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Abstract
Tuning of model-based boosting algorithms relies mainly on the number of itera-
tions, while the step-length is fixed at a predefined value. For complex models with
several predictors such as Generalized additive models for location, scale and shape
(GAMLSS), imbalanced updates of predictors, where some distribution parameters
are updated more frequently than others, can be a problem that prevents some sub-
models to be appropriately fitted within a limited number of boosting iterations. We
propose an approach using adaptive step-length (ASL) determination within a non-
cyclical boosting algorithm for Gaussian location and scale models, as an important
special case of the wider class of GAMLSS, to prevent such imbalance. Moreover,
we discuss properties of the ASL and derive a semi-analytical form of the ASL that
avoids manual selection of the search interval and numerical optimization to find the
optimal step-length, and consequently improves computational efficiency. We show
competitive behavior of the proposed approaches compared to penalized maximum
likelihood and boosting with a fixed step-length for Gaussian location and scale mod-
els in two simulations and two applications, in particular for cases of large variance
and/or more variables than observations. In addition, the underlying concept of the
ASL is also applicable to the whole GAMLSS framework and to other models with
more than one predictor like zero-inflated count models, and brings up insights into
the choice of the reasonable defaults for the step-length in the simpler special case of
(Gaussian) additive models.
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1 Introduction

Generalized additive models for location, scale and shape (GAMLSS) (Rigby and
Stasinopoulos 2005) are distribution-based approaches, where all parameters of the
assumed distribution for the response can be modelled as additive functions of the
explanatory variables (Ripley 2004; Stasinopoulos et al. 2017). Specifically, the
GAMLSS framework allows the conditional distribution of the response variable to
come from awide variety of discrete, continuous andmixed discrete-continuous distri-
butions, see Stasinopoulos andRigby (2007).Unlike conventional generalized additive
models (GAMs), GAMLSS not only model the location parameter, e.g. the mean for
Gaussian distributions, but also further distribution parameters such as scale (vari-
ance) and shape (skewness and kurtosis) through the explanatory variables in linear,
nonlinear or smooth functional form.

The coefficients of GAMLSS are usually estimated based on penalized maximum
likelihood method (Rigby and Stasinopoulos 2005). However, this approach cannot
deal with high dimensional data, or more precisely, the case of more variables than
observations (Bühlmann 2006). As the selection of informative covariates is an impor-
tant part of practical analysis, Mayr et al. (2012) combined the GAMLSS framework
with componentwise gradient boosting (Bühlmann and Yu 2003; Hofner et al. 2014;
Hothorn et al. 2018) such that variable selection and estimation can be performed
simultaneously. The original method cyclically updates the distribution parameters,
i.e. all predictors will be updated sequentially in each boosting iteration (Hofner et al.
2016). Because the levels of complexity vary across the prediction functions, sepa-
rate stopping values are required for each distribution parameter. Consequently, these
stopping values have to be optimized jointly as they are not independent of each other.
The commonly applied joint optimization methods like grid search are, however,
computationally very demanding. For this reason, Thomas et al. (2018) proposed an
alternative non-cyclical algorithm that updates only one distribution parameter (yield-
ing the strongest improvement) in each boosting iteration. This way, only one global
stopping value is needed and the resulting one-dimensional optimization procedure
vastly reduces computing complexity for the boosting algorithm compared to the
previous multi-dimensional one. The non-cyclical algorithm can be combined with
stability selection (Meinshausen and Bühlmann 2010; Hofner et al. 2015) to further
reduce the selection of false positives (Hothorn et al. 2010).

In contrast to the cyclical approach, the non-cyclical algorithm avoids an equal
number of updates for all distribution parameters as it is not useful to artificially
enforce updates for parameters with a less complex structure than other parameters.
However, it becomes evenmore important to fairly select the predictor to be updated in
any given iteration. The current implementation of Thomas et al. (2018), however, uses
fixed and equal step-lengths for all updates, regardless of the achieved loss reduction
of different distribution parameters. In other words, different parameters affect the
loss in different ways, and an update of the same size on all predictors hence results in
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different improvement with respect to loss reduction. As a consequence, a more useful
update of one parameter could be rejected in favor of the other one just because the
relevance in the loss function varies. As we demonstrate later, this leads to imbalanced
updates that affect the fair selection and predictors with large number of boosting
iterations still tend to be underfitted. This seems inconsistent, since one expects the
underfitted predictor to be updated with a small number of iterations. As we show
later, a large σ in a Gaussian distribution leads to a small negative gradient of μ and
consequently the improvement for μ with fixed small step-lengths in each boosting
iteration will also be small. This results in the algorithm needing a lot of updates for
μ until its empirical risk decreases to the level of σ . However, the algorithm may stop
long before the corresponding coefficients are well estimated.

We address this problem by proposing a version of the non-cyclical boosting algo-
rithm for GAMLSS, especially for Gaussian location and scale models, that adaptively
and automatically optimizes the step-lengths for all predictors in each boosting itera-
tion. This ensures no parameters favored over the other by finding the factor that results
in the overall best model improvement for each update and then bases the decision on
which parameter to update on this comparison. While the adaptive approach does not
enforce equal numbers of updates for all distribution parameters, it yields a fair selec-
tion of predictors to update and a natural balance in the updates. For the very special
Gaussian case, we also derive (semi-)analytical adaptive step-lengths that decrease
the need for numerical optimization and discuss their properties. Our findings have
implications beyond boosted Gaussian location and scale models for boosting other
models with several predictors, e.g. the whole GAMLSS framework in general or for
zero-inflated count models, and also give insights into the step-length choice for the
simpler special case of (Gaussian) additive models.

The structure of this paper is organized as follows: Section 2 introduces the boosted
GAMLSS models including the cyclical and non-cyclical algorithms. Section 3 dis-
cusses how to apply the adaptive step-length on the non-cyclical boosted GAMLSS
algorithm, and introduces the semi-analytical solutions of the adaptive step-length for
the Gaussian location and scale models and discuss their properties. Section 4 evalu-
ates the performance of the adaptive algorithms and the problem of fixed step-length
in two simulations. Section 5 presents the application of the adaptive algorithms for
two datasets: the malnutrition data, where the outcome variance is very large, and the
riboflavin data, which has more variables than observations. Section 6 concludes with
a summary and discussion. Further relevant materials and results are included in the
appendix.

2 Boosted GAMLSS

In this section, we briefly introduce the GAMLSS models and the two cyclical and
noncyclical boosting methods for estimation.
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2.1 GAMLSS and componentwise gradient boosting

Conventional generalized additive models (GAM) assume a dependence only of the
conditional mean μ of the response on the covariates. GAMLSS, however, also model
other distribution parameters such as the scale σ , skewness ν and/or kurtosis τ with a
set of statistical models.

The K distribution parameters θT = (θ1, θ2, . . . , θK ) of a density function f ( y|θ)

are modelled by a set of up to K additive models. The model class assumes that
the observations yi for i ∈ {1, . . . , n} are conditionally independent given a set of
explanatory variables. Let yT = (y1, y2, . . . , yn) be a vector of the response variable
and X be a n × J data matrix. In addition, we denote X i ·, X · j and Xi j as the i-th
observation (vector of length J ), j-variable (vector of lengthn) and the i-th observation
of the j-th variable (a single value) respectively. Let gk(·), k = 1, . . . , K be known
monotonic link functions that relate K distribution parameters to explanatory variables
through additive models given by

gk(θk) = ηθk (X) = β0,θk1n +
J∑

j=1

f j,θk (X · j |β j,θk ), for k = 1, . . . , K , (1)

where θk = (θk,1, . . . , θk,n)
T contains the n parameter values for the n observations

and functions are applied elementwise if the argument is a vector, ηθk
is a vector of

length n, 1n is a vector of ones and β0,θk is the model parameter specific intercept.
Function f j,θk (X · j |β j,θk ) indicates the effects of the j-th explanatory variable X · j
(vector of length n) for the model parameter θk , and β j,θk is the parameter of the
additive predictor f j,θk (·). Various types of effects (e.g., linear, smooth, random) for
f (·) are allowed. If the location parameter (θ1 = μ) is the only distribution parameter
to be regressed (K = 1) and the response variable is from the exponential family,
(1) reduces to the conventional GAM. In addition, f j can depend on more than one
variable (interaction), in which case X · j would be e.g. a n×2matrix, but for simplicity
we ignore this case in the notation.

A penalized likelihood approach can be used to estimate the unknown quantities;
for more details, see Rigby and Stasinopoulos (2005). This approach does not allow
parameter estimation in the case of more explanatory variables than observations,
and variable selection for high-dimensional data is not possible, which, however, can
be well solved by using boosting. The theoretical foundations regarding numerical
convergence and consistency of boostingwith general loss functions have been studied
by Zhang and Yu (2005). The work of Bühlmann and Yu (2003) on L2 boosting with
linear learners and Hastie et al. (2007) on the proof of the equivalence of the lasso
and forward stagewise regression paved the way of componentwise gradient boosting
(Hothorn et al. 2018), which emphasizes the importance of weak learners to reduce
the tendency to overfit. To deal with the high-dimensional problems, Mayr et al.
(2012) proposed a boosted GAMLSS algorithm, which estimates the predictors in
GAMLSS with componentwise gradient boosting. As this method updates in general
only one variable in each iteration, it can deal with data that has more variables than
observations, and the important variables can be selected by controlling the stopping
iterations.
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To estimate the unknown predictor parameters β j,θk , j ∈ {1, . . . , J } in equation
(1), the componentwise gradient boosting algorithm minimizes the empirical risk R,
which is also the loss ρ summed over all observations,

R =
n∑

i=1

ρ (yi , η(X i ·)) ,

where the loss ρ measures the discrepancy between the response yi and the predictor
η(X i ·). The predictor η(X i ·) = (

ηθ1(X i ·), . . . , ηθK (X i ·)
)
is a vector of length K . For

the i-th observation X i ·, each predictor ηθk (X i ·) is a single value corresponding to
the i-th entry in ηθk in equation (1). The loss function ρ usually used in GAMLSS
is the negative log-likelihood of the assumed distribution of y (Thomas et al. 2018;
Friedman et al. 2000).

