the selection model and allows us to formulate Eq. 10.9

2.3 Estimation

We have established that under the conditions of Proposition 1

E[Y |D = d, P = p, X = x] = x ′β(d, p) , d ∈ {0, 1},

where β(d, p) is a coefficient vector that is a function of the observable D, and P ,
which can be estimated.10 We parametrically estimate P using a logit model. We
assume that the coefficient functions are bounded and have bounded second deriva-
tives. This allows us to estimate them by local linear smoothing.11 This estimation
procedure is usually motivated by a Taylor expansion of the coefficient function in p̃
about p̃ = p which yields

βk(d, p̃) = βk(d, p) + ∂βk(d, p)

∂p
· ( p̃ − p) + 1

2

∂2βk(d, p̄)

∂p2 · ( p̃ − p)2,

9 See Klein (forthcoming) for a discussion and an analysis of the case in which monotonicity does not hold,
but is wrongly assumed.
10 This is a version of the varying coefficient model which was suggested by Cleveland et al. (1991) and
Hastie and Tibshirani (1993).
11 This assumption is stronger than what is required for identification. A sufficient condition for this to hold
is that the second derivative of E[ϕ(D, U, V )|D = d, V = v] with respect to V is bounded for d = 0 and
d = 1. Concerning the properties of the estimator, see, e.g. Fan and Zhang (1999) and Xia and Li (1999)
for details as well as a proof of consistency and results on rates of convergence.
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where p̄ is a point between p and p̃. We select all observations with D = d and index
them by i , i = 1, . . . , n. The estimates of β(d, p) and ∂β(d, p)/∂p are given by

(
β̂(d, p)

̂∂β(d, p)/∂p

)

= arg min
a,b

{
n∑

i=1

K

(
pi − p

h

)
·
(

yi −
[

xi

(pi − p) · xi

]′ (a
b

))2
}

,

(11)

where K (·) is a kernel function with the usual properties and h is the bandwidth.12

From these estimates of β(d, p) and ∂β(d, p)/∂p, which we provide with hats in
the remainder, we calculate the vector of conditional average ceteris paribus effects,
Eq. 5, and the CASF using the formulae in Proposition 1. From these we calculate
values of other identifiable features of interest and simulate average effects.

Since fitted values pi were parametrically estimated in a first step we do not expect
them to have an impact on the distribution of β̂(d, p) and ̂∂β(d, p)/∂p in a first order
asymptotic sense. However, we obtain confidence intervals, accounting for the first
step estimation error, from 1, 000 bootstrap replications. In our application they are
wider than bootstrapped confidence intervals that do not account for the first step
estimation error. We also account for simulation error if simulations are undertaken.

2.4 Discussion

In this section we briefly discuss the econometric approach taken here. There are two
key advantages. First, functional form restrictions are mild. X could include approxi-
mating functions in such a way that the number of approximating functions grows with
the sample size. Then, following Newey (1997), Eq. 1 could be interpreted as a series
approximation to a general nonseparable structural equation Y = g(X, D, U, V ).

Second, the estimator that is proposed here allows for, and is able to recover, richer
selection patterns than 2SLS, matching, and the local instrumental variables estima-

12 Write ỹi = √
K ((pi − p)/h) · yi and x̃i = √

K ((pi − p)/h) · (x ′
i , (pi − p)x ′

i )
′. Then,

(
β̂(d, p)

̂∂β(d, p)/∂p

)

=
⎛

⎝
n∑

i=1

x̃i x̃ ′
i

⎞

⎠

−1 ⎛

⎝
n∑

i=1

x̃i ỹi

⎞

⎠ .

