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Abstract
Mixture autoregressive (MAR) models provide a flexible way to model time series
with predictive distributions which depend on the recent history of the process and
are able to accommodate asymmetry and multimodality. Bayesian inference for such
models offers the additional advantage of incorporating the uncertainty in the esti-
mated models into the predictions. We introduce a new way of sampling from the
posterior distribution of the parameters of MAR models which allows for covering
the complete parameter space of the models, unlike previous approaches. We also
propose a relabelling algorithm to deal a posteriori with label switching. We apply our
new method to simulated and real datasets, discuss the accuracy and performance of
our new method, as well as its advantages over previous studies. The idea of density
forecasting using MCMC output is also introduced.

Keyword Mixture autoregressive model · Stationarity · MCMC methods · Model
selection · Forecasting

1 Introduction

Mixture autoregressive (MAR) models (Wong and Li 2000) provide a flexible way
to model time series with predictive distributions which depend on the recent history
of the process. Not only do the predictive distributions change over time, but they
are also different for different horizons for predictions made at a fixed time point.
As a consequence, they inherently accommodate asymmetry, multimodality and het-
eroskedasticity. For this reason, mixture autoregressive models have been considered
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a valuable alternative to other models for time series, such as the SETARmodel (Tong
1990), the Gaussian transition mixture distribution model (Le et al. 1996), or the
widely used class of GARCH models (Nelson 1991). Another useful feature of MAR
models is that they model jointly the conditional mean and autocovariance. Moreover,
the autocovariances are zero on a subspace of the parameters. So, if an uncorrelated
(weak white noise) model is required, as is often the case for financial time series, the
parameters can be restricted to that subspace.

MARmodels can be thought of as random coefficient autoregressivemodels (Bosh-
nakov 2011). Similarly to the usual autoregressions, there is a stationarity region for
the parameters, outside which the MAR models are explosive and thus not generally
useful.

Wong and Li (2000) considered estimation of MAR models based on the EM
algorithm (Dempster et al. 1977). That method is particularly well suited for mixture-
type models and works well. On the other hand, a Bayesian approach can offer the
advantage of incorporating the uncertainty in the estimatedmodels into the predictions.

Sampietro (2006) presented the first Bayesian analysis of MAR models. In his
work, reversible jumpMCMC (Green 1995) is used to select the autoregressive orders
of the components in the mixture, and models with different number of components
are compared using methods by Chib (1995) and Chib and Jeliazkov (2001), which
exploit the marginal likelihood identity. In addition, he derives analytically posterior
distributions for all parameters in the selected model.

The Bayesian updates of the autoregressive parameters are problematic, because
the parameters need to be kept in the stationarity region, which is very complex, and so
cannot really beupdated independently of eachother. In the case of autoregressive (AR)
models, it is routine to use parametrisation in terms of partial autocorrelations (Jones
1987), which are subject only to the restriction to be in the interval (−1, 1). Sampi-
etro (2006) adapted this neatly to MAR models by parameterising the autoregressive
parameters of each component of the MAR model with the partial autocorrelations of
an AR model with those parameters.

Amajor drawback of Sampietro’s sampling algorithm for the autoregressive param-
eters, is that it restricts the parameters of each component to be in the stationarity region
of an autoregressive model. While this guarantees that the MAR model is stationary,
it excludes from consideration considerable part of the stationarity region of the MAR
model (Wong and Li 2000, p. 98; Boshnakov 2011). Depending on the mixture prob-
abilities, the excluded part can be substantial. For example, most examples in Wong
and Li (2000, p. 98) cannot be handled by Sampietro’s approach, see also the examples
in Sect. 4.

Lau and So (2008) proposed an infinite mixture of autoregressive models and used
a semi-parametric approach based on a Dirichlet process (Ferguson et al. 1973) and
the so called Gibbs version of the weighted Chinese restaurant process (Lo 2005) to
select the optimal number of mixture components and assign observations to those.
However, they do not assess conditions for second order stationarity of the model.

Wood et al. (2011) used data segmentation for estimation of a variant of the MAR
models—they divide the data into segments and assign each segment to one mixture
component. Their approach is aimed at time serieswhich are piecewise autoregressions
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(for example as a result of structural changes), has a different field of applications,
and is not directly comparable to the MAR model considered here.