The main idea of gradient boosting is to fit simple regression base-learners h j (·)
to the pseudo-residuals vector uT = (u1, . . . , un), which is defined as the negative
partial derivatives of loss ρ, i.e.,

u[m]
k =

(
− ∂

∂ηθk

ρ(y, η)

∣∣∣
η=η̂[m−1]

(X i ·),y=yi

)

i=1,...,n
,

wherem denotes the current boosting iteration. In a componentwise gradient boosting
iteration, each base-learner involves usually one explanatory variable (interactions are
also allowed) and is fitted separately to u[m]

k ,

u[m]
k

base-learner−→ ĥ[m]
j,θk

(X · j ) for j = 1, . . . , J .

For linear base-learner, its correspondence to the model terms in (1) shall be

ĥ j,θk (X · j ) = X · j β̂ j ,

where the estimated coefficients can be obtained by using the maximum likelihood
or least square method. The best-fitting base-learner is selected based on the residual
sum of squares, i.e.,

j∗ = argmin
j∈{1,...,J }

n∑

i=1

(
uk,i − ĥ j (Xi j )

)2
,

thereby allowing for easy interpretability of the estimated model and also the use of
hypothesis tests for single base-learners (Hepp et al. 2019). The additive predictor
will be updated based on the best-fitting base-learner ĥ j∗,θk∗ (X · j∗) in terms of the
best-performing sub-model ηθk∗ ,

η̂
[m]
θk∗ (X) = η̂

[m−1]
θk∗ (X) + νĥ j∗,θk∗ (X · j∗), (2)

123



2300 B. Zhang et al.

where ν denotes the step-length. In order to prevent overfitting, the step-length is
usually set to a small value, in most cases 0.1. Equation (2) updates only the best-
performing predictor η̂

[m]
θk∗ , all other predictors (i.e. for k �= k∗) remain the same as in

the previous boosting iteration. The best-performing sub-model θk∗ can be selected by
comparing the empirical risk, i.e. which model parameter achieves the largest model
improvement.

The main tuning parameter in this procedure, as in other boosting algorithms, is
how many iterations should be performed before it stops, which is denoted as mθstop .
As too large or smallmθstop leads to over-/underfitting model, cross-validation (Kohavi
1995) is one of the most widely used methods to find the optimal mθstop .

2.2 Cyclical boosted GAMLSS

The boosted GAMLSS can deal with data that has more variables than observations,
as the componentwise gradient boosting updates only one variable in each iteration.
It leads to variable selection if some less important variables have never been selected
as the best-performing variable and thus are not included in the final model for a given
stopping iteration mθstop .

The original framework of boosted GAMLSS proposed by Mayr et al. (2012) is
a cyclical approach, which means every predictor ηθk , k ∈ {1, . . . , K } is updated in
a cyclical manner inside each boosting iteration. The iteration starts by updating the
predictor for the location parameter and uses the predictors from the previous iteration
for all other parameters. Then, the updated location model will be used for updating
the scale model and so on. A schematic overview of the updating process in iteration
m + 1 for K = 4 is

(μ̂
[m]

, σ̂
[m]

, ν̂
[m]

, τ̂
[m]

)
update−→ η̂[m+1]

μ → μ̂
[m+1]

(μ̂
[m+1]

, σ̂
[m]

, ν̂
[m]

, τ̂
[m]

)
update−→ η̂[m+1]

σ → σ̂
[m+1]

(μ̂
[m+1]

, σ̂
[m+1]

, ν̂
[m]

, τ̂
[m]

)
update−→ η̂[m+1]

ν → ν̂
[m+1]

(μ̂
[m+1]

, σ̂
[m+1]

, ν̂
[m+1]

, τ̂
[m]

)
update−→ η̂[m+1]

τ → τ̂
[m+1]

.

However, not all of the distribution parameters have the same complexity, i.e., the
stopping iterations mθstop should be set separately for different parameters, or jointly
optimized, for example by grid search. Since grid search scales exponentially with the
number of distribution parameters, such optimization can be very slow.

2.3 Non-cyclical boosted GAMLSS

In order to deal with the issues of a cyclical approach, Thomas et al. (2018) pro-
posed a non-cyclical version, that updates only one distribution parameter instead
of successively updating all parameters in each boosting iteration by comparing the
model improvement (negative log-likelihood) of each model parameter, see Algo-
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rithm 1 (especially step 11). Consequently, instead of specifying separate stopping
iterations mθstop for different parameters and tuning them with the computationally
demanding grid search, only one overall stopping iteration, denoted as mstop, needs to
be tuned with e.g. the line search (Friedman 2001; Brent 2013). The tuning problem
thus reduces from a multi-dimensional to a one-dimensional problem, which vastly
reduces the computing time.

Algorithm 1 has a nested structure, with the outer loop executing the boosting
iterations and the inner loops addressing the different distribution parameters. The
best-fitting base-learner and their contribution to the model improvement for every
parameter is selected in the inner loop and compared in the outer loop (step 11).
Therefore, only the best performing base-learner is updated in a single iteration by
adding νĥ(X · j∗) to the predictor of the corresponding parameter θk∗ . Over the course
of the iterations, the boosting algorithm steadily increases the model in small steps
and the final estimates for the different base-learners are simply the sum of all their
updates they may have received.

The cyclical approach led to an inherent but somewhat artificial balance between the
distribution parameters, as the predictors for all distribution parameters are updated in
each iteration. The different final stopping values mθstop for the different distribution
parameters - chosen by tuningmethods such as cross-validation - allow to stop updates
at different times for distribution parameters of different complexity to avoid overfit-
ting. In the non-cyclical algorithm, especially when mstop is not large enough, there
is the danger of an imbalance between predictors. If the selection between predictors
to update is not fair, this could lead to iterations primarily updating some of the pre-
dictors and underfitting others. We will provide a detailed example for the Gaussian
distribution with large σ in Sect. 4.2.

A related challenge is to choose an appropriate step-length ν
[m]
θk

for both the cyclical
and non-cyclical approaches. Tuning the parameters when boosting GAMLSSmodels
relies mainly on the number of boosting iterations (mstop), with the step-length ν

usually set to a small value such as 0.1. Bühlmann and Hothorn (2007) argued that
using a small step-length like 0.1 (potentially resulting in a larger number of iterations
mstop) had a similar computing speed as using an adaptive step-length performed by
doing a line search, but meant an easier tuning task for one parameter (mstop) instead
of two. However, this result referred to models with a single predictor. A fixed step-
length can lead to an imbalance in the case of several predictors that may live on
quite different scales. For example, 0.1 may be too small for μ but large for σ . We
will discuss such cases analytically and with empirical evidence in the later sections.
Moreover, varying the step-lengths for the different sub-models directly influences
the choice of the best performing sub-model in the non-cyclical boosting algorithm,
thus choosing a subjective step-length is not appropriate. In the following, we denote
a fixed predefined step-length such as 0.1 as the fixed step-length (FSL) approach.

To overcome the problems stated above, we propose using an adaptive step-length
(ASL) while boosting. In particular, we propose to optimize the step-length for each
predictor in each iteration to obtain a fair comparison between the predictors. While
the adaptive step-length has been used before, the proposal to use different ASLs for
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Algorithm 1 Non-cyclical componentwise gradient boosting in multiple dimensions
- Basic algorithm

1: Initialize the additive predictors η̂[0] =
(
η̂
[0]
θ1

, · · · , η̂
[0]
θK

)
with offset values.

2: For each distribution parameter θk , k = 1, · · · , K , specify a set of base-learners, i.e., for parameter θk
define h1,θk (·), · · · , h Jk ,θk (·) where Jk is the cardinality of the set of base-learners specified for θk .

3: for m = 1 to mstop do
4: for k = 1 to K do
5: Compute negative partial derivatives − ∂

∂ηθk
ρ(y, η) and plug in the current estimates η̂[m−1](·):

u[m]
k = − ∂

∂ηθk

ρ(y, η),

where η = η̂[m−1](X i ·) and y = yi for i = 1, · · · , n.

6: Fit (e.g. with the least square method) the negative gradient vector u[m]
k separately to every base-

learner:

u[m]
k

base-learner−→ ĥ j ,θk (X · j ) for j = 1, · · · , Jk .

7: Select the best-fitting base-learner ĥ j∗,θk
(X · j∗ ) by inner loss, i.e., the residual sum of squares of

the base-learner fit w.r.t. u[m]
k =

(
u[m]
k,1 , ·, u[m]

k,n

)T
:

j∗ = argmin
j∈{1,··· ,Jk }

n∑

i=1

(
u[m]
k,i − ĥ j,θk (Xi j )

)2
,

where we dropped the dependence of j∗ on k in the notation for simplicity.
8: Set the step-length to a fixed value ν0, usually ν0 = 0.1:

ν
[m]
θk

= ν0

9: Compute the possible improvement of this update regarding the outer loss

Δρk =
n∑

i=1

ρ
(
yi , η̂

[m−1]
θk

(X i ·) + ν
[m]
θk

· ĥ j∗,θk
(Xi j∗ )

)
.

10: end for
11: Update, depending on the value of the loss reduction, only the overall best-fitting base-learner

k∗ = argmin
k∈{1,··· ,K }

Δρk :

η̂
[m]
θk∗ (X) = η̂

[m−1]
θk∗ (X) + ν

[m]
θk

· ĥ j∗,θk∗ (X · j∗ ).

12: Set η̂[m]
θk

:= η̂
[m−1]
θk

for all k �= k∗.
13: end for
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different predictors is new and we will see that this leads to balanced updates of the
different predictors.

