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Abstract
In latent variable models (LVMs) it is possible to analyze multiple outcomes and to
relate them to several explanatory variables. In this context many parameters are
estimated and it is common to perform multiple tests, e.g. to investigate outcome-
specific effects using Wald tests or to check the correct specification of the modeled
mean and variance using a forward stepwise selection (FSS) procedure based on Score
tests. Controlling the family-wise error rate (FWER) at its nominal level involves
adjustment of the p-values for multiple testing. Because of the correlation between test
statistics, the Bonferroni procedure is often too conservative. In this article, we extend
the max-test procedure to the LVM framework for Wald and Score tests. Depending
on the correlation between the test statistics, the max-test procedure is equivalent or
more powerful than the Bonferroni procedure while also providing, asymptotically,
a strong control of the FWER for non-iterative procedures. Using simulation studies,
we assess the finite sample behavior of the max-test procedure for Wald and Score
tests in LVMs. We apply our procedure to quantify the neuroinflammatory response
to mild traumatic brain injury in nine brain regions.

Keywords Latent variable model · Multiple comparisons · Max-test procedure ·
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2 B. Ozenne et al.

1 Introduction

Latent variable models (LVM) are an attractive tool for studying systems of variables
where an exposure, e.g. a treatment or a disease, is to be related to several outcome
variables, e.g. the concentration of a specific protein in various brain regions. They are
able to jointly analyze several dependent variables, relate them to exogenous factors,
and to investigate shared correlation structures. They encompass linear regressions,
probit models, and mixed models as specific cases (Holst and Budtz-Jørgensen 2013).
They also admit a graphical representation called path diagram (Fig. 1).

In applications, LVMs include a high number of parameters and several of them
(or combinations) are of interest. Global tests, such as likelihood ratio tests, enable to
simultaneously test several null hypotheses but provide no guidance as to which null
hypotheses are false. However, this is of critical importance, e.g. when investigating
the effect of a disease on several brain regions, and motivate the use of separate
tests. Traditional adjustments for handling multiple testing like Bonferroni ignore the
correlation between test statistics. If the correlation is strong, e.g. above 0.7 in our real
data application, power is lost which is problematic in fields like neuroscience where
the inclusion of many subjects is expensive.

Another situation where multiple testing arises is model checking. Traditionally,
practitioners specify LVMs drawing a path diagram based on a priori information, fit
the model, and assess its goodness of fit. In absence of a priori information, one often
considers a parsimonious structure, e.g. a single latent variable is sufficient to capture
the covariance structure (i.e. no double-headed arrows). Searching for local dependen-
cies (i.e. conditional dependency between two variables that are not connected in the
path diagram) is then a recommended practice (Ropovik 2015) and identifying omitted
local dependencies will raise doubts about the validity of the LVM. A possible remedy
is to sequentially include the omitted local dependencies until the fit of the model is
considered satisfying. At each step, the most relevant local dependency is identified
using Score tests over the set of possible additional local dependencies. While widely
used, such forward stepwise selection (FSS) procedures have been criticized due to
low reproducibility (MacCallum et al. 1992) and inflation of Type 1 error (Ropovik
2015).

Efficient methods for handling multiple comparisons have been developed for a
number of years (see Dmitrienko and D’Agostino 2013 for an introduction in the
context of clinical trials), but they are not often used in conjuction with LVMs. For
instance, themax-test procedure is not implemented in statistical softwares specialized
in LVM such as M-plus (Muthén and Muthén 2017), the PROC CALIS in SAS, the
R packages lava (Holst and Budtz-Jørgensen 2013) or lavaan (Rosseel 2012). A few
articles have stressed the importance of controlling the FWER in the LVM literature,
promoting the Bonferroni procedure (Cribbie 2000; Cudeck and O’dell 1994) or a
procedure similar to Bonferroni–Holm when performing backward stepwise selec-
tion (Green et al. 2001). Interestingly, Smith and Cribbie (2013) proposed a modified
Bonferroni procedure to account for the correlation between the test statistics. This
is performed in an ad-hoc way by correcting the number of tests to adjust for using
the average absolute correlation between estimated coefficients. In particular, there is
no guarantee that the FWER is appropriately controlled (it is not difficult to construct
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Controlling the familywise error rate when performing… 3

Fig. 1 Path diagram of the generative LVM used for the simulations in Sect. 5.2. The outcomes are repre-
sented in blue, the latent variable in red, and the covariates in green. Regression links are indicated with
black single-headed arrows, covariance links are indicatedwith red double-headed arrow, and the absence of
arrows or a gray arrow indicates conditional independence between two variables. Dashed arrows indicate
the links that are tested in the FSS (not displayed in a traditional path diagram)

examples where it is not the case). In comparison a max-test procedure can be shown
to control the FWER while having a power advantage over the Bonferroni procedure.
It can be carried in a parametric way for normally (or Student’s t) distributed test
statistics (Hothorn et al. 2008). Westfall and Troendle (2008) show that the procedure
generalizes to other distributions provided that one can compute cumulative distribu-
tion function (cdf) of the maximum. However, for Score tests, the cdf of the maximum
of χ2 variables is difficult to calculate.

In this article,we extend the parametricmax-test procedure toLVMs (i)when testing
multiple parameters using Wald statistics and (ii) when using a Score test. To achieve
(i), we apply the max-test procedure proposed by Hothorn et al. (2008) in conjunction
with a modification of the classical Wald statistics (Ozenne et al. 2020) to obtain a
max-test procedure for LVMs that is valid in small samples (e.g. n=36 in our real data
application). To achieve (ii), we have developed two novel procedures to approximate
the max-distribution for χ2 distributed variables. The max-test procedures are imple-
mented in a package for the R software called lavaSearch2, available on CRAN
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4 B. Ozenne et al.