Following Fan (1992) we add a matrix with elements equal to 0.001 to the matrix
∑n

i=1 x̃i x̃ ′
i to ensure that

it can be inverted. We use an Epanechnikov kernel and estimate the coefficient vectors at 101 grid points
between 0 and 1. The bandwidths are chosen using a leave-one-out cross-validation procedure. Figure 5 in
the Appendix shows, separately for D = 0 and D = 1, the sample mean integrated squared error plotted
against the bandwidth. It decreases until a value of the bandwidth of 1.2 for D = 0 and is flat thereafter,
so we use 1.2 as the bandwidth to allow for maximum flexibility. For D = 1 it is minimal at 0.8, so we use
0.8 as the bandwidth. In Proposition 1, we require the rank to be K . Here, we also use interaction terms
between P and X for the estimator in (11), and therefore we require it to be 2K . This rank condition holds
in our data, i.e. the weighted n × 2K matrix of explanatory variables and interaction terms is of rank 2K
at all evaluation points p.
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tor for the additive model that is implemented e.g. by Carneiro and Lee (2009).13

The additive model allows for selection based on the return, but imposes that the
selection pattern does not depend on X . If we express X as (1, X ′−1)

′ and ϕ(·, ·, ·) as
(ϕ1(·, ·, ·), ϕ−1(·, ·, ·)′)′, Eq. 1 can be written as

Y = ϕ1(D, U, V ) + X ′−1ϕ−1(D, U, V ),

and the additive model as

Y = μ(D, U, V ) + X ′−1γ (D, U ). (12)

The sorting pattern is characterised by the dependence of the MTE on V , and this
dependence is unrelated to X for the additive model.14 In Sect. 4, we examine whether
the additive model is consistent with our data.

The estimator that is proposed in this paper requires that there is a continuous var-
iable in X or Z . 2SLS does not require continuous variation in X or Z because the
assumption of uncorrelatedness between the effect and the endogenous variable can
be exploited instead (Heckman and Vytlacil 1998).

Interestingly, both the nonparametric identification result in HV and the matching
estimator do not require the conditioning variables in X and X̄ , respectively, to be
exogenous. For the nonparametric identification result in HV, the addition of variables
to X increases the likelihood that the assumption of independence between Z and
(U, V ) conditional on X holds. At the same time, however, it becomes less likely that
there is continuous variation in Z given X that shifts the probability to observe D = 1
from 0 to 1, which is necessary unless one directly estimates local average treatment
effects instead (Frölich 2007). Also for matching, adding more variables to X̄ makes
it more likely that the conditional mean independence assumption holds. In both cases
the conditioning variables can be thought of as predictors of wage levels. However,
also with these techniques we can only recover the causal effect of X on wages and on
the returns to a college degree if we assume that X is exogenous. Besides, under exoge-
neity of X we can rely on weaker assumptions on the support of Z given X , which turns
out to be of key importance in our application because the instruments are discrete.

13 Heckman and Vytlacil (1998), Heckman et al. (2006), and Wooldridge (2007) point out that 2SLS
requires that the difference in the coefficients, ϕ(1, U, V ) − ϕ(0, U, V ), is not correlated with D and Z .
This precludes selection that is related to the return to a college degree. Matching estimators require that
conditional on a set of observed variables, say X̄ , the difference in the coefficients is mean independent of
D (Rosenbaum and Rubin 1983), i.e.

E[ϕ(1, U, V ) − ϕ(0, U, V )|X̄ , D] = E[ϕ(1, U, V ) − ϕ(0, U, V )|X̄ ]

if we maintain the functional form restrictions. Hence, matching estimators cannot be used if there is
selection based on the return conditional on X̄ .
14 The MTE in the additive model is E[μ(1, U, v) − μ(0, U, v)] + x ′−1E[γ (1, U ) − γ (0, U )] and hence
the effect of a change in v is not related to x .
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3 Data

The estimator is implemented using NCDS data from the U.K. The NCDS is con-
ducted by the Centre for Longitudinal Studies at the Institute of Education in London.
It is a longitudinal data set and keeps detailed records for all those living in the
U.K. who were born between March 3 and 9, 1958. The data were first collected
at birth in 1958, in 1965 (age 7), in 1969 (age 11), in 1974 (age 16), in 1981 (age
23), in 1991 (age 33), in 1999–2000 (age 41–42), in 2004–2005 (age 46–47), and in
2008–2009 (age 50–51). The NCDS has gathered data on child development from
birth to early adolescence, as well as on child care, medical care, health, physique,
school readiness, home environment, educational progress, parental involvement, cog-
nitive and social growth, family relationships, economic activity, income, training, and
housing.