3 Adaptive step-length

In this section, we first introduce the general idea of the implementation of adaptive
step-lengths for different predictors to GAMLSS. For the important special case of a
Gaussian location and scale models with two model parameters (μ and σ ), we will
derive and discuss their adaptive step-lengths and properties, which also serves as an
important illustration of the relevant issues more generally.

3.1 Boosted GAMLSS with adaptive step-length

Unlike the step-length in Eq. (2) and Algorithm 1, step 11, the adaptive step-length
may also vary in different boosting iterations according to the loss reduction.

The adaptive step-length can be derived by solving the optimization problem

ν
∗[m]
j∗,θk = argmin

ν

n∑

i=1

ρ
(
yi , η̂

[m−1]
θk

(X i ·) + ν · ĥ j∗,θk (Xi j∗)
)

, (3)

note that ν
∗[m]
j∗,θk is the optimal step-length of the model parameter θk dependent on

j∗ in iteration m. The optimal step-length is a value that leads to the largest decrease
possible of the empirical risk and usually leads to overfitting of the corresponding
variable if no shrinkage is used (Hepp et al. 2016). Therefore the actual adaptive
step-length (ASL) we apply in the boosting algorithm is the product of two parts, the
shrinkage parameter λ and the optimal step-length ν

∗[m]
j∗,θk , i.e.,

ν
[m]
j∗,θk = λ · ν

∗[m]
j∗,θk .

In this article, we take λ = 0.1, thus 10% of the optimal step-length. By comparison,
the fixed step-length ν = 0.1 would correspond to a combination of a shrinkage
parameter λ = 0.1 with the “optimal" step-length ν∗ set to one.

The non-cyclical algorithm with ASL can be improved by replacing the fixed step-
length in step 8 of algorithm 1 with the adaptive one. We formulate this change in
Algorithm 2.

As the parameters in GAMLSS may have quite different scales, updates with fixed
step-length can lead to an imbalance betweenmodel parameters, especiallywhenmstop
is not large enough. When using FSL, a single update for predictor ηθ1 may achieve
the same amount of global loss reduction than several updates of another predictor
ηθ2 even if the actually possible contribution of the competing base-learners is similar,
because for different scales the loss reductions of ηθ2 in these iterations are always
smaller than that of ηθ1 . However, such unfair selections can be avoided by using
ASL, because the model improvement depends on the largest decrease possible of
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Algorithm2Non-cyclical componentwise gradient boostingwith adaptive step-length
- Extension of basic algorithm 1

· · · Steps 1-7 equal to algorithm 1 · · · , in addition, choose shrinkage parameter λ.

8: Find the optimal step-length ν
[m]
θk

by optimizing the outer loss:

ν
∗[m]
j∗,θk

= argmin
ν

n∑

i=1

ρ
(
yi , η̂

[m−1]
θk

(X i ·) + ν · ĥ j∗,θk
(Xi j∗ )

)
,

and set adaptive step-length ν
[m]
j∗,θk

as the optimal value with shrinkage λ:

ν
[m]
j∗,θk

= λ · ν
∗[m]
j∗,θk

.

· · · Steps 9-13 equal to those in algorithm 1 · · ·

each predictor, i.e., the potential reduction in the empirical risks of all predictors are
on the same level and their comparison therefore is fair. Fair selection does not enforce
an equal number of updates as in the cyclical approach. The ASL approach can lead to
imbalanced updates of predictors, but such imbalance actually reveals the intrinsically
different complexities of each sub-model.

The main contribution of this paper is the proposal to use ASLs for each predictor
in GAMLSS. This idea can also be applied to other complex models (e.g. zero-inflated
count models) with several predictors for the different parameters, because these mod-
els meet the same problem, i.e. the scale of these parameters might differ considerably.
If a boosting algorithm is preferred for estimation of such a model, we provide a new
solution to address these kinds of problems, i.e. separate adaptive step-lengths for each
distribution parameter.

3.2 Gaussian location and scale models

In general, the adaptive step-length ν can be found by optimizing procedures such as a
line search.However, suchmethods donot help to reveal the properties of adaptive step-
lengths and its relationship with model parameters. Moreover, a line search method
searches for the optimal value from a predefined search interval, which can be difficult
to find out since too narrow intervals might not include the optimal value and too
large intervals increase the searching time. The direct computation from an analytical
expression is faster than a search. By investigating the important special case of a
Gaussian distribution with two parameters, we will learn a lot about the adaptive step-
length for the general case. Nevertheless, we must underline that for many cases an
explicit closed form for the adaptive step-length may not exist and line search still
plays an irreplaceable role. We perform the following study of the analytical solutions
for the Gaussian special case out of the wish of finding its inner relationship with the
model parameters, in order to better understand the limitation of fixed step-length and
how adaptive values improve the learning process.
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Consider the data points (yi , xi ·), i ∈ {1, . . . , n}, where x is a n× J matrix. Assume
the true data generating mechanism is the normal model

yi ∼ N (μi , σi )

μi = ημ(xi ·)
σi = exp (ησ (xi ·)) .

As we talk about the observed data, we replace ηθk , where k = 1, 2 for Gaussian
distribution,withμ andσ , and replace X with x. The identity and exponential functions
forμ and σ are thus the corresponding inverse link. Taking the negative log-likelihood
as the loss function, its negative partial derivatives uμ and uσ in iteration m for
both parameters can then be modelled with the base-learners ĥ[m]

j,μ and ĥ[m]
j,σ . The

optimization process can then be divided into two parts: one is the ASL for the location
parameterμ, and the other is for the scale parameter σ . As the ASL shrinks the optimal
value, we consider only the optimal step-lengths for both parameters.

3.2.1 Optimal step-length for�

The analytical optimal step-length forμ in iterationm is obtained through minimizing
the empirical risk

ν
∗[m]
j∗,μ = argmin

ν

n∑

i=1

ρ
(
yi , {η̂[m]

μ (xi ·), η̂[m−1]
σ (xi ·)}

)

= argmin
ν

n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·) − νĥ[m]

j∗,μ(xi j∗)
)2

2σ̂ 2[m−1]
i

, (4)

where the expression σ̂
2[m−1]
i represents the square of the standard deviation in the

previous iteration, i.e. σ̂
2[m−1]
i = (σ̂

[m−1]
i )2. The optimal value of ν

∗[m]
j∗,μ is obtained

by letting the derivative of the equation equal zero, so we get the analytical ASL for
μ (for more derivation details, see also appendix A.1):

ν
∗[m]
j∗,μ =

∑n
i=1

(
ĥ[m]
j∗,μ(xi j∗)

)2

∑n
i=1

(
ĥ[m]
j∗,μ

(xi j∗ )
)2

σ̂
2[m−1]
i

. (5)

It is obvious, that ν∗[m]
j∗,μ is not an independent parameter in GAMLSS but depends on

the base-learner ĥ[m]
μ (xi j∗) with respect to the best performing variable x· j∗ and the

estimated variance in the previous iteration σ̂
2[m−1]
i .

123



2306 B. Zhang et al.

In the special case of a Gaussian additive model, the scale parameter σ is assumed
to be constant, i.e. σ̂ [m−1]

i = σ̂ [m−1] for all i ∈ {1, . . . , n}. We then obtain

ν
∗[m]
j∗,μ =

∑n
i=1

(
ĥ[m]
j∗,μ(xi j∗)

)2

1
σ̂ 2[m−1]

∑n
i=1

(
ĥ[m]
j∗,μ(xi j∗)

)2 = σ̂ 2[m−1]. (6)

This gives us an interesting property of the optimal step-length or ASL, i.e., the ana-
lytical ASL for μ in the Gaussian distribution is actually the variance (as computed
in the previous boosting iteration). This property enables this paper to be not only
applicable for the special GAMLSS case, but also for the boosting of additive models
with normal responses. Therefore, in the case of Gaussian additive models, we can
use ν

[m]
j∗,μ = λσ̂ 2[m−1] as the step-length, which has a stronger theoretical foundation,

instead of the common choice 0.1.
Back to the general GAMLSS case, we can further investigate the behavior of the

step-length by considering the limiting case of m → ∞. For large m, all base-learner
fits ĥ[m]

j∗,μ(xi j∗) converge to zero or are similarly small. If we consequently approximate

all ĥ[m]
j∗,μ(xi j∗) by some small constant h, this gives an approximation of the analytical

optimal step-length of

ν
∗[m]
j∗,μ ≈

∑n
i=1 h

2

∑n
i=1

h2

σ̂
2[m−1]
i

= nh2

h2
∑n

i=1
1

σ̂
2[m−1]
i

= n
∑n

i=1
1

σ̂
2[m−1]
i

, (7)

which is the harmonic mean of the estimated variances σ̂
2[m−1]
i in the previous itera-

tion. While this expression requires m to be large, which may not be reached if mstop
is of moderate size to prevent overfitting, the expression still gives an indication of
the strong dependence of the optimal step-length on the variances σ̂

2[m−1]
i , which

generalizes the optimal value of the additive model in (6).