(https://cran.r-project.org/web/packages/lavaSearch2/index.html). The code used for
the simulation studies and for the data analysis is available at https://github.com/
bozenne/Article-lvm-multiple-comparisons.

2 Latent variable model (LVM) framework

Let us consider a vector of outcome variables Y = (Y1, . . . ,Ym) and a vector
of covariates X = (X1, . . . , Xl) with arbitrary distribution. We observe a sample
(Xi )i∈{1,...,n} = ( yi , xi )i∈{1,...,n} of n replications of X = (Y , X). We assume that
the sample contains independent and identically distributed (iid) replicates. For this
we consider a LVM, denoted M(Θ), which models the conditional distribution of
the outcomes as a function of the covariates and the vector of model parameters Θ

through a normal distribution:

Y |X ∼ N (μ(Θ, X),Ω(Θ))

To express the conditional mean μ(Θ, X) and the conditional variance Ω(Θ), we
introduce a set of latent variables η and relate them to the observed variables via the
measurement model:

Y = ν + Λη + K X + ε, where ε ∼ N (0,Σε)

and the structural model:

η = α + Bη + Γ X + ζ , where ζ ∼ N (
0,Σζ

)

where ε ⊥⊥ ζ (⊥⊥ denotes stochastic independence) and B is a matrix with 0 on
its diagonal and such that 1 − B is invertible. We also impose constraints on the
parameters α and Λ, typically that their first element is, respectively, 0 and 1, to
ensure identifiability of the model. Thus Θ contains the unconstrained parameters of
ν, λ, K ,Σε,α, B,Σζ . See supplementary material E for an example. In this model,
the conditional mean and variance are:

μ(Θ, X) = ν + Λ(1 − B)−1α +
[
Λ(1 − B)−1Γ + K

]
X

Ω(Θ) = Λ(1 − B)−1Σζ (1 − B)−ᵀΛᵀ + Σε

and the log-likelihood is:

L(Θ|Y , X) =
n∑

i=1

L(Θ|Y i , X i ) =
n∑

i=1

−m

2
log(2π) − 1

2
log |Ω(Θ)|

− 1

2
(Y i − μ(Θ, X i ))Ω(Θ)−1(Y i − μ(Θ, X i ))

ᵀ
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Controlling the familywise error rate when performing… 5

Modification of this model to handle non-linear effects of some covariates, clustered
data, binary data, or censored data can be found in Holst and Budtz-Jørgensen (2013).
Note that in the following, we will assume that four regularity conditions are satisfied,
at least in a neighborhood of Θ0: (i) Θ0 is interior to the space of possible parameter
values, (ii) distinct Θ values represent distinct distributions, (iii) Σε and Σζ , are
positive definite, and (iv) ∂μ(Θ)

∂Θ
and ∂Ω(Θ)

∂Θ
are of full column rank. We denote by ̂Θ

the estimate of Θ obtained by maximum likelihood (ML) estimation. The estimation
can be carried out using the Newton-Raphson and iteratively computing the vector of
scores:

S(Θ) =
n∑

i=1

Si (Θ) =
n∑

i=1

∂ log(L(Θ|Yi , Xi ))

∂Θ

and the expected information matrix:

I(Θ) = −
n∑

i=1

E

[
∂2 log(L(Θ|Yi , Xi ))

∂Θ∂ΘT

]
= nI1(Θ)

for updating ̂Θ until convergence. Explicit expression for S and I in LVMs can be
found in supplementary material A. They can be used to show that I is invertible
under (i-iv). We can then obtain an estimate Σ̂

̂Θ
of the variance-covariance matrix

of ̂Θ (denoted Σ
̂Θ
) in two ways: by estimating model-based variance-covariance

matrix, Σm, ̂Θ
= I(Θ)−1, or using the robust variance-covariance matrix, Σr , ̂Θ

=
I(Θ)−1S(Θ)ᵀS(Θ)I(Θ)−1. In addition, from the theory of M-estimators (e.g. see
Tsiatis 2006, section 3.2), we get that ML estimators for LVM are asymptotically
linear. This means that there exists a function ψΘ , called the influence function, such
that:

√
n
(

̂Θ − Θ0

)
= 1√

n

n∑

i=1

ψΘ (Θ0,Xi ) + op(1) (1)

where Θ0 denotes the true value of Θ and ψΘ (Θ0,Xi ) = Si (Θ0)I1(Θ0)
−1 are iid

terms.
Hypothesis testing in LVMs estimated by ML can be done using classical tests

such as likelihood ratio tests, Score tests, or Wald tests. When testing parameters or
combinations of parameters, Wald tests are the privileged approach since confidence
intervals can easily be obtained. For model building, e.g. when deciding whether to
include a new parameter, Score tests are often preferred for computational reasons.

3 Multiple inference usingWald tests

In this section, we consider a LVM M(Θ) and assume that it is correctly specified.
This means that there exists a vector Θ0 such that M(Θ0) is the distribution that
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6 B. Ozenne et al.

has generated ( yi )i∈{1,...,n} given (xi )i∈{1,...,n}. We also denote by Σ
̂Θ,0 the true value

of Σ
̂Θ
; in a univariate linear model Y = Xβ + ε where ε ∼ N (

0, σ 2
)
we have

Σ
β̂,0 = σ 2(XᵀX)−1. We are interested in testing c null hypotheses:

⎧
⎨

⎩

H(1)
0 : β1,0 = 0 vs. H(1)

1 : β1,0 �= 0
. . .