Hossain (2012) developed a full analysis (model selection and sampling), which
reduced the constraints of Sampietro’s analysis. UsingMetropolis–Hastings algorithm
and a truncated Gaussian proposal distribution for the moves, he directly simulated the
autoregressive parameters from their posterior distribution. This method still imposes
a constraint on the autoregressive parameters through the choice of boundaries for the
truncated Gaussian proposal.While the truncation is used to keep the parameters in the
stationarity region, the choice of boundaries is arbitrary and can leave out a substantial
part of the stationarity region of the model. In addition, his reversible jump move for
the autoregressive order seems conservative, as it uses functions which always prefer
jumps towards low autoregressive orders (this will be seen in Sect. 3.5).

A common problem associated with mixtures is label switching (see for instance
Celeux 2000), which derives from symmetry in the likelihood function. If no prior
information is available to distinguish components in the mixture, then the posterior
distribution will also be symmetric. It is essential that label switching is detected and
handled properly in order to obtain meaningful results. A common way to deal with
this, also used by Sampietro (2006) and Hossain (2012), is to impose identifiability
constraints. However, it is well known that such constraints may lead to bias and other
problems. In the case of MAR models, Hossain (2012) showed that these constraints
may affect convergence to the posterior distribution.

We develop a new procedure which resolves the above problems. We propose an
alternative Metropolis–Hastings move to sample directly from the posterior distribu-
tion of the autoregressive components. Our method covers the complete parameter
space. We also propose a way of selecting optimal autoregressive orders using
reversible jump MCMC for choosing the autoregressive order of each component
in the mixture, which is less conservative than that of Hossain. We propose the use of
a relabelling algorithm to deal a posteriori with label switching.

We apply the new methodology to both simulated and real datasets, and discuss the
accuracy and performance of our algorithm, as well as its advantages over previous
studies. Real data examples include two comparisons with previous literature (the
IBM common stock closing prices, and the Canadian Lynx data, thoroughly analysed
inWong and Li 2000), and a previously unexplored dataset, which allows to introduce
and discuss further practical aspects of parameter estimation and predictionwithMAR
models.

Finally, we briefly introduce the idea of density forecasting using MCMC output.
The structure of the paper is as follows. In Sect. 2 we introduce the mixture autore-

gressive model and the notation we need. In Sect. 3 we give detailed description of
our method for Bayesian analysis of MAR models, including model selection, full
description of the sampling algorithm, and the relabelling algorithm to deal with label
switching. Section 4 shows results from application of our method to simulated and
real dataset. Section 5 introduces the idea of density forecast using MCMC output.
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2 Themixture autoregressive model

A process {yt } is said to follow a Mixture autoregressive (MAR) process if its distri-
bution function, conditional on past information and parameter vector θ = (π , σ ,φ),
can be written as

F(yt |Ft−1, θ) =
g∑

k=1

πk Fk

(
yt − φk0 − ∑pk

i=1 φki yt−i

σk

)
, (1)

where

• Ft−1 is the sigma field generated by the process up to (and including) t − 1.
Informally, Ft−1 denotes all the available information at time t − 1, the most
immediate past.

• g is the total number of autoregressive components.
• πk > 0, k = 1, . . . , g, are the mixing weights or proportions, specifying a discrete
probability distribution. So,

∑g
k=1 πk = 1 and πg = 1−∑g−1

k=1 πk . We will denote
the vector of mixing weights by π = (

π1, . . . , πg
)
.

• Fk is the distribution function (CDF) of a standardised distribution with location
parameter zero and scale parameter one.
The corresponding density function will be denoted by fk .

• φk = (
φk1, . . . , φkpk

)
is the vector of autoregressive parameters for the kth com-

ponent, with φk0 being the shift. Here, pk is the autoregressive order of component
k and we define p = max(pk) to be the largest order among the components. A
useful convention is to set φk j = 0, for pk + 1 ≤ j ≤ p.