3.2.2 Optimal step-length for �

The optimal step-length for the scale parameter σ can be obtained analogously by
minimizing the empirical risk, now with respect to ν

∗[m]
j∗,σ . We obtain

ν
∗[m]
j∗,σ = argmin

ν

n∑

i=1

ρ
(
yi , {η̂[m−1]

μ (xi ·), η̂[m]
σ (xi ·)}

)

= argmin
ν

n∑

i=1

(
η̂[m−1]

σ (xi ·) + νĥ[m]
σ (xi j∗)

)

+
n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·)

)2

2 exp
(
2η̂[m−1]

σ (xi ·) + 2νĥ[m]
σ (xi j∗)

) . (8)
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After checking the positivity of the second-order derivative of the expression in equa-
tion (8), the optimal value can be obtained by setting the first-order derivative equal
to zero:

n∑

i=1

ĥ[m]
σ (xi j∗) −

n∑

i=1

(
ĥ[m]

σ (xi j∗) + εi,σ + 1
)
ĥ[m]

σ (xi j∗)

exp
(
2ν∗[m]

j∗,σ ĥ
[m]
σ (xi j∗)

) != 0, (9)

where εi,σ denotes the residuals when regressing the negative partial derivatives u[m]
σ ,i

on the base-learner ĥ[m]
σ (xi j∗), i.e.,uσ ,i = ĥ[m]

σ (xi ·) + εi,σ . Unfortunately, equation
(9) cannot be further simplified, which means that there is no analytical ASL for the
scale parameter σ in the Gaussian distribution. Hence, the optimal ASLmust be found
by performing a conventional line search. For more details, see also Appendix A.2.

Evenwithout an analytical solution, we can still use (9) to further study the behavior
of the ASL. Analogous to the derivation of (7), ĥ[m]

σ (xi j∗) converges to zero for m →
∞. If we approximate with a (small) constant ĥ[m]

σ (xi j∗) ≈ h,∀i ∈ {1, . . . , n}. Then
(9) simplifies to

n∑

i=1

h −
n∑

i=1

(h + εi,σ + 1)h

exp
(
2ν∗[m]

j∗,σ h
) = 0

⇔ ν
∗[m]
j∗,σ = 1

2h
log

(
h + 1 + 1

n

n∑

i=1

εi,σ

)

⇔ ν
∗[m]
j∗,σ = 1

2h
log(h + 1), (10)

where 1
n

∑n
i=1 εi,σ = 0 in the regressionmodel. Equation (10) canbe further simplified

by approximating the logarithm function with a Taylor series at h = 0, thus

ν
∗[m]
j∗,σ = 1

2h

(
h − h2

2
+ O(h3)

)

= 1

2
− h

4
+ O(h2).

As h → 0 for m → ∞, the limit of this approximate optimal step-length for σ is

lim
m→∞ ν

∗[m]
j∗,σ = lim

h→0

1

2
− h

4
= 1

2
. (11)

Thus, theASL for σ approaches approximately 0.05 if we take the shrinkage parameter
λ = 0.1 and iterations run for a longer time (and the boosting algorithm is not stopped
too early to prevent overfitting for this trend to show).
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3.3 (Semi-)Analytical adaptive step-length

Knowing the properties of the analytical ASL in boosting GAMLSS for the Gaussian
distribution, we can replace the line search with the analytical solution for the location
parameter μ. If we keep the line search for the scale parameter σ , we call this the
Semi-Analytical Adaptive Step-Length (SAASL). Moreover, we are interested in the
performance of combining the analyticalASL forμwith the approximate value 0.05 =
λ· 12 (withλ = 0.1) for theASL forσ , which ismotivated by the limiting considerations
discussed above and has a better theoretical foundation than selecting an arbitrary small
value in the common FSL. We call this step-length setup SAASL05. In either of these
cases, it is straightforward and computationally efficient to obtain the (approximate)
optimal value(s) and both alternatives are faster than performing two line searches.

The semi-analytical solution avoids the need for selecting a search interval for the
line search, at least for the ASL forμ in the case of SAASL and for both parameters for
SAASL05. This is an advantage, since too large search intervals will cause additional
computing time, but too small intervals may miss the optimal ASL value and again
lead to an imbalance of updates between the parameters. Also note that the value 0.5
gives an indication for a reasonable range for the search interval for ν

∗[m]
j∗,σ if a line

search is conducted after all.
The boosting GAMLSS algorithm with ASL for the Gaussian distribution is shown

in Algorithm 3.
For a chosen shrinkage parameter of λ = 0.1, the νσ in SAASL05 would be 0.05,

which is a smaller or “less aggressive" value than 0.1 in FSL, leading to a somewhat
larger number of boosting iterations but a smaller risk of overfitting, and to a better
balance with the ASL for μ.

4 Simulation study

In the following, two simulations are shown to demonstrate the performance of the
adaptive algorithms. The first one compares the estimation accuracy between the dif-
ferent non-cyclical boosted GAMLSS algorithms with FSL or ASL in a Gaussian
regression model for location and scale. The second one underlines the problem of
FSL and the performance of the adaptive approaches if the variance in this setting is
large.

4.1 Gaussian location and scale model

The simulation study in Thomas et al. (2018) showed that their FSL non-cyclical
approach outperforms the classical cyclical approach. We use the same setup to show
that the ASL approach performs at least as good as the FSL non-cyclical approach (and
hence also outperforms the classical cyclical approach). At the end of this subsection
we will show that the reason for the good performance of FSL is due to the chosen
simulated data structure. The setup is the following: the response yi is drawn from
N (μi , σi ) for n = 500 observations, with 6 informative covariates xi j , j ∈ {1, . . . , 6}
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Algorithm3Non-cyclical componentwise gradient boosting for theGaussian location
and scale models with different step-lengths - Extension of basic algorithm 1

· · · Steps 1-7 equal to algorithm 1 · · · , in addition, choose shrinkage parameter λ.

8: Set or find the step-length ν
[m]
j∗,θk

for θk ∈ {μ, σ } by one of the followings:
– Adaptive step-length (ASL):

ν
∗[m]
j∗,θk

= argmin
ν

n∑

i=1

ρ
(
yi , η̂

[m−1]
θk

(xi ·) + ν · ĥ j∗,θk
(xi j∗ )

)
;

– Semi-analytical adaptive step-length (SAASL):
if θk = μ,

ν
∗[m]
j∗,μ

=
∑n

i=1

(
ĥ j∗,μ(xi j∗ )

)2

∑n
i=1

(
ĥ j∗,μ(xi j∗

)2

σ̂
2[m−1]
i

,

if θk = σ , same as for ASL.
– Semi-analytical adaptive step-length (SAASL05):
if θk = μ, same as for SAASL,

if θk = σ , ν∗[m]
j∗,θk

= 0.5.

and set adaptive step-length ν
[m]
j∗,θk

as the optimal value with shrinkage λ:

ν
[m]
j∗,θk

= λ · ν
∗[m]
j∗,θk

.

· · · Steps 9-13 equal to those in algorithm 1 · · ·

drawn independently from Uni(−1, 1). The predictors of both distribution parameters
are:

ημ(xi ·) = μi = xi1 + 2xi2 + 0.5xi3 − xi4
ησ (xi ·) = log(σi ) = 0.5xi3 + 0.25xi4 − 0.25xi5 − 0.5xi6,

where x3 and x4 are sharedbetweenbothμ andσ .Moreover, pn-inf = 0, 50, 250 or 500
non-informative variables sampled from Uni(−1, 1) are also added to the model. We
conduct B = 100 simulation runs.

The estimated coefficients of ημ and ησ , whose values are taken at stopping iter-
ations tuned by 10-fold CV with the maximum number of boosting iterations set to
1000, are shown in Appendix Figs. 8 and 9.

Overall, the estimated coefficients are similar between all four methods, with the
shrinkage bias of boosting only becoming apparent with an increasing number of noise
variables.

Figure 1 shows the comparison of the mean squared error (MSE) among non-
cyclical boosted algorithms for μ and σ , where the MSEs are defined on the predictor
level as MSEμ = 1

n

∑n
i=1(μi −ημ(xi ·))2 and MSEσ = 1

n

∑n
i=1(log(σi )−ησ (xi ·))2,

respectively. In general, all methods have a similar MSE, with the MSE of FSL
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Fig. 1 Comparison between mean squared error for FSL and the three ASL methods. The left column
comprises the MSE for ημ, the right column for ησ . The different numbers of non-informative variables
are represented row-wise

increasing more strongly with the number of non-informative variables pn-inf and
ASLmethods hence slightly outperform FSL in the variance predictor for a high num-
ber of non-informative variables. ASL and SAASL show identical results, as they
should if the line search is correctly conducted, with results returned by SAASL05
very similar.

Computing the negative log-likelihood in sample of the model fits reveals a slight
advantage for FSL (see Appendix Fig. 10). However, this can be linked to the fact that
FSL selects more false positive variables on average than the adaptive approaches and
thus shows a relatively stronger tendency to overfit the training data (Fig. 2).

Figure 2 illustrates the false positives of each methods for each parameter. For σ ,
even if pn-info is small, the false positive rates of the adaptive approaches are notably
smaller than those of FSL.As discussed above, ν[m]

j∗,σ ≈ 0.05 for largem in the adaptive
approach is smaller than νσ = 0.1 for FSL. An update with a smaller, conservative
step-length can apparently help to avoid overfitting and the adaptive step-length here
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Fig. 2 Comparison between false positives for FSL and the three ASL methods. The left column comprises
the false positives for μ, and the right column for σ . The different numbers of non-informative variables
settings are represented row-wise

seems to strike the balance between learning speed and the number of false positives.
While itwould also be possible to lower the step-length for FSL to reduce the number of
non-informative variables included in the final model, this would increase the number
of boosting iterations and the computing time, and it would not address the imbalance
between updates for μ and σ . The optimal choice of the step-length is also difficult
without further tuning or an automatic selection as in ASL.

With respect to the neglecting of actually informative variables, i.e. false negatives,
all four methods are able to find and select all variables for μ in all of the simulation
runs. Regarding σ , the risk of false negatives slightly increases with the number of
noise variables in the setting. However, even in the case of 500 noise-variables, only
a single false negative is observed in between 3% and 6% of the runs, independently
of the algorithm in question.

To some extent, the low false negative rate could be expected considering the
somewhat greedy nature of boosting algorithms. For this reason, performance in terms
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Fig. 3 Comparison of the optimal step-lengths ν
∗[m]
j∗,μ

and ν
∗[m]
j∗,σ

in SAASL from one of the 100 simulation
runs. The step-lengths for μ are in black dots, the step-lengths for σ in grey cross. Different horizontal
layers of dots/crosses correspond to different covariates

of false-positive selections is arguably the more important aspect and speaks to the
adaptive updates.