In a related application, Blundell et al. (2005) study these data using 2SLS, a control
function estimator, and matching techniques. We use the same procedures to prepare
the data for analysis. For a more detailed data description and variable definitions the
reader is referred to their paper.

For the analysis we select working men for whom information on their highest edu-
cational degree is available.15 Our core sample thus consists of 3,609 observations,
of which 646 (17.9%) did not complete their O-levels, 986 (27.3%) completed their
O-levels, 960 (26.6%) did so for the A-levels, and 1,017 (28.2%) completed college
education.16 We distinguish between college graduates (D = 1), who have completed
some kind of higher education, and the remaining individuals (D = 0). Test scores
are rescaled so that each of them lies between zero and one.

Following Mincer (1974), the outcome of interest is the log hourly wage in 1991,
at the age of 33. The NCDS contains information on a number of family background
variables such as the respective parents’ ages, their years of education, whether the
mother was working when the child was 16, as well as the number of siblings. Fur-
thermore, we observe the occupation of the father when the child was 16, in particular
whether he was an intermediate employee. This can be interpreted as a proxy for the
social class.

As discussed in Sect. 2.4, variables in X need to be selected such that they are
unrelated to U and V . This precludes the inclusion of indicators for secondary school
type because certain secondary schools are more likely to be chosen by individuals
who plan to attend college thereafter. Also test scores might be related to unobserved
ability. For that reason we include only the math test score at the age of 7 in the
set of covariates and consider it a proxy for purely analytical skills, which are unre-
lated to other types of unobserved ability such as assertiveness and social intelli-
gence that affect wages at the age of 33 as well as the decision to attend college.
We do not include the number of siblings because it might be related to unobserved
ability through interaction of the child with his siblings, again thinking of unob-

15 Information on the education is not available for non-working individuals. Out of 3, 945 individuals 270
(6.84%) are not working. For 66 of the remaining individuals information on the education is missing.
16 We say that an individual completes his A-levels if he completed at least one A-level, which is generally
obtained at the end of secondary school, see Blundell et al. (2005) for details.
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served ability as being related to traits such as assertiveness and social intelligence.
However, we include the mother’s years of education into X and consider it a proxy
for the kind of education the child receives at home, irrespective of his unobserved
ability.17

We discarded some additional variables such as the respective age of the parents
when the child was 16, because the corresponding coefficient estimates were insig-
nificant in a first stage regression of an indicator for college education on the full set
of covariates and indicators for the mother’s interest in the child’s education when
the child was 16.18 In addition, these discarded variables had insignificant coefficient
estimates in the wage equation when the efficient GMM estimator (to be described
in Sect. 5) was implemented. Most of the indicators for both the father’s occupation
and region were dropped as well, which did not have a big effect on the remaining
significant coefficient estimates.

We use indicators for the mother’s interest in the child’s education when aged 16
as instruments for the decision to attend college. The interest in the child’s education
is assessed by the child’s head teacher. It is an objective assessment of the parent’s
behavior, because the head teacher is not asked to evaluate the appropriateness of the
parents’ interest in the education, but rather to describe it. We expect this variable to
be measured accurately because the teacher usually knows the parents from personal
meetings.19 It is plausibly unrelated to a child’s ability, as long as the importance
parents attach to the child’s education does not depend on the child’s unobserved
characteristics. This is an assumption that will be formally tested by conducting tests
of overidentifying restrictions in Sect. 5.

Table 1 shows summary statistics for our sample. The statistics are shown sepa-
rately for college graduates and college non-graduates. On average, college graduates
have a higher math ability test score, more highly educated mothers, and they are
more likely to have a father who is an intermediate employee. In addition, individu-
als who went to college are more likely to have parents who were interested in their
education.