• σk > 0 is the scale parameter for the kth component.Wedenote byσ = (
σ1, . . . σg

)

the vector of scale parameters. Furthermore, we define the precision, τk , of the kth
component by
τk = 1/σ 2

k .• If the process starts at t = 1, then Eq. (1) holds for t > p.

We will refer to the model defined by Eq. (1) as MAR(g; p1, . . . , pg) model. The
following notation will also be needed. Let

μtk = φk0 +
pk∑

i=1

φki yt−i .

The error term associated with the kth component at time t is defined by

etk = yt − φk0 −
pk∑

i=1

φki yt−i = yt − μtk . (2)

A useful alternative expression for νtk is the following mean corrected form:

μtk = μk +
pk∑

i=1

φki (yt−i − μk) .
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Comparing the two representations we get

φk0 = μk

(
1 −

pk∑

i=1

φki

)
.

If
∑pk

i=1 φki �= 0, we also have

μk = φk0

1 − ∑pk
i=1 φki

. (3)

A nice feature of this model is that the one-step predictive distributions are given
directly by the specification of the model with Eq. (1). The h-steps ahead predictive
distributions of yt+h at time t can be obtained by simulation (Wong and Li 2000) or,
in the case of Gaussian and α-stable components, analytically (Boshnakov 2009).

We focus here onmixtures of Gaussian components. In this case, using the standard
notations � and φ for the CDF and PDF of the standard Normal distribution, we have
Fk ≡ � and fk ≡ φ, for k = 1, . . . , g. The model in Eq. (1) can hence be written as

F(yt |Ft−1, θ) =
g∑

k=1

πk�

(
yt − φk0 − ∑pk

i=1 φki yt−i

σk

)
(4)

or, alternatively, in terms of the conditional pdf

f (yt |Ft−1, θ) =
g∑

k=1

πk

σk
φ

(
yt − φk0 − ∑pk

i=1 φki yt−i

σk

)
(5)

Conditional mean and variance of yt are

E[yt |Ft−1, θ ] =
g∑

k=1

πk

(
φk0 +

p∑

i=1

φki yt−i

)
=

g∑

k=1

πkμtk

Var(yt |Ft−1, θ) =
g∑

k=1

πkσ
2
k +

g∑

k=1

πkμ
2
tk −

g∑

k=1

(πkμtk)
2

(6)

The correlation structure of a stable MAR process with maximum order p is similar
to that of an AR(p) process. At lag h we have:

ρh =
g∑

k=1

πk

p∑

i=1

φkiρ|h−i |, h ≥ 1

=
p∑

i=1

( g∑

k=1

πkφki

)
ρ|h−i |

.

Setting ai = (∑g
k=1 πkφki

)
for i = 1, . . . , p, we see that these are analogous to the

Yule-Walker equations for an AR(p) model.
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2.1 Stability of theMARmodel

Stationarity conditions for MAR time series have some similarity to those for autore-
gressions with some notable differences. Below we give the results we need, see
Boshnakov (2011) and the references therein for further details.

A matrix is stable if and only if all of its eigenvalues have moduli smaller than one
(equivalently, lie inside the unit circle). Consider the companion matrices

Ak =

⎡

⎢⎢⎢⎢⎢⎣

φk1 φk2 . . . φk(p−1) φkp

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤

⎥⎥⎥⎥⎥⎦
, k = 1, . . . , g.

We say that the MAR model is stable if and only if the matrix

A =
g∑

k=1

πk Ak ⊗ Ak

is stable (⊗ is the Kronecker product). If a MAR model is stable, then it can be
used as a model for stationary time series. The stability condition is sometimes called
stationarity condition.

If g = 1, the MAR model reduces to an AR model and the above condition states
that the model is stable if and only if A1 ⊗ A1 is stable, which is equivalent to the
same requirement for A1. For g > 1, it is still true that if all matrices Ak, . . . , Ak ,
k = 1, . . . , g, are stable, then A is also stable. However. the inverse is no longer true,
i.e. A may be stable even if one or more of the matrices Ak are not stable.

What the above means is that the parameters of some of the components of a MAR
model may not correspond to stationary AR models. It is convenient to refer to such
components as “non-stationary”.