H(c)
0 : βc,0 = 0 vs. H(c)

1 : βc,0 �= 0

⎫
⎬

⎭

where (β1, . . . , βc) are distinct elements of Θ and β1,0 denotes the true value of β1,
e.g. if β1 = Θ1 then β1,0 = Θ1,0. This set of null hypotheses can also be written in
a matrix form: β0 = 0 or, more generally, CΘ = b where C is any full rank matrix
(often called contrast matrix) and b is a vector. Frommaximum likelihood theory (e.g.
Van der Vaart (2000), section 5.5), we know that:

√
n
(

̂Θ − Θ0

)
d∼ N

(
0, I∗

1 (Θ)−1
)

where
d∼ denotes convergence in distribution as n −→ ∞ and I∗

1 (Θ) that large sample
limit of I1(Θ).We introduce D

̂β
the diagonal matrix containing the diagonal elements

of CI(Θ)−1Cᵀ. Defining the vector of Wald statistics by T = D
− 1

2
̂β

(
C ̂Θ − b

)
, we

have under the null:

√
n D

1
2
̂β
T

d∼ N
(
0,CI∗

1 (Θ)−1Cᵀ
)

When testingH(1)
0 , . . . ,H(c)

0 ,C is the identitymatrix andT is simply

(
β̂1
σ

β̂1
, . . . ,

β̂c
σ

β̂c

)
,

where σ
β̂ j

is the square root of the j-th diagonal element of I(Θ)−1. Since
(
nÎ1(Θ)

)−1
converges in probability toward Σ

̂Θ,0 and using the same arguments

as in Hothorn et al. (2008), we can approximate (under the null hypothesis) the dis-
tribution of T by a normal distribution with mean 0 and variance-covariance matrix

Σ̂T = D̂
− 1

2
̂β

CΣ̂
̂Θ
Cᵀ D̂

− 1
2

̂β
. Defining |T |max = max

j∈{1,...,c} |Tj |, where Tj is the j-th ele-

ment of T, an adjusted p-value for the j-th statistic can be obtained by computing
1 − P

[|T |max ≤ |t j |
]
where:

P [|T |max ≤ |t |] =
∫

u∈[−t;t]c
fT(u)du. (2)

Here fT denotes the joint density of T and [−t; t]c the cartesian product of c intervals
[−t; t]. Asymptotically fT equals the density of a multivariate Gaussian distribution
with 0 mean and variance-covariance matrix ΣT. In finite samples, one can use the
asymptotic distribution as an approximation for the distribution fT. This procedure is
called a max-z test.
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Controlling the familywise error rate when performing… 7

The previous derivations do not account for the fact that, in practice, D
̂β
is estimated

and plugged-in to estimate T nor for the small sample bias of the ML estimator. As a
result, Wald tests based on the asymptotic ML theory generally show inflated type 1
error rates in small samples. For linear models and linear mixed models it is recom-
mended to model the distribution of the Wald statistic using a Student’s t-distribution
and to estimate the variance parameters using restrictedmaximum likelihood (REML).
Because REML has not been developed for LVMs, Ozenne et al. (2020) recently pro-
posed a procedure, called hereafter "small sample correction", to correct the finite
sample bias of the ML estimator of Σε,Σζ and used a Satterwaithwaite approxima-
tion to estimate the degrees of freedom corresponding to the Student’s t-distribution.
This enables us to use a multivariate Student’s distribution in equation (2) instead of a
Gaussian distribution, and will be referred to as a max-t test. As an approximation, the
degrees of freedom of themultivariate Student’s t-distribution is computed as the aver-
age of the Wald’s degrees of freedom. We summarize the multiple testing procedure
in the following definition:

Definition 1 (Single step max-test procedure for Wald tests in LVM) Given a
LVM estimated by ML with estimated parameter ̂Θ and estimated variance-
covariance matrix Σ̂

̂Θ
, the max-test procedure for testing the set of null

hypotheses
(
H( j)

0

)

j∈{1,...,c} using Wald tests is:

1. Extract ̂β = C ̂Θ the estimated parameters relative to each null hypothesis
from ̂Θ .

2. Extract Σ̂
̂β

= CΣ̂
̂Θ
Cᵀ the variance-covariance matrix of ̂β from Σ̂

̂Θ
and

denote σ̂ β its diagonal elements. Create D̂
̂β
the diagonal matrix containing

σ̂ β . When using a max-t test, extract d f
̂β
the degrees of freedom relative

to σ̂ β and use the bias-corrected estimate of the variance-covariance matrix
obtained from the small sample correction for Σ̂

̂Θ
.

3. Compute the Wald statistics as T̂ = D̂
− 1

2
̂β

(̂β − b).

4. Compute p-values using formula (2) with fT being the density of a mul-
tivariate normal distribution (max-z test) or of a multivariate Student’s
t-distribution (max-t test) with variance-covariance matrix Σ̂

̂β
. When using

a max-t test, estimate the degree of freedom of the Student’s t-distribution
by 1

c

∑c
j=1 d fβ̂ j

5. Compute confidence intervals using
[
̂β − qασ̂ β; ̂β + qα σ̂ β

]
where qα is the

1 − α
2 equicoordinate quantile of fT.

Note that at step 4, resampling technics (e.g. Chernozhukov et al. (2013)) could
also be used to obtain a non-parametric estimator of P [|T |max ≤ |t |] based the iid
decomposition of equation (1) instead of assuming a multivariate normal or Student’s
t-distribution and performing numerical integration to compute the right hand side of
equation (2).