In Fig. 3 we show an example of the comparison between the optimal step-lengths
in this case. As can be seen, the step-lengths for σ (depicted in grey) converge to 0.5 as
shown in Sect. 3.2.2. The second fact that becomes obvious when looking at the figure
is that the optimal step-lengths for both predictors do not differ a lot. Even though
differences can be observed in early iterations in particular, the step-lengths still have
the same order of magnitude. This is not only the case for this example but overall
in this simulation setup. Having this in mind, the similar results for both approaches
(FSL and ASL) are not very surprising anymore: there is hardly any difference in
the approaches, since the updates do not need different step-lengths to be balanced.
In the next subsection we will examine a case in which the data calls for different
step-lengths, and see how both methods perform under those changed circumstances.

4.2 Large variance with resulting imbalance between location and scale

As discussed above, the Gaussian location and scale model in Sect. 4.1 did not lead
to a large difference between FSL and ASL, as the optimal step-lengths for μ and σ

were roughly similar and the imbalance between the updates for the two predictors in
FSL was thus not large. In this section, we investigate a setting with a large variance,
which leads to a stronger imbalance between the two parts of the model.

In the following, we use SAASL as a representative of the adaptive approaches in
our presentation, as it yields identical results to ASL, but avoids the numerical search
for the optimal νμ by using the analytical result (5). Since estimated effects generally
deviatedmore strongly from the theoretical values than before due to the large variance
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Fig. 4 Distribution of coefficient estimates from B = 100 simulation runs. The true coefficients are marked
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Fig. 5 Pairwise comparison of the estimated coefficients between GAMLSS and SAASL for both model
parameter μ (top row) and σ (bottom row)

(details will be discussed later), we additionally compared the results to those obtained
using GAMLSS with penalized maximum likelihood estimation as implemented in
the R-package gamlss (Rigby and Stasinopoulos 2005).

Consider the data generating mechanism yi ∼ N (μi , σi ), i ∈ {1, . . . , 500} with
B = 100 simulation runs. The predictors are determined by

ημ(xi ·) = μi = 1 + xi1 + 2xi2 − xi3
ησ (xi ·) = log(σi ) = 5 + 0.1xi1 − 0.2xi2 + 0.1xi3,

where x· j ∼ Uni(−1, 1), j ∈ {1, 2, 3, 4, 5}, x·4 and x·5 are noise variables. The choice
of ησ leads to an extremely large standard deviation in the order of 150 due to the
large intercept 5. The stopping iteration is obtained by 10-fold CV, and the maximum
number of iterations is 3000 and 2,000,000 for SAASL and FSL respectively. The
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Table 1 Summary of the in-sample MSE for each estimation methods, i.e. 1
n

∑n
i=1

(
yi − ŷi

)2

Min. 1st Qu. Median Mean 3rd Qu. Max.

FSL 19848 21796 22547 22688 23579 27026

GAMLSS 19707 21687 22414 22586 23515 26883

SAASL 19679 21663 22372 22554 23443 26883

main goal of this simulation setting is to highlight the imbalance problem of FSL
when the scale parameter is large. As many noise variables will make it difficult to
demonstrate the differences between FSL and adaptive approaches, we include only
two noise variables in this example for illustration.

As can be seen in Fig. 4, both fixed and adaptive step-lengths yield reasonable
estimates regarding ησ , but FSL results in many false negative estimates equal to zero
for ημ in the majority of the simulation runs. This is of course connected to the relative
importance of the variance component in this setting, which should in itself already
lead to a preference for updating ησ rather than ημ in early boosting iterations due to
the fact that the negative gradient for μ (i.e. uμ,i = ∑n

i=1(yi − μi )/σ
2
i with large σi )

is actually scaled by the variance (recall the large intercept 5, log-link and the resulting
exponential transformation) and hence very small. As a consequence, the impact on
the global loss of base-learners fit to the gradient is also small compared to those
suggested for updates regarding σ in step 11 of Algorithm 1. Then, using the same
step-length for both parameters makes it clearly harder to identify informative effects
on μ as they are trivialized in comparisons.

The adaptive step-lengths implemented in SAASL compensates for this disadvan-
tage. Compared to the simulation results in the previous subsection the estimates
regarding ημ are less precise with large variability around the true values. This is
not a problem of SAASL but again the consequence of the large variance, obscuring
the effects on the mean, and also encountered using the penalized maximum likeli-
hood approach implemented in the gamlss-package (called GAMLSS in Fig. 4). The
variability in the estimates is actually somewhat smaller than for GAMLSS due to the
regularization inherent in the boosting approach. This is also illustrated in Fig. 5 in the
pairwise comparison of the estimated coefficients for both methods, where SAASL
leads to similar but slightly closer to zero estimates compared to the penalized maxi-
mum likelihood based method GAMLSS.

Interestingly, Fig. 4 also reveals that the inability to identify the informative vari-
ables results in the lowest MSE for all three individual coefficients for μ when using
FSL (for more numerical details, see Appendix C). As can be seen from Table 1, how-
ever, the combined additive predictor performs worse in terms of overall MSE than
both GAMLSS and SAASL, with the latter performing best.

To further highlight the differences in the selection behavior between FSL and
SAASL, Fig. 6 illustrates the proportion of boosting iterations used to update μ over
the course of the model fits, i.e. pmμ = mμ/(mμ + mσ ), where mμ + mσ = mstop.
The bimodal distribution for FSL observed in the histogram in panel (a) demonstrates
another problem of the fixed step-lengths in this setting. Considering the many esti-
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(a) Histogram (b) Scatter plot

Fig. 6 Distribution of pmμ in B = 100 simulation runs. (a) Histogram of pmμ . The histogram of the two
approaches are overlayed using transparency. (b) Scatter plot of mstop against pmμ . Points and crosses
are displayed with transparency. The y-axis is displayed on a logarithmic scale with base 10. Each tick
represents a tenfold increase over the previous one

mates equal or close to zero observed in Fig. 4, the mode close to pmμ = 0 is expected,
as it describes the proportion of simulation runs where μ has not been updated at all.
However, as soon as at least one base-learner forμ is recognized as an effective model
parameter, the small step-length fixed at 0.1 requires a huge number of updates for the
base-learner to actually make an impact on the global loss (hence the large number of
maximum iterations allowed for FSL). This results in the second mode also around
pmμ = 1, as the algorithm is mainly occupied with μ in the corresponding runs.

This is illustrated by the scatter plot in Fig. 6b, where pmμ is plotted against the
stopping iteration mstop. Note that the y-axis is displayed with a logarithmic scale and
each tick on the y-axis represents a tenfold increase over the previous one. The few
points (FSL), whose mstop lie between 102 and 103, show a better balance between
the updates of μ and σ than other points, i.e., the middle region of pmμ . But we also
observe a bimodal distribution for FSL, i.e., lots of points are equal or close to pmμ = 0
and 1, with very low and extremely large values for mstop resulting, respectively.

Thus for SAASL, we observe a unimodel distribution of pmμ in Fig. 6a. The mode
smaller than 0.5 indicates SAASL updates σ a little more frequently than μ. Unlike
the cyclical approach that enforces an equal number of updates for all distribution
parameters, the balance formed by SAASL is more natural. This balance enables the
alternate updates between two predictors even though they lie on different scales.
Therefore, the information in μ can be fairly discovered in time and it reduces the
risk of overlooking the informative base-learners with respect to μ. The number of
simulations runs, in which μ is not updated at all (pmμ = 0), reduces from 39 in
FSL to only 5 in SAASL. Moreover, none of the 100 simulations require a substantial
amount of updates for μ to get well estimated coefficients (cf. also Fig. 4).

Table 2 displays the information about false positives and false negatives of the two
approaches in all 100 simulations with respect toμ and σ . For example, the second and
fourth number 77 and 21 in the first line indicate that the informative variable x·2 is not
included in the final model in 77 out of 100 simulation runs (i.e. false negative), while
there are 21 simulations whose final model contains the non-informative variable x·4
(i.e. false positive). Similar as Fig. 2 in Sect. 4.1, the conservative small step-length for
μ in FSL increases the number of boosting iterations, but reduces the risk of overfitting.
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Table 2 The number of simulations with false positives and false negatives for each variable under different
modelling methods with respect to the two model parameters. The false negatives part shows the number
of simulations in which the informative variables are excluded from the final model, and the false positives
part shows how many simulations include the non-informative variables in their final model. Values are
taken at the stopping iteration determined by 10-fold CV

False negatives False positives

x·1 x·2 x·3 x·4 x·5

μ FSL 83 77 81 21 20

SAASL 28 24 28 72 73

σ FSL 9 1 6 83 82

SAASL 18 1 9 70 67

Table 3 Comparison of the estimated coefficients

FSL ASL ASL5 SAASL SAASL05 GAMLSS

(Intercept) ημ −772 −169.203 −91.160 −91.160 −91.160 −91.160

ησ 4.881 4.874 4.912 4.912 4.912 4.912

cBMI ημ <0.001 <0.001 −13.925 −13.925 −13.925 −13.926

ησ −0.003 −0.003 −0.015 −0.015 −0.015 −0.015

cAge ημ −0.038 −0.371 −5.847 −5.847 −5.847 −5.847

ησ −0.001 −0.001 0.003 0.003 0.003 0.003

mBMI ημ <0.001 <0.001 11.708 11.708 11.708 11.708

ησ 0.009 0.009 0.009 0.009 0.009 0.009

mAge ημ <0.001 <0.001 0.026 0.026 0.026 0.026

ησ 0.005 0.005 0.005 0.005 0.005 0.005

Less simulations containing the noise variables for μ in FSL than in SAASL confirms
this behavior. According to Eq. (11) the ASLs ν j∗,σ are a sequence of values around
0.05, and (except for the values at early boosting iterations) most of them smaller
than 0.1. There are correspondingly slightly more simulations in FSL overfitting the
σ -submodel than in SAASL.