Partial autocorrelations are often used as parameters of autoregressive models
because they transform the stationarity region of the autoregressive parameters to
a hyper-cube with sides (−1, 1). The above discussion shows that the partial auto-
correlations corresponding to the components of a MAR model cannot be used as
parameters if coverage of the entire stationary region of the MAR model is desired.

3 Bayesian analysis of mixture autoregressive models

3.1 Likelihood function andmissing data formulation

Given data y1, . . . , yn , the likelihood function for the MAR model in the case of
Gaussian mixture components takes the form of (5)
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L(φ, σ ,π | y) =
n∏

t=p+1

g∑

k=1

πk

σk
φ

(
yt − φk0 − ∑pk

i=1 φki yt−i

σk

)
.

The likelihood function is not very tractable and a standard approach is to resort to
the missing data formulation (Dempster et al. 1977).

Let Zt = (
Zt1, . . . , Ztg

)
be a latent allocation random variable, where zt is a g-

dimensional vector with entry k equal to 1 if yt comes from the kth component of the
mixture, and 0 otherwise. We assume that the zts are realisations of discrete random
variables, independently drawn from the discrete distribution:

P(ztk = 1|g,π) = πk, k = 1, . . . , g. (7)

and such that exactly one entry is 1, while the remaining entries are 0. This setup,
widely exploited in the literature (see, for instance Dempster et al. 1977; Diebolt and
Robert 1994) allows to rewrite the likelihood function in a much more tractable way
as follows:

L(φ, σ ,π | y, z) =
n∏

t=p+1

g∏

k=1

(
πk

σk
φ

(
yt − φk0 − ∑pk

i=1 φki yt−i

σk

))ztk

(8)

where z is a (n − p) × g matrix which rows are the vectors z p+1, . . . , zn . In practice,
the zt s are not available. We adopt a Bayesian approach to deal with this. We set
suitable prior distributions on the latent variables and the parameters of the model
and develop a methodology for obtaining posterior distributions of the parameters and
dealing with other issues arising in the model building process.

3.2 Priors setup and choice of hyperparameters

The setup of prior distributions is based onSampietro (2006) andHossain (2012). In the
absence of any relevant prior information it is natural to assume a priori that each data
point is equally likely to be generated from any component, i.e. π1 = · · · = πg = 1/g.
This is a discrete uniform distribution, which is a particular case of the multinomial
distribution. The conjugate prior of the latter is the Dirichlet distribution.We therefore
set the prior for the mixing weigths vector, π , to

π ∼ D
(
w1, . . . , wg

)
, w1 = · · · = wg = 1. (9)

The prior distribution on the component means is a normal distribution with common
fixed hyperparameters ζ for the mean and κ for the precision, i.e.

μk ∼ N (ζ, κ−1), k = 1, . . . , g. (10)

For the component precisions, τk , a hierarchical approach is adopted, as suggested
in Richardson and Green (1997). Here, for a generic kth component the prior is a
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Gamma distribution with hyperparameters c (fixed) and λ, which itself follows a
gamma distribution with fixed hyperparameters a and b. We have therefore

c − fixed

λ ∼ Ga(a, b)

τk | λ ∼ Ga(c, λ), k = 1, . . . , g.

(11)

The main difference between our approach and that of Sampietro (2006) and Hos-
sain (2012) is in the treatment of the autoregressive parameters.

Sampietro (2006) exploits the one-to-one relationship between partial autocorre-
lations and autoregressive parameters for autoregressive models described in Jones
(1987). Namely, he parameterises each MAR component with partial autocorrela-
tions, draws samples from the posterior distribution of the partial autocorrelations via
Gibbs-type moves and converts them to autoregressive parameters using the func-
tional relationship between partial autocorrelations and autoregressive parameters. Of
course, the term “partial autocorrelations” doe not refer to the actual partial autocorrel-
lations of the MAR process, they are simply transformed parameters. The advantage
of this procedure is that the stability region for the partial autocorrelation parameters is
just a hyper-cube with marginals in the interval (−1, 1), while for the AR parameters
it is a body whose boundary involves non-linear relationships between the parameters.

A drawback of the partial autocorrelations approach in the MAR case is that it
covers only a subset of the stability region of the model. Depending on the other
parameters, the loss may be substantial.