There are missing values for some variables in the data. In the analysis we assume
that they are missing at random, set the value of the respective variable to zero, and
include indicators for missing information in the set of covariates.20

17 Currie and Moretti (2003) show that maternal education is endogenous in a regression that explains birth
outcomes. Carneiro et al. (2007) extend this finding to outcomes such as ability test scores and other types
of outcomes for children and adolescents. However, to our knowledge, it has not been shown that maternal
education is also endogenous in a wage equation.
18 Choices were made using both linear regression and logit estimates.
19 It would be problematic if the assessment was made by an interviewer because he would have to make it
based on the impression he gained in the interview. It would be even more troublesome if the parents were
asked to answer this question themselves, because their answer would probably be related to their child’s
ability.
20 The table shows that the probability a value is missing is about equal for college graduates and college
non-graduates.
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Table 1 Summary statistics

No college College

Mean Std. Mean Std.

Log hourly wage at the age of 33 1.929 0.400 2.329 0.369

Math ability at 7 0.446 0.277 0.584 0.293

Missing 0.113 − 0.116 −
Family background variables at age 16

Mother’s years of education 7.133 4.455 7.857 4.945

Missing 0.269 − 0.256 −
Father is intermediate employee 0.019 − 0.108 −
Missing 0.108 − 0.101 −

Mother’s interest in the education of the child at age 16

Expects too much 0.020 − 0.023 −
Very interested 0.190 − 0.462 −
Some interest 0.221 − 0.163 −
Little interest 0.141 − 0.025 −
Number of obs. 2,592 1,017

Summary statistics for our core sample of individuals who are working at the age of 33 and for whom
information on the highest educational degree is available. Standard deviations for indicator variables are
not shown

4 College education and wages in the U.K.

First stage estimates were obtained using a logit model and are not reported here.21

Since most explanatory variables are indicator variables our specification is very close
to the series logit specification implemented by Hirano et al. (2003).22

Figure 1 shows the sample distributions of the fitted values of P . For both D = 0
and D = 1 the support is almost equal to the full unit interval. Note that the distribu-
tions differ between D = 0 and D = 1. This illustrates that the variables in Z have
explanatory power.

The identification result in Proposition 1 implies that in principle, instead of using
the mother’s interest in the child’s education as an excluded variable, we can exploit
the non-linearity of P in X for identification. To check whether this is possible here
we obtained logit estimates, with and without the excluded variables in Z , obtained
fitted values of P , and then regressed Y on X and P . With the excluded variables in Z

21 They are reported in the Online Appendix to this paper. The coefficient estimates for our final specifi-
cation confirm to expectations and are in line with the literature which takes a closer look at the channels
through which parents’ education is transmitted to the children, see Goldberger (1989) and Haveman and
Wolfe (1995) for an overview and discussion.
22 We tried several specifications with interaction terms but they were generally not significant. There are
two variables, math ability at the age of 7 and the mother’s years of education, which we treat as continuous.
In the second stage, we will estimate coefficients on those variables, which are functions of V . Therefore,
to keep the results nicely interpretable, we have not included higher order terms for those variables.
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Fig. 1 Sample distribution of the propensity score

the coefficient on P is 0.715 with a standard error of 0.065.23 Without the excluded
variables the coefficient estimate changes sign and is equal to −0.305 with a standard
error of 0.340. This shows that identification off the functional form is not a successful
strategy here. The reason for this is that P is very close to being linear in X .24 We
now present the main results.

4.1 Wage levels and effects of covariates

Figure 6 in the Appendix contains estimates of the conditional average ceteris paribus
effects with respect to the variables in the vector X , (5), that are plotted against V ,
separately for D = 0 and D = 1. Figure 2 is an example and shows that for D = 0
the effect of the math test score at age 7 is positive and significant for low values of V .
Recall that, according to the selection model, low values of V induce individuals to
attend college. Thus, we should think of low values of V as representing high unob-
servable ability. Figure 6 shows that for individuals with high levels of unobserved
ability and D = 0 wages increase in the math test score and the mother’s years of
education, and are higher when the father is an intermediate employee. When D = 1
the effect of those variables does not depend on V .