Although non-informative variables of μ are excluded from the FSL model, the
informative ones are excluded as well. Actually μ was not updated in many simula-
tions at all (cf. Fig. 6a). The false negatives part of Table 2 for μ confirms this. The
informative variables x·1 to x·3 are excluded from the final model in the majority
of simulations with FSL but not with SAASL. For σ , the smaller step-length ν j∗,σ
in SAASL selects variables more conservatively and as a consequence slightly more
simulations underfit the σ -submodel in SAASL than in FSL, but the difference is far
less pronounced.
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5 Applications

We apply the proposed algorithms to two datasets. The malnutrition dataset demon-
strates the shortcomings of FSL and the pitfalls of using numerical determination
of ASL with a fixed search interval, and with the riboflavin dataset we illustrate the
variable selection properties of each algorithm.

5.1 Malnutrition of children in India

The first data called india from the R package gamboostLSS (Hofner et al. 2018;
Fahrmeir and Kneib 2011) are sampled from the Standard Demographic and Health
Survey between 1998 and 1999 on malnutrition of children in India (Fahrmeir and
Kneib 2011). The sample contains 4000 observations and four variables (BMI of the
child (cBMI), age of the child in months (cAge), BMI of the mother (mBMI) and
age of the mother in years (mAge)). The outcome of interest in this case is a numeric
z-score for malnutrition ranging from -6 to 6, where the negative values represent
malnourished children. To highlight the problems of using a fixed step-length, we
work with the original variable stunting (corresponding to 100 * z-score). The identity
and logarithm functions are used as the link functions for μ and σ respectively.

Because this is not a high-dimensional data example, we use the GAMLSS with
penalized maximum-likelihood estimation as a gold standard to examine the effec-
tiveness of the adaptive approaches.

Table 3 lists the estimated coefficients of each variable on the predictors ημ and
ησ at the stopping iteration tuned by 10-folds CV, where the maximum number of
iterations is set to 2000. The estimated intercept in ησ indicates a large variance of
the response, with the setting thus being similar to the second simulation above. It is
therefore not surprising that FSL selects only one variable (cAge) for ημ, i.e. a large
number of updates for the base-learner are required but the given maximal boosting
iteration is not large enough. In practice we can certainly increase the maximum
number of iterations as well as enlarge the commonly applied step-length 0.1 in order
to estimate the coefficients well. But their choices are very subjective and probably
result in tedious manual fine-tuning based on trial and error.

The ASL method with the default predefined search interval [0, 10] encounters a
similar problem as FSL. Apart from the only selected and underfitted variable cAge
for μ, the two variables (cBMI and cAge) for the σ -submodel are also underfitted
compared with the results from the gold standard GAMLSS. The reason for this
phenomenon lies in the relationship between the variance and step-length discussed in
Eq. (5). The log-link or exponential transformation for ησ in this example data requires
a sequence of huge step-lengths, but the default search interval does not fulfill this
requirement.

An estimation of ASL by increasing its search interval to [0, 50000], denoted as
ASL5 inTable 3, results in coefficients comparable to those ofGAMLSS.But choosing
a suitable search interval becomes an unavoidable side task for ASL when analyzing
this kind of dataset.
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(a) (b)

Fig. 7 The optimal step-length of each model parameters against the boosting iterations. Up to the stopping
iterations specified by 10-folds CV (here mstop = 769), 406 iterations are used to update μ and 363
iterations are used to update σ

The results of the two semi-analytical approaches hardly differ from the maximum
likelihood based GAMLSS. Unlike the numerical determination with a fixed search
interval in ASL, the analytical approaches replace this procedure with a direct and
precise solution that gets rid of the potential manual intervention (e.g. increasing the
search interval). Contrary to the direct influence of the variance on ν

∗[m]
j∗,μ in Eq. (5), the

optimal step-length ν
∗[m]
j∗,σ is dominated by the chosen base-learner, but as the number

of learning iterations increases, such effects gradually disappear, and ν
∗[m]
j∗,σ finally

converges to 0.5. Thus, our default search interval [0, 1] is sufficient for ν
∗[m]
j∗,σ , and

increasing the range of search interval as for ν
∗[m]
j∗,μ in ASL is almost never necessary.

Theoretically, the ASL with a sufficiently large search interval (ASL5 in this
example) and SAASL should result in the same values as discussed in the previous
theoretical section. Due to the calculation accuracy of computers and the numeri-
cal optimization steps, their outputs are very similar but can differ slightly for the
malnutrition data.

Figure 7 presents the optimal step-lengths ν
∗[m]
j∗,μ and ν

∗[m]
j∗,σ using SAASL for each

variable up to 769 boosting iterations specified by 10-folds CV for one simulation
run. Apparently, the optimal step-lengths for μ over the entire learning process are
over 20000, which is far larger than the fixed step-length 0.1 and the upper boundary
10 of the predefined search interval in ASL. Without knowing this information, it is
not trivial to determine the search interval for ν

∗[m]
j∗,μ. And we thus (after acquiring this

graphic) re-estimated the example data with ASL5.
Additionally, Fig. 7b illustrates the optimal step-length for σ . After several boosting

iterations the optimal values of each covariate converge to their own stable regions
(ranging from about 0.38 to 0.56). As discussed above, the optimal step-lengths for σ

should be some values around 0.5, and this graphic confirms this statement.
As this example is not high-dimensional and does not necessarily require variable

selection, we can use GAMLSS with penalized maximum likelihood estimation for
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Table 4 Number of chosen variables for ημ and ησ . The diagonal depicts the number per method, the
off-diagonal elements overlapping variables

ημ ησ

FSL ASL SAASL SAASL05 FSL ASL SAASL SAASL05

FSL 13 9 9 11 16 9 9 12

ASL 9 20 20 18 9 17 17 15

SAASL 9 20 20 18 9 17 17 15

SAASL05 11 18 18 24 12 15 15 24

Table 5 Comparison of the
out-of-sample MSE

FSL ASL SAASL SAASL05 glmnet

MSE 2.611 1.111 1.111 1.193 0.946

comparison. The fact that its results are very similar to those of the semi-analytical
approaches indicates that results from SAASL and SAASL05 are reliable. The only
alternative to achieve balance between predictors would be using a cyclical algorithm
(with the downsides discussed in the introduction). Rescaling the response variable
or standardizing the negative partial derivatives could reduce the scaling problem to
some extend, but would not eliminate the need to increase the step-length or reduce
the imbalance between predictors.

5.2 Riboflavin dataset

This data set describes the riboflavin (also knownas vitamin B2) production byBacillus
subtilis, containing 71observations and4088predictors (gene expressions) (Bühlmann
et al. 2014; Dezeure et al. 2015). The log-transformed riboflavin production rate,
which is close to a Gaussian distribution, is regarded as the response. This data set is
chosen to demonstrate the capability of the boosting algorithm to deal with situations
in which the number of covariates exceeds the number of observations. Please note
that a comparison to the original GAMLSS algorithm is not possible in this case,
since the algorithm is not able to deal with more model parameters than available
observations. In order to compare the out-of-sampleMSE of each algorithm, we select
10 observations randomly as the validation set.

Table 4 summarize the selected informative variables for μ and σ separately at
the stopping iteration tuned by 5-fold CV, the corresponding coefficients are listed in
Appendix D. The results in both tables demonstrate the intersection of the selected
variables, for example FSL selects 13 informative variables in total, and 9 of them are
also chosen by ASL and SAASL, and there are 11 variables common with SAASL05.
In general, for both μ and σ , more variables are included in the adaptive approaches
and the difference in the selected variables mainly lies between the adaptive and fixed
approach. Because the optimal step-length ν

∗[m]
j∗,μ lies in the predefined search interval

[0, 10] (and is actually smaller than 1, i.e. the adaptive step-length ν
[m]
j∗,μ < 0.1),
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and ν
∗[m]
j∗,σ lies also in a narrower predefined search interval [0, 1], ASL and SAASL

have the same results. Moreover, as the adaptive step-length is smaller than the fixed
step-length 0.1, the adaptive approaches make conservative (small) updates, leading to
more boosting iterations. Several of the gene expressions for μ and σ are selected by
all algorithms and are thus consistently included in the set of informative covariates.
Actually almost all gene expressions chosen by FSL are also recognized as informative
variables by all other methods.

To compare the performance of each algorithm, Table 5 lists the out-of-sample
MSE. In contrast to the fixed approach, the three adaptive approaches perform in
general well, where the performance of SAASL05 is slightly worse than the other
two. In addition, Table 5 demonstrates also the result of Lasso estimator from the R
package glmnet (Friedman et al. 2010) suggested by Bühlmann et al. (2014). The
mean squared prediction error of glmnet is the smallest among the five approaches,
but the difference with the adaptive approaches is relatively small.

As glmnet cannot model the scale parameter σ , only the estimated coefficients of
theμ-submodel are provided inAppendixD.Out of the 21 genes selected byglmnet,
7 and 9 of them are common with the ASL/SAASL and SAASL05, respectively. The
signs (positive/negative) of the estimated coefficients of these common covariates from
glmnet match the adaptive approaches. This comparison indicates that the boosted
GAMLSS with adaptive step-length is an applicable and competitive approach for
high-dimensional data analysis.

6 Conclusions and outlook

The step-length is often not treated as an important tuning parameter in many boost-
ing algorithms, as long as it is set to a small value. However, if complex models
like GAMLSS with several predictors for the different distribution parameters are
estimated, the different scales of the distribution parameters can lead to imbalanced
updates and resulting bad performances if one common small fixed step-length is used,
as we show in this paper.