The max-test procedure enjoys several desirable properties: asymptotically, it pro-
vides a strong control of the FWER, i.e. the probability of incorrectly rejecting at least
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8 B. Ozenne et al.

one hypothesis is at most 5%. It is asymptotically exact in the sense that the FWER
tends to 5% as the sample size tends to infinity (the Bonferroni correction does not
have this propertywith correlated test statistics). Consequently, themax-test procedure
will be equally or more powerful than tests adjusted with the Bonferroni procedure. It
is also known to be a coherent and consonant procedure ( Bretz et al. (2011), section
2.1.2) leading to decision patterns that are logical and simple to communicate: rejec-
tion of any null hypotheses implies rejection the global null hypothesis (intersection of
the c null hypotheses) and rejection of the global null hypothesis implies rejection of at
least one null hypothesis. The power of the procedure could be further improved, e.g.,
by considering step-down or step-up max-test procedures. However, this complicates
the definition of the confidence intervals.

4 Multiple inference using Score tests

Tomotivate the use of Score tests, we will consider a LVMMp(θ)with p parameters,
defined blinded to the data. We also consider the set of LVMs with p + 1 parameters
(referred to as the extended models), containing Mp as a submodel, and that are

identifiable. For instance if Mp is the LVM defined by Fig. 1, M(1)
p+1 may add a

regression parameter between X1 and η, while M(2)
p+1 may add, instead, a regression

parameter between X2 and η (and so on). We denote by c the number of extended
LVMs and by Θ j = (θ , β j ) the parameters in M( j)

p+1, the j-th extended LVM. As a
diagnostic test, the practitioner would like to know whether any of the extended LVM
has a significantly better fit compared to the original LVM. We therefore test, for each
extended modelM( j)

p+1, the null hypothesisH( j)
0 : β j,0 = 0 vs.H( j)

1 : β j,0 �= 0. Here

β j,0 denotes the true parameter value in model M( j)
p+1. Traditionally, Score tests are

used since the Score test statistic:

UM( j)
p+1 = SM( j)

p+1

(
˜Θ
) [

IM
( j)
p+1

(
˜Θ
)]−1

SM( j)
p+1

(
˜Θ
)ᵀ

(3)

do not require to fit any additional model; only to compute the score and the expected

information matrix of the extended model (respectively denoted SM( j)
p+1 and IM

( j)
p+1

). In the equation above, ˜Θ = (˜θ , 0) denotes the ML estimator in any extended
model under the null, i.e. under the constraint that β̃ j = 0. In contrast, we denote

by ̂Θ j = (̂θ, β̂ j ) the (unconstrained) ML estimator of the parameters in M( j)
p+1. It is

a classical result from Maximum Likelihood theory that, under the null hypothesis,

UM( j)
p+1

d∼ χ2
1 , where χ2

1 denotes the χ2 distribution with one degree of freedom.
Using the same reasoning as in the previous section, we are once more interested in a

max statistic:Umax = max
j∈{1,...,c}

(
UM( j)

p+1

)
. If the test statistics were independent then

up to a linear transformation,Umax is known to converge toward a Gumbel distribution
when c tends to infinity (Gasull et al. 2015). In practice, the number of tests can be
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Controlling the familywise error rate when performing… 9

small (e.g. c < 10) and the test statistics in LVMs are typically correlated; we therefore
need an alternative approach.

4.1 Resampling of the score under the null hypothesis

The principle of this approach is first to identify the joint distribution of the scores
across all extended LVMs, under the global null hypothesis. Then we resample from
this distribution, compute the Score statistics for each extended LVM, take their max-
imum, and therefore obtain iid realizations of Umax under the global null hypothesis.
The p-value can then be computed as the frequency at which the sampled realizations
of Umax are more extreme than the realization of Umax obtained from the data. If we
would have an iid decomposition of the scores in each extended model, we could use
the same approach as in Pipper et al. (2012) to identify the joint distribution of the
scores: stack the iid decompositions across models and use the multivariate central
limit theorem to show that the scores are asymptotically jointly normally distributed.
A consistent estimator of the variance-covariancematrix of this distribution could then
be deduced from the iid decomposition.

An intuitive idea for the iid decomposition would be to use that SM( j)
p+1(Θ)

= ∑n
i=1 S

M( j)
p+1

i (Θ). While this is a valid iid decomposition at Θ0 this is not the

case at ̂Θ j or at ˜Θ due to the constraints on the score implied by the ML estima-

tion. For instance SM( j)
p+1( ̂Θ j ) = 0 and has variance 0, while the individual terms

SM( j)
p+1

i ( ̂Θ j ) have non-0 variance. We therefore developed another decomposition

(see supplementary material B for details) by first expressing ̂Θ j as a function of ˜Θ j

and then using a Talyor expansion of the score around ̂Θ j . We obtain that the first p

components of the score evaluated at ˜Θ j are 0 and the last component (corresponding

to β j ) is β̂ j

(
Σ

M( j)
p+1

β j ,β j
(˜Θ j )

)−1

. Therefore, denoting by ψβ j (Θ0,Xi ) the contribution

of the i-th observation to the iid decomposition of β̂ j (equation (1)), we can introduce

the normalized score UM( j)
p+1 , a vector of length p + 1 with iid decomposition:

UM( j)
p+1

(
˜Θ
)

= 1

n

n∑

i=1

ψ
M( j)

p+1

U (˜Θ,Xi )

where ψ
M( j)

p+1

U (˜Θ,Xi ) = ψβ j (
˜Θ,Xi )

[

0
(

Σ
M( j)

p+1
β j ,β j

(˜Θ j )

)−1
](

IM
( j)
p+1

)− 1
2

(˜Θ)

(4)

Once squared, UM( j)
p+1

(
˜Θ
)
is equivalent to the Score statistic: UM( j)

p+1 = UM( j)
p+1

(
˜Θ
)
UM( j)

p+1

(
˜Θ
)ᵀ

+ op(n− 1
2 ). This leads to the following procedure:
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10 B. Ozenne et al.