Table 5 (in the Appendix) presents estimates of the impacts of covariates on wages
for D = 0 (left panel) and for D = 1 (right panel).25 The fourth column contains the
result of a test for a particular kind of unobserved heterogeneity. We say that unob-
served heterogeneity is present whenever the impact of a component of X , including
the constant, depends on V . Therefore, we test whether the linear approximation to

23 Again standard errors are obtained from 1, 000 bootstrap replications and correct for the first stage
estimation error. For comparison, the two stage least squares estimate is 0.781 with a standard error of
0.073.
24 The R2 of a linear regression of the fitted value of P on Z is 0.967 with the excluded variables in Z and
0.9787 without them.
25 The additive model was estimated using a regression of the log hourly wage on a polynomial that is
linear in X and quadratic in the first stage estimate of P , separately for D = 0 and D = 1. The order of the
polynomial in P was chosen according to a leave-one-out cross-validation procedure. The average ceteris
paribus effect in this model is the coefficient on the respective variable in X .
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Fig. 2 Average ceteris paribus effects of change in math score at the age of 7, estimates and 95% confidence
intervals

the slope of the conditional average ceteris paribus effect with respect to V is zero.26

We find evidence for a non-zero slope for the impact of the math ability test score, the
indicator for Scotland and the constant for D = 0. Not surprisingly there is a bias in
the coefficient estimate of the additive model whenever the test indicates that the type
of heterogeneity we test for here is present. This shows that the additive model is too
restrictive for our data.

Figure 7 in the Appendix contains an estimate of the CASF for a representative
individual with median characteristics. Interestingly, the CASF increases in V for
D = 0. This means that the kind of ability measured by V (for which low levels are
associated with a higher likelihood of obtaining a college degree) is negatively related
to wages if no college degree is obtained. Conversely, high V types do better when
not obtaining a college degree than low V types do. This is compatible with the view
that college graduates would in fact not do better on the labor market than college
non-graduates if one would have prevented them from attending college.

4.2 Selection into college

Figure 3 shows the MTE for the same representative individual with median character-
istics. A negative slope implies that individuals with low values of V , i.e. high ability
types, have a higher expected return to obtaining a college degree. Carneiro and Lee
(2009, p. 201) point out that individuals base their selection into college education on
their comparative advantage with respect to monetary benefits if the MTE is higher
for those individuals who go to college, i.e. if the MTE decreases in V conditional on
observables X .

26 Here we face two sources of estimation error. First, the error that stems from estimating the conditional
average ceteris paribus effect itself and second, the error from estimating the linear approximation to its
slope.

123



College education and wages in the U.K. 149

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

V=v

Fig. 3 Marginal treatment effect for individual with median characteristics. Plotted for a man aged 33
who has a math ability test score of 0.5, whose mother has 9 years of education, whose father is not an
intermediate employee, and who does not live in London, Scotland, or Wales

Table 2 Prevalence of positive
dependence of CASF and MTE
on V

Fraction 95% Conf. int.

Level, no college 0.973 0.894 0.996

Level, college 0.664 0.158 0.862

MTE 0.042 0.026 0.049

Figures 3 and 7 were plotted for an individual with median characteristics. Since
X varies across individuals, it is interesting to take a closer look at the dependence
of the MTE on V when X varies across individuals. Variation in covariates induces
variation in the slope of the MTE. Therefore, we estimated a linear approximation to
the slope of the CASF and the MTE for every individual to investigate for how many
individuals the comparative advantage hypothesis holds.

Table 2 contains the fractions of the population for which, respectively, the slope of
the CASF and the MTE are positive. In order to obtain those numbers, linear approx-
imations to the slope were estimated. The slope of the level is positive for 97% of the
individuals if we assign D = 0 to all of them. If we assign D = 1 to everybody, it is
positive for 66% of the individuals. Interestingly, the slope of the MTE is positive for
only 4.2% of the individuals, indicating that the comparative advantage hypothesis
holds for the remaining 95.8% of the individuals.27

27 This is in line with findings in previous studies including Willis and Rosen (1979) and Carneiro and
Lee (2009). Those two studies impose additivity and therefore the comparative advantage hypothesis either
holds for all individuals or for none. In Table 5, we observed that additivity does not hold and that coefficient
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Table 3 Average treatment effects

Estimate Ste.