Hossain (2012) overcomes the above drawbacks by simulating the AR parameters
directly. He uses Random Walk Metropolis, while applying a constraint to the pro-
posal distribution (a truncated Normal). The truncation is chosen as a compromise
that ensures that most of the stability region is covered, while keeping a reasonable
acceptance rate. Although effective with “well behaved” data, there are scenarios,
especially concerning financial examples, in which the loss of information due to a
pre-set truncation becomes significant, as will be shown later on. In this paper, we
choose Random Walk Metropolis for simulation from the posterior distribution of
autoregressive parameters, while exploiting the stability condition to avoid restraining
the parameter space a priori.

With the above considerations, for the autoregressive parameters we choose a mul-
tivariate uniform distribution with range in the stability region of the model, and
independence between parameters is assumed. Hence, for a generic φk prior distribu-
tion is such that:

p(φ | π) ∝ I{Stable}

where I denotes the indicator function assuming value 1 if the condition is satisfied
and 0 otherwise. In other words, what we propose is a flat (uniform) prior over the
stability region of the model. This uniform prior allows for better exploration of the
parameter space than a Normal prior and does not mask multimodality.
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Choice of hyperparameters Here we discuss the settings for the hyperparameters ζ ,
κ , a, b, and c. We have already discussed that the hyperparameters for the Dirichlet
prior distribution on the mixing weights (all equal to 1). Also, λ is a hyperparameter
but it is a random variable with distribution which will be fully specified once a and
b are.

Following Richardson and Green (1997), letRy = max(y)−min(y) be the length
of the interval variation of the dataset. Also fix the two hyperparameters a = 0.2 and
c = 2. The remaining hyperparameters are set as follows:

ζ = min(y) + Ry

2
κ = 1

Ry
b = 100a

cR2
y

= 10

R2
y

3.3 Posterior distributions and acceptance probability for RWM

Following Sampietro (2006) and Hossain (2012), posterior distributions for all but the
autoregressive parameters are as follows:

P(ztk = 1 | π ,μ,φ, τ , λ, y) =
πk φ

(
etk
σk

)

g∑

l=1

πlφ

(
etl
σl

)

π | μ,φ, τ , y, z ∼ D
(
1 + n1, . . . , 1 + ng

)

μk | μ−μk
,φ, τ ,π , y, z ∼ N

(
τknk ēkbk + κζ

τknkb2k + κ
,

1

τknkb2k + κ

)

λ | μ,φ, τ ,π , y, z ∼ Ga

(
a + gc, b +

g∑

k=1

τk

)

τk | μ,φ, τ−τk , λ,π , y, z ∼ Ga

⎛

⎝c + nk
2

, λ + 1

2

n∑

t=p+1

e2tk ztk

⎞

⎠

(12)

where for k = 1, . . . , g,

etk = yt − νtk, nk =
n∑

t=p+1

ztk, bk = 1 −
pk∑

i=1

φki , ēk = 1

nk

n∑

t=p+1

etk ztk .

and z is the matrix of allocation random variables as defined in Sect. 3.1.
All these parameters are updated via aGibbs-typemove. Similarly, zt s are simulated

from a multinomial distribution with associated posterior probabilities.
Toupdate autoregressive parameters, letφk , k = 1, . . . , g, be the set of current states

of the autoregressive parameters, i.e. a set of draws from the posterior distribution of
φk . We can simulate φ∗

k from a proposal MV N (φk, �
−1
k ) distribution, denoted by

q(φ∗
k ,φk), with �k = γk Ipk , where Ipk is the identity matrix of size pk .
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Here γk , k = 1, . . . , g is a tuning parameter, chosen in such way that the acceptance
rate of RWM is optimal (20–25%) for component k. We allow γk to change between
components, but to be constant within the same component. Notice the difference
between our proposal and the two-step approach by Sampietro (2006), or the truncated
Normal proposal chosen by Hossain (2012). The probability of accepting a move to
the proposed φ∗

k is

α
(
φk,φ

∗
k

) = min

{
1,

f
(
y | φ∗

k

)
p(φ∗

k)q
(
φk,φ

∗
k

)

f
(
y | φk

)
p(φk)q

(
φ∗
k ,φk

)
}
, (13)

where q
(
φk,φ

∗
k

) = q
(
φ∗
k ,φk

)
, due to the symmetry in the Normal proposal. There-

fore, the acceptance probability will only depend on the likelihood ratio of the new
set of parameters over the current set of parameters, i.e.