Definition 2 (Single step max-test procedure for Score tests in LVM) Given a
LVMestimated byML, themax-test procedure for testing the set of null hypothe-

ses
(
H( j)

0

)

j∈{1,...,c} using Score tests is:

1. Evaluate the score function and the expected information matrix at ˜Θ for
each extended model.

2. Calculate the Score statistics

(
UM( j)

p+1

)

j∈{1,...,c}
using equation (3) for each

extended models.

3. Estimate ψU =
(

ψ
M( j)

p+1

U

)

j∈{1,...,c}
the iid decomposition of the score using

equation (4) for each extended model. Estimate the covariance matrix of the
normalized score ΣU = 1

n

∑n
i=1 ψUψUᵀ.

4. Resample the normalized score under the null hypothesis, either:

(a) sampling in a multivariate normal distribution with covariance matrix
ΣU .

(b) using wild bootstrap, i.e., weight the individual iid terms with individual
specific weight sampled from a standard normal distribution and sum the
iid terms over the individuals to obtain a sample of the normalized score.

5. For each sample: compute theScore statistic for each extendedmodel, take the
maximum over the extended models. Estimate the p-value using the relative
frequency of the event that the sampled maximum is greater than the observe
Score statistic.

This procedure can be limited in practice by step 4(a) or step 4(b). Step 4(a)
involves sampling in a Gaussian distribution of dimension (p + 1)c which can be
very large for complex LVMs. For instance in our illustration, this dimension will
be (45+1)*36=1656 which is already quite large for a rather simple LVM where we
limit the search to covariance links. Using step 4(b) may then be more tractable. Also,
step 4(b) does not rely on the assumption that U follows a normal distribution, which
may not be valid in small samples. However, it involves sampling a weight for each
individual so step 4(b) may be slow for very large n. In the following subsection, we
propose a procedure that is numerically more efficient.

4.2 Approximation of themax-distribution using latent Gaussian variables

Krishnaiah and Armitage (1965) proposed to compute the distribution of the max-
imum of χ2 distributions using the joint distribution of the underlying Gaussian

variables: given a vector
(
Tj

)
j∈{1,...,c} such that T 2

j = UM( j)
p+1 then P [Umax ≤ u]

= P
[|T |max ≤ √

u
]
where |T |max = max

j∈{1,...,c}
(∣∣Tj

∣∣). Since each UM( j)
p+1 is χ2 dis-

tributed with one degree of freedom, the marginal distribution of each Tj is a standard
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Controlling the familywise error rate when performing… 11

normal distribution. So it only remains to identify RT, the correlation matrix of(
Tj

)
j∈{1,...,c}. Introducing:

ϕ
M( j)

p+1
i = SM( j)

p+1
i

(
˜Θ
) [

IM
( j)
p+1

(
˜Θ
)]−1

SM( j)
p+1

(
˜Θ
)ᵀ

(5)

where the difference with Eq. (3) is that the first element on the right-hand side is
the individual score instead of the total score. We can then express the Score statistic

as UM( j)
p+1 = ∑n

i=1 ϕ
M( j)

p+1
i . We therefore propose the following estimator for the

pairwise correlation between two underlying Gaussian variables j and j ′:

Ĉor(Tj , Tj ′) =
n∑

i=1

(
ϕ
M( j)

p+1
i − m

M( j)
p+1

ϕ

)(

ϕ
M( j ′)

p+1
i − m

M( j ′)
p+1

ϕ

)

√

s
M( j)

p+1
ϕ s

M( j ′)
p+1

ϕ

(6)

wherem
M( j)

p+1
ϕ and s

M( j)
p+1

ϕ denote the empiricalmeanandvarianceof

(
ϕ
M( j)

p+1
i

)

i∈{1,...,n}
.

As illustrated in the following example, the estimator defined in equation (6) may not
always be consistent but can provide a reasonable approximation of the magnitude of
the correlation.

Example: consider forMp the univariate model Yi = ν+εi where εi ∼ N (0, σ 2)

and for the alternative models Yi = ν +K j Xi j +εi for j ∈ {1, . . . , q}. To simplify we
will assume that X j hasmean 0 and variance 1. Then the score vector for the parameters

ν, σ 2, and K j is SM( j)
p+1

(
˜Θ
)

= (0, 0, s j ) where s j = ∑n
i=1 si j = ∑n

i=1
Xi j (Yi j−ν̂)

σ̂ 2 is

non-0 infinite samples. SoUM( j)
p+1 = σ 2s2j

n andwecan identify the latentGaussian vari-
able Tj = σ s j√

n
. For ( j, j ′) ∈ {1, . . . , q}2, Cor(Tj , Tj ′) = Cor(s j , s j ′) which can be

consistently estimated by computing the correlation between the vectors
(
si j

)
i∈{1,...,n}

and
(
si j ′

)
i∈{1,...,n}. However, the empirical correlation between

(
ϕ
M( j)

p+1
i

)

i∈{1,...,n}
and

(

ϕ
M( j ′)

p+1
i

)

i∈{1,...,n}
estimates sign(s j )sign(s′

j )Cor(s j , s j ′), where sign denotes the

function returning -1 for negative numbers and +1 for positive numbers. Therefore
Ĉor(Tj , Tj ′) = Cor(s j , s j ′)sign

(
s j s j ′

)
.

We obtain the following procedure for handling multiple testing:
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12 B. Ozenne et al.

Definition 3 (Approximate single step max-test procedure for Score tests in
LVM) Given a LVM estimated by ML, the approximate max-test procedure for

testing the set of null hypotheses
(
H( j)

0

)

j∈{1,...,c} using Score tests is:

1. Define the score function and the expected information matrix at ˜Θ for each
extended model.

2. Compute the Score statistics

(
UM( j)

p+1

)

j∈{1,...,c}
using equation (3) for each

extended models. Denote
(
Tj

)
j∈{1,...,c} their square root value.