ATE 0.366 0.129

ATT 0.538 0.079

ATU 0.303 0.154

OLS 0.282 0.016

ATT, matching estimate 0.274 0.030

GMM 0.773 0.107

For the matching estimate of the ATT as well as the OLS and GMM estimate the set of covariates is the
same as for the estimates presented in Table 4. Standard errors for the first three estimates as well as the
matching estimate were obtained from 1,000 bootstrap replications. Both OLS and GMM standard errors
are analytic and robust to heteroskedasticity

If selection is based on V , it is interesting to calculate average returns for different
subpopulations. We first calculate ATE using Eq. 8, replacing x with the population
mean of X . For ATT and ATU, we use the respective sample mean of X for D = 1 and
D = 0 and simulate the distribution of V conditional on D, exploiting the structure
of the selection model.28 Respective confidence intervals account for the simulation
error. In Table 3, our estimates are compared to those obtained from an ordinary least
squares (OLS) regression, a matching estimate, and the efficient GMM estimate. Nota-
bly, and consistent with the finding that the MTE is negatively sloped for almost all
individuals, we find that the ATT is higher than the ATU. The ATE is between the
ATT and the ATU.29

Not surprisingly, the OLS estimate is very close to the matching estimate since
matching is built on the assumption that conditional on observables, D is independent
of the error term in the outcome equation. The similarity between the OLS and the
matching estimate indicates that the functional form assumption imposed by the OLS
estimator is innocuous for our data. This could be because X contains many indicator
variables. However, the fact that there is a difference between the matching estimate
and our estimate of ATT (reported in Table 3) shows that the conditional independence
assumption that matching is based on might be violated.

We find that both the OLS and the matching estimate are downward biased, indi-
cating that the selection bias is negative. Controlling for covariates, the estimates are
both roughly equal to the difference in the average wage for those individuals who

Footnote 27 continued
estimates could therefore be biased. In light of this, our results are reassuring as they rule out this source of
bias and nevertheless show that the comparative advantage hypothesis holds for almost all individuals. At
this point, it is worth noting that this way of thinking about the comparative advantage hypothesis ignores
nonmonetary costs and benefits. For example, it could well be that a college degree is additionally asso-
ciated with nonpecuniary benefits such as the pleasure of being educated. Such additional returns are not
addressed in this paper.
28 For example, if we observe an individual with D = 0 and P = p, we draw values of V from a uniform
distribution on (p, 1].
29 We also find this when we estimate the additive model, Eq. 12, and implement the matching estimator
for ATE and ATU.
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ment effects for college non-graduates and the right curve is the empirical c.d.f. for college graduates

are observed to have D = 1, averaging over low values of V according to Eq. 2, and
the average wage for those individuals who are observed to have D = 0, averaging
over high values of V . Figure 7 in the Appendix shows that for the representative
individual, the wage depends positively on V when we assign D = 0. However, the
wage is flat in V if we assign D = 1. Hence the downward bias.

Commonly, the GMM estimate is interpreted as estimating the average treatment
effect for those individuals who are induced to attend college by the variables that
are excluded from the outcome equation.30 The GMM estimate is higher than those
obtained from other estimation strategies.31

Next, we simulate the treatment effect for every individual. For this we draw 100
values of V , calculate the corresponding MTE, and then calculate the average MTE.
If we observe D = 0, we draw values of V from a uniform distribution on [p, 1], and
if D = 1 we draw them from a uniform distribution on [0, p], where, respectively,
p is the fitted value of the probability to obtain a college degree. The idea behind this
is that by observing D and P we can infer in which range V must lie. Since V is
independent of P , it is uniformly distributed. Figure 4 shows that the distribution of
simulated treatment effects for individuals who actually graduated from college first
order dominates the distribution of simulated treatment effects for those who did not
do so. However, the support overlaps, indicating that there are individuals who did not
graduate from college and that would have benefitted more (in monetary terms) from
obtaining a college degree than others who are college graduates.