α
(
φk,φ

∗
k

) = min

{
1,

f
(
y | φ∗

k

)

f
(
y | φk

)
}

(14)

where

f
(
y | φ∗

k

)

f
(
y | φk

) =

n∏

t=p+1
ztk=1

exp

{
− 1

2σ 2
k

(
yt − φ∗

k0 −
pk∑

i=1

φ∗
ki yt−i

)2 }

n∏

t=p+1
ztk=1

exp

{
− 1

2σ 2
k

(
yt − φk0 −

pk∑

i=1

φki yt−i

)2 }

The priors are absent from the above formula, since their ratio is 1, due to the flat
priors on the autoregressive parameters.

This means that the likelihood ratio for the kth component is independent of cur-
rent values of parameters for the remaining components. This enables to calculate
likelihood ratios separately for each component.

The procedure described builds a candidate model with updated mixing weights,
shift, scale and autoregressive parameters. However, because stability of such model
does not onlydependon the autoregressive parameters,wemust ensure that the stability
condition of Sect. 2.1 is satisfied. If this is not the case, the candidate model and all
its parameters are rejected, and the current state of the chain is set to be the same as at
the previous iteration.

3.4 Dealing with label switching

Once the samples have been drawn, label switching is dealt with using a k-means
clustering algorithm proposed by Celeux (2000). Identifiability constraints such as
π1 > π2 > · · · > πg are commonly used to make mixtures identifiable, but it is
well known that this choice may be problematic. Examples are given in the discussion
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to the paper by Richardson and Green (1997). In addition, Hossain (2012) showed
that applying an identifiability constraint such as π1 > π2 > · · · > πg may in some
cases affect convergence of the chain, and they are not recommended particularly
when there is evidence that two or more of the mixing weight may be equal. With our
approach instead, we do not interfere with the chain during the simulation, and hence
convergence is not affected.

Our algorithm works by first choosing the first m simulated values of the output
after convergence. The value m shall be chosen small enough for label switching to
not have occurred yet, and large enough to be able to calculate reliable initial values
of cluster centres and their respective variances.

Let θ = (
θ1, . . . , θg

)
be a subset of model parameters of size g, and N the size of

the converged sample. The requirement on subsetting is that corresponding paramters
of the different mixture components must be chosen, for instance θ ≡ (

π1, . . . , πg
)

or θ ≡ (
μ1, . . . , μg

)
among other choices. For any centre coordinate θi , i = 1, . . . , q

we calculate the mean and variance, based on the firstm simulated values, respectively
as:

θ̄i = 1

m

m∑

j=1

θ
( j)
i s̄2i = 1

m

m∑

j=1

(
θ

( j)
i − θ̄i

)2

We set this to be the “true” permutation of the components, i.e. we now have an

initial center θ̄
(0)

with variances s̄(0)2

i , i = 1, . . . , q. The remaining g!−1 permutations
can be obtained by simply permuting these centres.

From these initial estimates, the r th iteration (r = 1, . . . , N −m) of the procedure
consists of two steps:

• the parameter vector θ (m+r) is assigned to the cluster such that the normalised
squared distance

g∑

i=1

(
θ

(m+r)
i − θ̄

(m+r−1)
i

)2

(
s(m+r−1)
i

)2 (15)

isminimised, where θ̄
(m+r−1)
i is the i th centre coordinate and s(m+r−1)

i its standard
deviation, at the latest update m + r − 1.

• Centre coordinates and their variances are respectively updated as follows:

θ̄
(m+r)
i = m + r − 1

m + r
θ̄

(m+r−1)
i + 1

m + r
θ

(m+r)
i (16)

and

(s(m+r)
i )2 = m + r − 1

m + r
(s(m+r−1)
i )2 + m + r − 1

m + r

(
θ̄

(m+r−1)
i − θ̄

(m+r)
i

)2

+ 1

m + r

(
θ

(m+r)
i − θ̄

(m+r)
i

)2 (17)
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for i = 1, . . . , g.