3. Compute

(
ϕ
M( j)

p+1

)

j∈{1,...,c}
using equation (5).

4. Estimate the correlation matrix RT using equation (6).
5. Compute p-values applying formula (2) to

(
Tj

)
j∈{1,...,c} where fT is the

density of a multivariate normal distribution with mean zero and variance-
covariance matrix RT.

This procedure is expected to be more numerically efficient than the resampling
procedure proposed in the previous subsection. Indeed, equation (5) gives a univariate
influence function, compared to formula (4) where it is p+1 dimensional, making
step 5 reasonably fast. However, the validity of the approximation performed with
this procedure is unclear and will be empirically assessed in simulation studies (see
section 5.2).

5 Control of the FWER of themax-test procedure in finite samples

5.1 Multiple comparisons usingWald tests

We consider a latent factor model with 9 outcomes and two binary covariates called
group and gene. In the generative model all the outcomes are equally correlated,
normally distributed, independent of the group variable but dependent of the gene
variable. This corresponds to the following measurement and structural models:

Yi, j = ν j + λ jηi + K1, j Groupi + K2, j Genei + εi, j , where εi, j ∼ N
(
0, σ 2

ε, j

)

(7)

ηi = α + ζi , where ζi ∼ N
(
0, σ 2

ζ

)
(8)

∀ j ∈ {1, . . . , 9}, ζi ⊥⊥ εi, j and ∀( j, j ′) ∈ {1, . . . , 9}2, j �= j ′, εi, j ⊥⊥ εi, j ′ (9)

ν1 = 0 (10)
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Fig. 2 FWER when testing 9 null hypotheses with Wald tests. using different procedures to adjust the
p-values for multiple comparisons (columns). The rows indicate whether a small sample correction is used.
For instance in the third column, the upper row uses a max-z test while the lower row uses a max-t test.
The correlation reported in the x-axis is the median Pearson correlation between the test statistics computed
over the repetitions. For the y-axis, a logarithmic scale was used

in the special case where we constrain (i) ∀ j ∈ {1, . . . , 9} λr = λ1 and (ii) ∀ j ∈
{1, . . . , 9} K1, j = 0. The values of the remaining parameters were obtained fitting the
unconstrained model to the data used for the illustration (see section 6). To assess the
control of the FWER of the max-test procedure, we consider the LVM defined by the
equations (7), (8), (9), and (10) under the constraintλ1 = 1. Thismodelwill be referred
as the investigator model thereafter. The set of null hypotheses that is being tested is{
K1, j = 0

}
j∈{1,...,9}, i.e. the group effects are zero. We consider several scenarios

where we varied the sample size: n ∈ {30, 50, 75, 100, 150, 200, 300, 500} and the
covariance between the outcomes: λ1 ∈ {0.1, 0.2, 0.35, 0.65, 1, 5}. We generated
10 000 datasets, analyzed them using the investigator model, and computed the p-
value for the global null hypothesis using no adjustment for multiple comparison,
the Bonferroni procedure, or the max-test procedure with the model-based variance-
covariance matrix. To improve the control of the FWER in finite samples, the p-values
were also computed after application of the small sample correction.

The upper panel of Fig. 2 shows the FWER in absence of adjustment, when using the
Bonferroni procedure or the max-test procedure. For large sample sizes (e.g. n=500),
the FWER was above its nominal level in absence of adjustment (except when the
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14 B. Ozenne et al.

Fig. 3 Power when testing 9 null hypotheses withWald tests using the Bonferroni or the max-test procedure
to adjust the p-values for multiple comparisons. The last column displays the difference in power between
the two procedures

test statistics were perfectly correlated) while below its nominal level when using the
Bonferroni procedure (except when the test statistics were independent). The max-test
procedure managed to keep the FWER at its nominal level regardless the correlation.
Without small sample size correction, the FWER increased when the sample size
decreased, e.g. the max-test procedure had a FWER of approximately 0.1 for n=30.
This was corrected when using the small sample correction (Fig. 2 lower panel).

To assess the gain in power when using the max-test procedure instead of the
Bonferroni procedure, we simplified the generative used in the previous simula-
tion. We set the intercepts to 0 and the other coefficients to 1, except for the group
effects where the first was set to 0.4 and the others to 0 (i.e K1,1 = 0.4 and
∀ j ∈ {2, . . . , 9} K1, j = 0), the loadings (λ j ) j∈{1,...,9} were all set to a value a,
and the residual variances (σ 2

ε, j ) j∈{1,...,9} were all set to 5.25−√
a, to vary the degree

of correlation between the outcomes. This ensured that the conditional variance of the
outcomes (Var [Y j |Group,Gene] = λ2j + σ 2

ε, j ) remained constant when we varied
a ∈ {0.25, 1, 2, 3, 4, 5}. We generated 5000 datasets for each configuration and the
power was computed as the frequency at which the p-value for the global null hypoth-
esis was lower than 0.05. Figure 3 shows that the max-test procedure was always more
powerful than the Bonferroni procedure with a gain in power that ranged between
0% and 22%, when the correlation between the test statistics was respectively low
and high. We also compared the max-test procedure to step-up procedures (Hochberg
and Hommel, see figure A in supplementary material C) and found that the power
improvement obtained using a step-up procedure was neglectable.
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5.2 Multiple comparisons using Score tests