30 See, e.g., the discussion in Blundell et al. (2005) and Imbens and Angrist (1994) as well as Card (2001).
31 In Sect. 5 we provide additional discussion and interpretation.
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Finally, we examine the dependence of the selection pattern on observed charac-
teristics more closely. It follows from Eq. 7 that the effect of covariates on the MTE is
given by the difference in conditional average ceteris paribus effects between D = 1
and D = 0. Hence, it follows from Figure 6 that the dependence of the returns to college
education on V is larger for individuals with low math test scores, less educated moth-
ers, and fathers that are not intermediate employee (i.e., working-class individuals).
Within this well-defined group, a policy maker should target those individuals with
high unobserved ability and strongly encourage them to attend college, assuming that
the policy maker’s objective is to allocate college education to those individuals with
the highest expected returns.32 Conversely, the screening effort within other groups
(e.g. individuals with high math scores whose father is an intermediate employee)
could be lower because those individuals’ return to a college degree depends less on
unobserved ability.33

5 Validity of instruments

In this paper, indicators for the mother’s interest in the education of the child (when the
child was 16) serve as instruments for college education. These are valid instruments
if the interest is unrelated to unobserved ability and at the same time related to the
decision to attend college. In this section we assess the validity of the instruments by
estimating standard Mincer (1974) type wage equations using the generalised method
of moments (GMM). We carry out overidentifying restrictions tests and tests for joint
significance of the excluded instruments. We do so for our preferred and potential alter-
native sets of instruments. The candidate instruments are indicators for the mother’s
and father’s interest in the education of the child when the child was 7, 11, and 16,
respectively.

To test whether the instruments are not weak or just mask variation in other indi-
vidual characteristics we additionally include in X a race indicator, math ability at
age 11, verbal ability at age 7 and 11, indicators for secondary school type, additional
family background variables, indicators for the occupation of the father, and a full set
of region indicators.34

The sixth column of Table 4 presents efficient two-step GMM estimates of the
effect of attending college on the log hourly wage at the age of 33. The set of excluded
variables varies across the ten specifications. The first six specifications use indicators
for all values of the interest in the child’s education (and the ones for the respective
missing value).35 Specifications 7 through 10 use only the indicators for one category,
respectively, as instruments.

32 See, e.g., Berger et al. (2001) on profiling in the context of unemployment.
33 Notice, however, that the test for heterogeneity in Table 5 shows that we cannot reject the null hypothesis
that the effect of the mother’s years of education and the father being an intermediate employee does not
depend on V .
34 Summary statistics for all variables but the region indicators can be found in the Online Appendix to
this paper.
35 There are four indicators for each parent and indicators for missing values. There were no missing values
when the child was 16.
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F-statistics for the test of joint significance of the excluded instruments are pre-
sented in the fourth column of Table 4 and are calculated to detect the presence of weak
instruments. Values above 10 are considered acceptable (Bound et al. 1995; Staiger
and Stock 1997). The fifth column contains the p-values. Comparing specifications
across Table 4 shows that adding more instruments never decreases the partial R2 of
the excluded instruments but results in a decreased value of the F statistic. Including
all potential instrumental variables, specification 6, may result in biased estimates of
the returns to college education because the corresponding F statistic is equal to 6.39,
which is well below 10. By contrast, indicators for the mother’s interest in the child’s
education when the child was 16 could be a good set of candidate instruments. The F
statistic of 23.4 shows that these indicators are strongly related to D.

The last two columns of Table 4 display Hansen’s J statistic and the corresponding
p value for the test of overidentifying restrictions. The null for this test is that the
difference between observed and predicted wages is not correlated with the instru-
ment.36 It is rejected if the instruments are related to the error term or if different
instruments identify different local average treatment effects, see Imbens and Angrist
(1994) and Heckman et al. (2006, p. 392). In our case the null is rejected, at the 5%
level, for specifications 2 and 3, suggesting that returns might be heterogeneous or
that the exclusion restriction is violated for the instruments.