For the mixture autoregressive case, it is not always clear which subset of the
parameters should be used. In fact, group separation might seem clearer in the mixing
weights at times, as well as in the scale or shift parameters. Therefore this method
requires graphical assistance, i.e. checking the raw output looking for clear group
separation.However, it is advisable not to use the autoregressive parameters, especially
when the orders are different.

Once the selected subset has been relabelled, labels for the remaining parameters
can be switched accordingly.

3.5 Reversible JumpMCMC for choosing autoregressive orders

For this step, we use Reversible Jump MCMC (Green 1995). At each iteration, one
component k is randomly chosen from the model. Let pk be the current autoregressive
order of this component, and set pmax to be the largest possible value pk may assume.
For the selected component, we propose to increase or decrease its autoregressive
order by 1 with probabilities

p∗
k =

{
pk − 1 with probability d(pk)

pk + 1 with probability b(pk)

where b(pk) = 1−d(pk), and such that d(1) = 0 and b(pmax ) = 0. Notice that d(pk)
(or equivalently b(pk)) may be any function defined in the interval [0, 1] satisfying
such condition. For instance, Hossain (2012) introduced two parametric functions
for this step. However, in absence of relevant prior information, we choose b(pk) =
d(pk) = 0.5 in our analysis, while presenting the method in the general case.

Finally, it is necessary to point out that in both scenarios we have a 1-1 mapping
between current and proposed model, so that the resulting Jacobian is always equal to
1.

Given a proposed move, we proceed as follows:

• If the proposal is to move from pk to p∗
k = pk − 1, we simply drop φkpk , and

calculate the acceptance probability by multiplying the likelihood ratio and the
proposal ratio, i.e.

α
(
Mpk ,Mp∗

k

)

= min

{
1,

f
(
y | φ

p∗
k

k

)
p(φ

p∗
k

k )

f
(
y | φ

pk
k

)
p(φ pk

k )
×

[
b

(
p∗
k

)

d (pk)
× φ

(
φkpk − φkpk

1/
√

γk

)] }
(18)

where φ

(
φkpk − φkpk

1/
√

γk

)
is the density of the parameter dropped out of the model,

according to its proposal distribution.
If the candidate model is not stable, then it is automatically rejected, i.e.

α
(
Mpk ,Mp∗

k

)
= 0.
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• If the proposed move is from pk to p∗
k = pk + 1, we proceed by simulating

the additional parameter from a suitable distribution. In absence of relevant prior
information, the choice is to simulate a value from a uniform distribution centred
in 0 and with appropriate range, so that values both close and far apart from 0,
both positive and negative, are taken into consideration.
These considerations lead to draw φkp∗

k
∼ U (−1.5, 1.5)

The acceptance probability in this case is

α
(
Mpk ,Mp∗

k

)
= min

{
1,

f
(
y | φ

p∗
k

k

)
p(φ

p∗
k

k )

f
(
y | φ

pk
k

)
p(φ

p∗
k

k )
×

[
d (pk)

b
(
p∗
k

) × 3

] }
(19)

where 3 is the inverse of the U (−1.5, 1.5) density.

Once again, if the candidate model is not stable, α
(
Mpk ,Mp∗

k

)
= 0 and the

current model is retained.

Notice that, similarly to the sampler for autoregressive parameters, the prior ratio
in both cases is equal to 1 and therefore omitted.

3.6 Choosing the number of components

To select the appropriate number of autoregressive components in the mixture, we
apply the methods proposed by Chib (1995) and Chib and Jeliazkov (2001), respec-
tively, for use of output from Gibbs and Metropolis–Hastings sampling. Both make
use of the marginal likelihood identity.