We now assess the control of the FWERwhen testing multiple hypotheses using Score
tests. The generativemodel is a latent factormodel with 5 outcomes loading on a single
latent variable η. The latent variable was correlated with a single variable called treat-
ment. 15 other covariates were simulated (X1, . . . , X15) and the investigator aimed to
assess whether they had an effect on the latent variable. The covariates were simulated
with a common pairwise covariance that was varied: a ∈ {0, 0.6, 1, 1.5, 2.5, 5}. In
each scenario, the 15 possible extended models were formed and the Score statistics
computed. The corresponding p-values were calculated using no adjustment, the Bon-
ferroni procedure, the max-test procedure with resampling (i.e. definition 2 with step
4(a)), or the approximate max-test procedure (i.e. definition 3). For each sample size
and covariance value 10000 datasets were simulated and analyzed. The FWER was
computed as the relative frequency at which the smallest p-value was below 5%. Fig-
ure 4 displays the FWER relative to each procedure. Results are similar to those of the
previous simulation, the max-test correction providing a good control of the FWER
regardless to the correlation, while the Bonferroni procedure was too conservative
for correlated test statistics. In small samples, the approximate max-test procedure
appeared to provide a better FWER compared to the use of resampling. In 0.01%
of the datasets the p-value adjusted using the approximate max-test procedure were
greater than for Bonferroni. This only occurred when the non-adjusted p-value was
small (< 0.001) and we think this is due to inaccuracies in the numerical integration
procedure required to compute the integral in Eq. (2).

In term of computation time, the approximate max-test procedure was similar to the
bootstrap in small samples, e.g. for n = 50 the median [5% quantile; 95% quantile]
computation time in seconds was 1.24 [1.12;2.46] vs. 1.90 [1.71;3.4]. However it
scaled better with n, e.g. 2.67 [2.48;3.13] vs. 11.5 [9.09;15.3] for n = 500.

We also repeated this simulation including an additional variable Z in the generative
model. This variable had an effect on the outcomes through the latent variable (in the
structural model ηi = α + γ Zi + ζ , the regression coefficient γ was set to 0.25)
but was independent of the covariates X1, . . . , X15 (Fig. 1, the correlation between
the variables X1, . . . , X15 is omitted for readability). The investigator aimed to assess
whether Z or any of the other 15 covariates had an effect on the latent variable. This
would correspond to the first step of FSS: the variable Z is selected if the p-value
of relative to the parameter γ is significant and if it has the greatest test statistic
(in absolute value). The p-values were adjusted for multiple testing using either the
Bonferroni procedure or the approximate max-test procedure. The power was then
defined as the proportion of simulations where Z was selected. 5000 datasets were
generated for each scenario. The upper panels of Fig. 5 display the relative frequency
at which the effect of Z reached the significance level. As expected, when the test
statistics were correlated the effect Z reaches significance more often with the max-
test procedure thanwith the Bonferroni procedure. The observed increase in frequency
varied between 0% and 20%, depending on the sample size and the correlation. A
similar pattern was observed when looking at the empirical power, i.e. when the effect
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16 B. Ozenne et al.

Fig. 4 FWER when testing 15 null hypotheses with Score tests using different procedures to adjust the p-
values for multiple comparisons (columns). The rows indicate correspond to the use of analytic formula or
resampling to compute the p-values. The correlation reported in the x-axis is the median Pearson correlation
between the test statistics computed over the datasets. For the y-axis, a logarithmic scale was used

of Z reached the significance level and had the greatest test statistic among all the
tested effects (lower row of panels of Fig. 5).

6 Illustration

Mild traumatic brain injury (mTBI) is an injury to the head inducing disruption of
brain function, e.g. loss of consciousness not exceeding 30 min and dysfunction of
memory around the time of injury not exceeding 24 h. Because the pathogenesis of
symptoms followingmTBI is poorly understood and no evidence-based treatments are
available for patients with bad recovery, there is a medical interest in a more precise
and objective characterization of mTBI using medical imaging. It has been hypothe-
sized that mTBI induces a neuroinflammatory response that could act as a therapeutic
target. The neuroinflammatory response is expected to vary over the brain depen-
dent on the trauma mechanism in the individual subject, but with deeper lying brain
regions generally being more vulnerable due to local concentration of shock waves.
Neuroinflammation can be measured indirectly using single-photon emission com-
puted tomography (SPECT) and injection of the radioligand [123I]-CLINDE which
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Fig. 5 Percentage of simulations where the p-value of the Score test γ = 0 was significant (upper panels)
and power (lower panels). The third column displays the difference between the values obtained using the
approximate max-test procedure (second column) vs. Bonferroni (first column). The correlation reported
in the x-axis is the median Pearson correlation between the test statistics computed over the datasets

visualizes the translocator protein (TSPO); a protein upregulated in active immune
cells. A genetic polymorphism of TSPO is known to affect [123I]-CLINDE binding
to TSPO and partially explain interindividual variability.

Clinical, genetic and [123I]-CLINDE-SPECT data of 14 patients with mTBI and
22 healthy controls were collected. Patients were scanned first one to two weeks after
the injury, and a second time 3 to 4 months after the injury (this second scan will
be ignored in the following). Healthy controls were only scanned once. One of the
aims of the study (Ebert et al. 2019) was to compare [123I]-CLINDE binding to
TSPO between the two groups in 9 brain regions: thalamus, pallidostratum, impact
region (patients) or neocortex (healthy controls), midbrain, pons, cingylate gyrus,
hippocampus, supramarginal gyrus, corpus callosum. To quantify [123I]-CLINDE
binding to TSPO, regional distribution volumes of [123I]-CLINDE were calculated
with a two-tissue compartment model using arterial plasma as the input function.
Distribution volume is the ratio between radiotracer concentration in the brain and
in the blood at equilibrium. In the following we ignore the uncertainty related to this
method of quantification and treat the distribution volumes as if they were directly
measured.