Specifications 7 through 10 provide evidence that returns are heterogeneous because
they show that the estimate of the returns to college education depends on the indi-
cators that are employed as instruments. Specification 9, e.g., estimates the return for
those individuals whose decision to attend college changes if the parents become very
interested in their education. Here, all indicators should identify the average effect for
the same group. This is for instance because the group of individuals whose decision
to attend college is changed by their father’s taking an interest in their education when
the individual concerned was 16 should be (roughly) the same group as the group of
individuals whose decision to attend college is affected by the mother’s interest in their
education when aged 11. Therefore, the overidentifying restrictions test should only
reject the null if the exclusion restriction is violated. This is not the case in specifica-
tions 7 though 10, so there is no evidence that the exclusion restriction does not hold.

To summarise, we conclude from Table 4 that the overidentifying restrictions tests
yield evidence in favor of effect heterogeneity that is related to the decision to attend
college, and in favor of the assumption that the instruments can be excluded, i.e.
that they are unrelated to unobserved ability.37 Results show that the instruments are

36 It is often imposed that D has a non-random coefficient. Then, the null hypothesis is valid only if the
usual exclusion restriction holds.
37 Heckman et al. (2006, p. 397) point out that one can directly test for unobserved dependence between
the return to college and the decision to attend college by checking whether the expected wage conditional
on X and P is linear in P . So we first fit P using a logit model and then regress Y on P , P2, and X . The
coefficient on P2 is −1.034 with a standard error of 0.209. This standard error is obtained from 1, 000
bootstrap replications and accounts for the first stage estimation error. We conclude that the GMM estimates
presented in Table 4 are indeed not estimates of the population average return to college, but rather estimates
of local average returns for different subgroups, supporting our conclusion that the overidentifying restric-
tions tests yield evidence in favor of effect heterogeneity, rather than against the validity of the exclusion
restriction.
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strongly correlated with college attendance if not all indicators are selected. In Sect. 4,
we therefore use indicator variables for the mother’s interest in the child’s education
when aged 16 as excluded variables because for this set of variables the F statistic is
particularly high.

6 Concluding remarks

In this paper, we propose and implement a semiparametric local instrumental variables
estimator and use it to characterise the unobserved dependence between the mone-
tary return to college education and selection into college in the U.K. We relate this
dependence to observable characteristics of the individuals. To accomplish this, the
estimator requires that an exclusion restriction holds unconditionally, that covariates
are exogenous, and that there is continuous variation in an instrument or a covariate.

Our empirical results indicate that sorting into college is based on the comparative
advantage for almost all individuals. Therefore, the average return to college educa-
tion for college graduates is larger than the average return for college non-graduates.
We find that the dependence of selection into college and returns to college education
is strongest for individuals with low math test scores at age 7, individuals with less
educated mothers, and for working-class individuals.

This knowledge is likely to be of value to policy makers who often design institu-
tions in such a way that eligibility, e.g. for a subsidy, is related to observed individual
characteristics. We find that returns to college education highly depend on unobserved
ability for working-class individuals in the U.K. Based on this knowledge a policy
maker may want to encourage more high ability working-class individuals to attend
college. He could do so by offering a subsidy to all working-class individuals.38 Our
results imply that among the individuals who would not attend college without the
subsidy, this subsidy will change the decision for the ones with the highest return,
which is exactly the target group.

The methods developed in this paper could be applied in various other contexts.
For example, they could be used to study how selection into a labor market program is
related to the effect of the program, possibly as a function of observable characteristics
and labor market history. Results could then be used to re-design eligibility rules in
a such a way that the participation is allocated more efficiently. Since our estimation
procedure does not require the excluded variables to be continuous, eligibility rules
that were in place when the data were collected could possibly be used as a source of
exogenous variation.

Appendix

See Table 5 and Figs. 5, 6, and 7.

38 In practice, it might not be possible to define eligibility according to social class. However, a good proxy
for this could be family income.
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Fig. 5 Cross-validation. These figures show, separately for D = 0 and D = 1, estimates of the mean
integrated squared error as a function of the bandwidth. Obtained using a leave-one-out cross-validation
procedure
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Fig. 6 Conditional average ceteris paribus effects, estimates and 95% confidence intervals
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Fig. 7 Conditional average structural function for individual with median characteristics. Plotted for man
aged 33 who has a math ability test score of 0.5, whose mother has 9 years of education, whose father is
not an intermediate employee, and who does not live in London, Scotland, or Wales
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