The main contribution of this article is the proposal to use separate adaptive
step-lengths for each distribution parameter in a non-cyclical boosting algorithm for
GAMLSS. In addition to the resulting balance in updates between different distribu-
tion parameters, a balance between over- and underfitting is obtained by taking only a
proportion (shrinkage parameter) such as 10% of the determined optimal step-length
as the adaptive step-length. The optimal step-length can be found by optimization
procedures such as a line search. We illustrated with an example the importance of
updating the search interval for the search if necessary to find the optimal solution.

For the Gaussian location and scale models, we derived an analytical solution for
the adaptive step-length for the mean parameter μ, which avoids numerical optimiza-
tion and specification of a search interval. For the scale parameter σ , we obtained
an approximate solution of 0.5 (or 0.05 with 10% proportion), which gives a better
motivated default value than 0.1 relative to the step-length for μ, and discussed a
combination with a one-dimensional line search in the semi-analytical approach.
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In simulations and empirical applications, we showed favorable behavior com-
pared to using a fixed step-length FSL. We showed highly competitive results of
our adaptive approaches compared to a standard GAMLSS with respect to estima-
tion accuracy for the low-dimensional case, while the adaptive boosting approach
has the advantages of shrinkage and variable selection, which makes it also applica-
ble to the high-dimensional case of more covariates than observations. Overall, the
semi-analytical method for adaptive step-length selection performed best among the
considered methods.

In this paper we focused on the Gaussian location and scale models to derive
analytical or semi-analytical solutions for the optimal step-length, but in most cases, a
line search has to be conducted for all distribution parameters. In the future, if possible
it isworth investigating analytical adaptive step-lengths for other distributions, because
analytical or approximate adaptive step-lengths increase the numerical efficiency and
also reveal the relationships between the optimal step-lengths for different parameters
and model parameters (as well as properties of commonly used but probably less than
ideal step-length settings).

We are confident that the adaptive step-length concept is relevant way beyond
the Gaussian specification, so further work should contain the study on the stabil-
ity and effectiveness of the implementation of adaptive step-length to other common
distributions or zeor-inflated countmodels. Furtherwork should also include the imple-
mentation of further (e.g. non-linear, spatial etc.) effects (Hothorn et al. 2011) into
the model, and test the influence of the adaptive step-length on such effects. More-
over, we discovered correlations between the optimal step-length ν

∗[m]
j∗,μ of a variable

and the coefficient of this variable in the σ -submodel through our application of the
algorithm. Future work should also investigate the relationship among the optimal
step-lengths of different parameters and the relationship of these step-lengths to the
model coefficients.

A basic R package ASL based on this article is available online at https://github.
com/BoyaoZhang/ASL. This package contains the source code of Algorithm 3 and
the function of the corresponding cross-validation. Some simple examples can also be
found in this package. This package is originated from the R package gamboostLSS,
we hope to implement the functions of ASL into the latter in the future.

Acknowledgements Thisworkwas supported by the Freigeist-Fellowships ofVolkswagen Stiftung, project
“Bayesian Boosting - A new approach to data science, unifying two statistical philosophies”. Boyao Zhang
performed the present work in partial fulfilment of the requirements for obtaining the degree “Dr. rer. pol.”
at the Georg-August-Universität Göttingen.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/BoyaoZhang/ASL
https://github.com/BoyaoZhang/ASL
http://creativecommons.org/licenses/by/4.0/


2322 B. Zhang et al.

Appendices

A Derive the analytical ASL for the Gaussian distribution

Take the negative log-likelihood as the loss function, the loss for Gaussian distribution
can be displayed as

ρ
(
y, {ημ, ησ }) = − log

⎡

⎢⎣
1

(√
2π

)n · det (diag (exp (−ησ (X)))) · exp
(

−1

2
( y − ημ (X))T ·

·diag (exp (−2ησ (X))) · (
y − ημ(X)

))
⎤

⎥⎦

= n

2
log(2π) + 1Tn ησ (X) + 1

2

(
y − ημ(X)

)T diag (exp (−2ησ (X)))
(
y − ημ(X)

)
.

The negative partial derivatives for both distribution parameters in iteration m are
then

u[m]
μ = −

∂ρ
(
y, {η̂[m−1]

μ , η̂
[m−1]
σ }

)

∂η̂μ
(12)

= diag
(
exp

(
−2η̂[m−1]

σ (X)
)) (

y − η̂[m−1]
μ (X)

)
, (13)

u[m]
σ = −

∂ρ
(
y, {η̂[m−1]

μ , η̂
[m−1]
σ }

)

∂η̂σ
(14)

= − 1n + diag

((
y − η̂[m−1]

μ (X)
)T

)
· (15)

· diag
(
exp

(
−2η̂[m−1]

σ (X)
)) (

y − η̂[m−1]
μ (X)

)
. (16)

Both u[m]
θ , θ ∈ {μ, σ } can be regressed on the simple linear base-learner h[m]

j∗,θ (x· j∗),
where j∗ denotes the best-fitting variable.

u[m]
μ = ĥ[m]

j∗,μ(x· j∗) + ε̂
[m]
μ (17)

u[m]
σ = ĥ[m]

j∗,σ (x· j∗) + ε̂
[m]
σ , (18)

where ε̂
[m]
μ and ε̂

[m]
σ denote the residuals in simple linear regression models.

A.1 Optimal step-length for�

The analytical optimal step-length for μ in iteration m is obtained by minimizing the
empirical risk,

ν
∗[m]
j∗,μ = argmin

ν

n∑

i=1

ρ
(
yi , {η̂[m]

μ (xi ·), η̂[m−1]
σ (xi ·)}

)
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= argmin
ν

n∑

i=1

ρ
(
yi , {η̂[m−1]

μ (xi ·) + νĥ[m]
j∗,μ(xi j∗ ), η̂

[m−1]
σ (xi ·)}

)

= argmin
ν

n∑

i=1

− log

⎡

⎢⎣
1√

2π exp(η̂[m−1]
σ (xi ·))

exp

⎛

⎜⎝−
(
yi − η̂

[m−1]
μ (xi ·) − νĥ[m]

j∗,μ(xi j∗ )
)2

2 exp(2η̂[m−1]
σ (xi ·))

⎞

⎟⎠

⎤

⎥⎦

= argmin
ν

n∑

i=1

⎡

⎢⎣
1

2
log(2π) + log(σ̂ [m−1]

i ) +
(
yi − η̂

[m−1]
μ (xi ·) − νĥ[m]

j∗,μ(xi j∗ )
)2

2σ 2[m−1]
i

⎤

⎥⎦

= argmin
ν

n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·) − νĥ[m]

j∗,μ(xi j∗ )
)2

2σ̂ 2[m−1]
i

,

Note that the expression σ̂
2[m−1]
i represents the square of the standard deviation in

the previous boosting iteration, i.e. σ̂ 2[m−1]
i = (σ̂

[m−1]
i )2. And according to the model

specification σ̂
[m−1]
i = exp(η̂[m−1]

σ (xi ·)).
It can be shown, that the expression is a convex function, so the optimal value ν

∗[m]
μ

is accessed by letting the first order derivative equal zero,

∂

∂ν

n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·) − νĥ[m]

j∗,μ(xi j∗)
)2

2σ̂ 2[m−1]
i

Eq.(13)= ∂

∂ν

n∑

i=1

(
u[m]
μ,i σ̂

2[m−1]
i − νĥ[m]

j∗,μ(xi j∗)
)2

2σ̂ 2[m−1]
i

= ∂

∂ν

n∑

i=1

⎛

⎜⎝
1

2
u2[m]
μ,i σ̂

2[m−1]
i − νĥ[m]

j∗,μ(xi j∗)u
[m]
μ,i +

ν2
(
ĥ[m]
j∗,μ(xi j∗)

)2

2σ̂ 2[m−1]
i

⎞

⎟⎠

=
n∑

i=1

⎛

⎜⎝−ĥ[m]
j∗,μ(xi j∗) + ν

(
ĥ[m]
j∗,μ(xi j∗)

)2

σ̂
2[m−1]
i

⎞

⎟⎠ != 0

⇔ ν =
∑n

i=1 ĥ
[m]
j∗,μ(xi j∗)u

[m]
μ,i

∑n
i=1

(
ĥ[m]
j∗,μ

(xi j∗ )
)2

σ̂
2[m−1]
i

Eq.(17)=
∑n

i=1 ĥ
[m]
j∗,μ(xi j∗)

(
ĥ[m]
j∗,μ(xi j∗) + ε̂

[m]
μ,i

)

∑n
i=1

(
ĥ[m]
j∗,μ

(xi j∗ )
)2

σ̂
2[m−1]
i

=
∑n

i=1

(
ĥ[m]
j∗,μ(xi j∗)

)2 + ∑n
i=1 ĥ

[m]
j∗,μ(xi j∗)ε̂μ,i

∑n
i=1

(
ĥ[m]
j∗,μ

(xi j∗ )
)2

σ̂
2[m−1]
i
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=
∑n

i=1

(
ĥ[m]
j∗,μ(xi j∗)

)2

∑n
i=1

(
ĥ[m]
j∗,μ

(xi j∗ )
)2

σ̂
2[m−1]
i

,

where
∑n

i=1 ĥ
[m]
j∗μ(xi j∗)ε̂μ,i = 0, because the residuals are uncorrelated with the fitted

values. �


A.2 Optimal step-length for�

The analytical optimal step-length for σ in iteration m is obtained by minimizing the
empirical risk,

ν∗[m]
σ = argmin

ν

n∑

i=1

ρ
(
yi , {η̂[m−1]

μ (xi ·), η̂[m]
σ (xi ·)}

)

= argmin
ν

n∑

i=1

ρ
(
yi , {η̂[m−1]

μ (xi ·), η̂[m−1]
σ (xi ·) + νĥ[m]

j∗,σ (xi j∗)}
)

= argmin
ν

n∑

i=1

− log

⎡

⎣ 1
√
2π exp

(
η̂

[m−1]
σ (xi ·) + νĥ[m]

j∗,σ (xi j∗)
) ·

· exp
⎛

⎜⎝−
(
yi − η̂

[m−1]
μ (xi ·)

)2

2 exp
(
2η̂[m−1]

σ (xi ·) + 2νĥ[m]
j∗,σ (xi j∗)

)

⎞

⎟⎠

⎤

⎥⎦

= argmin
ν

n∑

i=1

1

2
log(2π) +

n∑

i=1

(
η̂[m−1]

σ (xi ·) + νĥ[m]
j∗,σ (xi j∗)

)
+

+
n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·)

)2

2 exp
(
2η̂[m−1]

σ (xi ·) + 2νĥ[m]
j∗,σ (xi j∗)

)

= argmin
ν

n∑

i=1

(
η̂[m−1]

σ (xi ·) + νĥ[m]
j∗,σ (xi j∗)

)

+
n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·)

)2

2 exp
(
2η̂[m−1]

σ (xi ·) + 2νĥ[m]
j∗,σ (xi j∗)

) .