123



18 B. Ozenne et al.

The LVM defined with the investigator included the log of the TSPO distribution
volumes of [123I]-CLINDE in the 9 regions as outcomes, a single latent variable to
account for the covariance between the outcomes, region-specific genetic effects and
group effects. This corresponds to the LVM defined previously (Eqs. (7), (8), (9),
(10) under the constraint λ1 = 1) which contains 45 parameters: 8 parameters from
ν, 8 parameters from Λ, 18 parameter from K , 9 parameters from Σε, 1 parameter
from α, no parameter from B or Γ (since here B and Γ are null) and one parameter
from Σζ . Their value are reported in supplementary material E. With this model,
the χ2 statistic testing whether the modeled variance-covariance matrix differs from
the observed covariance matrix was found significant (p=0.0016). To assess which
covariance parameters should be added, we use a FSS on the 36 possible covariance
links. The Score statistics were weakly correlated, with a median absolute pairwise
Pearson correlation of 0.17 (2.5% quantile : 0.013, 97.5% quantile 0.59). Table 1
contains the results of the FSS using no adjustment, or the Bonferroni procedure, or
the approximate max-test procedure. Without adjustment two covariance parameters
would be added while when adjusting the p-values with the Bonferroni or max-test
approach one covariance parameterwould be added. Themax-test approachmultiplied
the unadjusted p-value by a factor of 18 (first step), 26 (second step) and 13 (third step)
instead of 36, 35 and 34 for the Bonferroni approach. Including the first covariance
parameter enables to obtain a non-significant χ2 test (p=0.31) and this model will
be the one retained for performing inference. The qqplots of the residuals of the
measurement models did not show any clear violation of the normality assumption.

Using an F-test for testing the global null hypothesis of no effect of mTBI on
the distribution volume in any region gives a p-value of 0.011. While the p-value
supports that mTBI induces neuro-inflammation, it does not inform on which brain
region is affected which limits its practical value. This motivates the use of the max-
test procedure when assessing the significance of the region-specific effects. The 9
Wald statistics were highly correlated with a median correlation of 0.831 (min 0.702,
max 0.960). The p-values adjusted with the max-test approach were only between
1.17 to 3.3 times larger than the unadjusted p-values (instead of 9 times larger for the
Bonferroni approach, see Table 2). Corpus Callosum was the region with the largest
effect and test statistic. The unadjusted p-value was 0.026, the Bonferroni adjusted
was 0.234 and the max-t adjusted was 0.086. The next region was cingulate gyrus
(max-t adjusted p=0.108) while the remaining regions had a large adjusted p-value
(>0.3).

In this data the smallest adjusted p-value was higher than for the F-test. This may
be happen when the effect is similar across the regions and the opposite happens when
the effect is only present in a few regions.

7 Concluding remarks

When dealing with complex systems of variables, LVMs are a convenient modeling
tool that provides, under some assumptions, interpretable and efficient estimates. This
enables the investigator to translate her hypotheses into a function of the parameters
and test whether this function evaluated at the estimated parameters equals a particular
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value. Like in many other models, the statistical testing framework in LVM is well
established for a single statistical test. However, investigators are often interested in
testing multiple clinical hypotheses (using Wald tests) or performing multiple diag-
nostic tests (using Score tests). In this article, we present adjustments for multiple
comparisons applicable to both Wald and Score tests that appropriately control the
FWER without sacrificing statistical power. While both procedures rely on asymp-
totic results, we found via simulation studies that they had a satisfying behavior
in finite samples. The procedures are implemented in a freely available R package
(lavaSearch2). Our implementation of the max-test procedure rely on numeri-
cal integration (Genz et al. 2018) to compute tail probabilities of the multivariate
Gaussian or Student’s t-distributions, restricting its applicability to low dimensional
problems.

The power of the max-test procedure can be further increased using a step-
down max-test procedure (analogue to a Bonferroni-Holm procedure but accounting
for the correlation between the test statistics). While the most significant p-value
is not affected, the other p-values can sometimes be substantially reduced (e.g.
compare the last two columns of Table 2). The power of the proposed procedure
could also be improved by taking advantage of logical restrictions between null
hypotheses (Westfall and Tobias 2007). While none were present in our simulation
study and illustration, they typically arise when considering all pairwise differences
between exposures (A vs. B, A vs. C, B vs. C). One common limitation of these
improved procedures is that it is difficult to obtain simultaneous confidence inter-
vals that are informative (i.e. provide information additional to the rejection of the
null hypothesis) and consistent with the adjusted p-values. This is also why we
focused on the single-step max-test procedure in the article. We refer to Strassburger
and Bretz (2008) and Brannath and Schmidt (2014) for a more detailed discus-
sion on simultaneous confidence intervals. Another possible improvement would
be to handle sequential hypothesis testing. For instance, in our illustration, we
first performed several Score test until finding a satisfying model and then tested
the clinical hypothesis based on the retained model. Based on a simulation study
(supplementary material D.3), the type 1 error appeared to be properly controled
in that example. However this is likely not to be the case if the model misspec-
ifications are directly related to the clinical hypothesis (e.g. region-specific group
effects). Resampling procedures (e.g. supplementary material D.2) being generaly
too computer-intensive to be used, more efficient post-selection procedures would be
beneficial.

As suggested by a reviewer post-selection methods could also be used to avoid
multiple comparisons, e.g. by using part of the data ( Cox 1975;DiCiccio et al. 2020) to
identify themost promising region and another part to assess its statistical significance.
In the present application, this lead to a median p-value of 0.066 for a critical threshold
of 0.025 so no apparent gain in power. We believe that this approach is mostly relevant
when testing a large number of hypotheses and there is no interest in assessing the
individual null hypotheses (i.e. here identifying which brain regions were subject to
inflammation).
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