It can be shown, that the second order derivative of the expression is positive and thus
the expression a convex function. Letting the first order derivative equal zero, we get
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∂

∂ν

⎡

⎢⎣
n∑

i=1

(
η̂
[m−1]
σ (xi ·) + νĥ[m]

j∗,σ (xi j∗)
)

+
n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·)

)2

2 exp
(
2η̂[m−1]

σ (xi ·) + 2νĥ[m]
j∗,σ (xi j∗)

)

⎤

⎥⎦

=
n∑

i=1

ĥ[m]
j∗,σ (xi j∗)

−
n∑

i=1

(
yi − η̂

[m−1]
μ (xi ·)

)2
ĥ[m]
j∗,σ (xi j∗) exp

(
−2η̂[m−1]

σ (xi ·) − 2νĥ[m]
σ (xi j∗)

)

Eq.(16)=
n∑

i=1

ĥ[m]
j∗,σ (xi j∗)

−
n∑

i=1

u[m]
σ ,i + 1

exp
(
−2η̂[m−1]

σ (xi ·)
) ĥ[m]

j∗,σ (xi j∗) exp
(
−2η̂[m−1]

σ (xi ·) − 2νĥ[m]
j∗,σ (xi j∗)

)

=
n∑

i=1

ĥ[m]
j∗,σ (xi j∗) −

n∑

i=1

(
u[m]
σ ,i + 1

)
ĥ[m]
j∗,σ (xi j∗) exp

(
−2νĥ[m]

j∗,σ (xi j∗)
)

Eq.(18)=
n∑

i=1

ĥ[m]
j∗,σ (xi j∗) −

n∑

i=1

(
ĥ[m]
j∗,σ (xi j∗) + ε̂

[m]
σ ,i + 1

)
ĥ[m]
j∗,σ (xi j∗)

exp
(
2νĥ[m]

j∗,σ (xi j∗)
) != 0

�


B Additional simulation graphics

In this appendix, we present the results for some of the simulated examples in Sect. 4.1.
Boxplot of the estimated coefficients are showed in Figs 8 and 9. Figure 10 illustrates
the negative log-likelihood. The summary of stopping iterationsmstop is demonstrated
in Fig. 11.
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Fig. 8 Boxplot of the estimated coefficients of ημ in 100 simulation runs. Values are taken at the stopping
iterations determined by 10-folds cross-validation. The results are separated according to fixed and adaptive
approaches with respect to different non-informative variables settings, i.e. pn-inf = 0, 50, 250 and 500.
The horizontal red lines indicate the true coefficients. The shrinkage of the coefficients towards zero can be
observed from this graphic
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Fig. 9 Boxplot of the estimated coefficients of ησ in 100 simulation runs. Values are taken at the stopping
iterations tuned by 10-folds cross-validation. The results are separated according to fixed and adaptive
approaches with respect to different non-informative variables settings, i.e. pn-inf = 0, 50, 250 and 500.
The horizontal red lines indicate the true coefficients. The shrinkage of the coefficients towards zero can be
observed from this graphic
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Fig. 10 Summary of the negative log-likelihood of 100 simulation runswith different estimating approaches
with respect to various non-informative variables settings. Values are taken at the stopping iteration deter-
mined by 10-folds cross-validation
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Fig. 11 mstop tuned by 10-fold CV with different estimating methods with respect to different non-
informative variables settings. The predefined maximal learning iteration is 1000
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Table 6 The average MSE of the estimated coefficients for both model parameters μ and σ w.r.t. three
estimation approaches. The MSE for each coefficient is calculated not only from 100 simulation runs
(Total) at their stopping iterations but also from the true positive subsets (TP), i.e., the simulations from
which a coefficient is selected by all three approaches

μ σ

β̂1 β̂2 β̂3 β̂1 β̂2 β̂3
Total TP Total TP Total TP Total TP Total TP Total TP

FSL 13.7 80.9 26.5 112.2 13.8 76.0 0.84 0.81 1.41 1.42 0.84 0.82

GAMLSS 113.8 328.8 145.6 355.8 116.8 339.4 0.82 0.79 1.44 1.44 0.81 0.79

SAASL 71.3 250.2 95.8 271.7 73.3 238.5 0.85 0.81 1.39 1.40 0.85 0.82

C Additional simulation table

The additional Table 6 summaries the average MSE of the estimated coefficients for
both Gaussian distribution parameters in Sect. 4.2.

D Estimated coefficients of riboflavin dataset

In this appendix, we provide the estimated coefficients with fixed and adaptive
approaches for riboflavin data inSect. 5.2. Tables7 and8 concern about theμ-submodel
and σ -submodel, respectively.

Table 7 The estimated coefficients of theμ-submodel with fixed and adaptive approaches. Values are taken
at the mstop tuned by 5-folds CV

Variable FSL ASL SAASL SAASL05 glmnet

1 (Intercept) −7.03 −7.04 −7.04 −7.03 0.72

2 ARGF_at −0.08 −0.02 −0.02 −0.02

3 IOLE_at −0.32 −0.02

4 LYSC_at −0.06

5 RPLO_at −0.02 −0.08

6 SPOIISA_at 0.35 0.19 0.19 0.23 0.02

7 XKDC_at 0.18 0.09 0.19

8 XKDO_at 0.02 0.02 0.03

9 XKDS_at 0.11 0.08 0.08 0.08 0.06

10 XLYA_at 0.05

11 XTMA_at 0.03 0.03 0.01

12 XTRA_at 0.01

13 YCDH_at −0.03

14 YCGM_at −0.09 −0.06 −0.06 −0.06 −0.01

15 YCGN_at −0.04 −0.04 −0.04
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Table 7 continued

Variable FSL ASL SAASL SAASL05 glmnet

16 YCGO_at −0.07 −0.14

17 YCGP_at −0.03

18 YCKE_at 0.15 0.12 0.12 0.14 0.15

19 YCLB_at 0.29

20 YCSG_at −0.08 −0.08 −0.18

21 YDAO_at −0.03

22 YDAR_at −0.24 −0.16 −0.16 −0.16

23 YDDK_at −0.04

24 YEBC_at −0.55

25 YHAI_at 0.12 0.12 0.11

26 YHFU_at −0.02 −0.02 −0.03 −0.01

27 YJCJ_at 0.11 0.04 0.04 0.04

28 YKBA_at 0.01

29 YKUH_at 0.05 0.05 0.06

30 YOAB_at −0.34

31 YORB_i_at 0.03 0.03 0.05 0.10

32 YOZH_i_at 0.02 0.02

33 YPGA_at −0.05

34 YTGB_at −0.09

35 YWQD_at −0.02

36 YXJA_at −0.01 −0.01 −0.01

37 YXLC_at −0.03 −0.03

38 YXLD_at −0.12 −0.14 −0.14 −0.16 −0.14

39 YXLE_at −0.06 −0.01 −0.01 −0.01

Table 8 The estimated
coefficients of σ -submodel with
fixed and adaptive approaches.
Values are taken at the mstop
tuned by 5-folds CV

Variables FSL ASL SAASL SAASL05

1 (Intercept) −1.41 −1.29 −1.29 −1.53

2 COTJC_at −0.18 −0.18

3 DEGA_at −0.13 −0.61 −0.61 −0.89

4 EXPZ_at 0.21 0.21 0.05

5 LEVD_at 0.24 0.15 0.15 0.19

6 NTH_at −0.09 −0.11 −0.11

7 PHRI_r_at 0.06 0.03

8 TRUA_at −0.09 −0.74 −0.74 −0.71

9 XLYA_at −0.06

10 XPF_at −0.05

11 YACN_at 0.20
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Table 8 continued Variables FSL ASL SAASL SAASL05

12 YCNK_at 0.66 0.06 0.06 0.27

13 YFIG_at −0.08 −0.09

14 YFMD_at −0.25 −0.43 −0.43 −0.35

15 YHBD_at −0.21 −0.21 −0.19

16 YHEN_at −0.05

17 YHFS_at 0.06

18 YITQ_at −0.24

19 YJFB_at −0.11 −0.11 −0.09

20 YKRS_at 0.29 0.29 0.35

21 YKVV_at 0.06 0.06 0.28

22 YPGA_at 0.07 0.05 0.05 0.12

23 YSBA_at −0.55 −0.55 −0.28

24 YSBB_at −0.15 −0.23 −−0.23 -0.20

25 YTFP_at −0.24

26 YTQI_at 0.10 0.16 0.16 0.11

27 YURR_at −0.07 −0.07 −0.11

28 YWQA_at −0.11 −0.20

29 YYAE_at −0.06

30 YYBT_at −0.08 −0.03
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