From Bayes’ theorem, we know that

p(g| y) ∝ f ( y | g)p(g), (20)

where p(g) is the prior distribution on g, and f (y | g) is the marginal likelihood
function, defined as

f ( y | g) =
∑

p

∫
f ( y | θ, p, g)p(θ , p | g)dθ (21)

with θ = (φ,π ,μ, τ ) being the parameter vector of the model.
For any values θ∗, p∗, number of components g and observed data y, we can use

the marginal likelihood identity to decompose the marginal likelihood into parts that
are know or can be estimated

f ( y|g) = f ( y | θ∗, p∗, g)p (θ∗, p∗ | g)
p (θ∗, p∗ | y, g)

= f ( y | θ∗, p∗, g)p (θ∗ | p∗, g) p(p∗ | g)
p (θ∗ | p∗, y, g) p(p∗ | y, g)

(22)
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Notice that the only quantity not readily available in the above equation is
p (θ∗ | p∗, y, g). However, this can be estimated by running reduced MCMC sim-
ulations for fixed p∗ (which can be obtained by the RJMCMC method described in
Section 5.1), as follows:

p̂
(
θ∗ | p∗, y, g

) = p̂
(
φ∗ | y, p∗, g

)

p̂
(
μ∗ | φ∗, y, p∗, g

)

p̂
(
τ∗ | μ∗,φ∗, y, p∗, g

)

p̂
(
π∗ | τ∗,μ∗,φ∗, y, p∗, g

)
(23)

Once these quantities are estimated (see 25, 26, 27, 28), plug them in Eq. (22), together
with the other known quantities, to obtain the marginal likelihood for the model with
fixed number of components g.

For higher accuracy of results, it is suggested to compare marginal likelihood with
different g at points of high density in the posterior distribution of θ∗. We will use the
estimated highest posterior density values.

Estimation of p̂(�∗ | y, p∗, g)

Suppose we want to estimate p̂
(
φ∗
k | p∗, y, g

)
, for k = 1, . . . , g. We partition the

parameter space into two subsets, namely �k−1 = (
p,φ1, . . . ,φk−1, g

)
and �k+1 =(

φk+1, . . . ,φg,μ, τ ,π
)
, where parameters belonging to �k−1 are fixed (known or

already selected high density values).
First, produce a reduced chain of length N j to obtain φ∗

k , the highest density value
for φk, using the sampling algorithm in Section 4.3, applied to the non-fixed set of
parameters only. Define �k∗ , the set of known (fixed) parameters with the addition of
φ∗
k . From a second reduced chain of length Ni , simulate {�̃(i)

k+1, z̃
(i) | �k∗ , y}, as well

as new draws φ̃
(i)
k from the proposal density in Equation 10, centred in φ∗

k .

Now, let α(φ
( j)
k ,φ∗

k) and α(φ∗
k , φ̃

(i)
k ) denote acceptance probabilities respectively

of the first and second chain. We can finally estimate the value of the posterior density
at φ∗

k as

p̂
(
φ∗
k | p∗,φ∗

1, . . . ,φ
∗
k−1, g

) =

1

N j

N j∑

j=1

α(φ
( j)
k ,φ∗

k)q
(
φ

( j)
k ,φ∗

k

)

1

Ni

Ni∑

i=1

α(φ∗
k , φ̃

(i)
k )

(24)

Repeat this procedure for all k = 1, . . . , g and multiply the single densities to obtain

p̂
(
φ∗ | y, p∗, g

) =
g∏

k=1

p̂
(
φ∗
k | p∗,φ∗

1, . . . ,φ
∗
k−1, g

)
. (25)
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Note that there are no requirements on what Ni and N j should be, granted the first
chain is long enough to have reached the stationary distribution.

Estimation of p̂
(
�∗ | �∗, y, p∗, g

)

Run a reduced chain of length N . At each iteration i , generate draws z(i), π (i), τ (i),
μ(i). Set μ∗ = (

μ1, . . . , μg
)
, the parameter vector of highest posterior density. The

posterior density at μ∗ can be estimated as

p̂
(
μ∗ | φ∗, y, p∗, g

) = 1

N

N∑

i=1

g∏

k=1

p
(
μ∗
k | φ∗, τ (i),π (i), y, z(i), p∗, g

)
. (26)

Estimation of p̂
(
�∗ | �∗, �∗, y, p∗, g

)

Run a reduced chain of length Ni . At each iteration i , generate draws z(i), π (i), τ (i).
Set τ ∗ = (

τ1, . . . , τg
)
, the parameter vector of highest posterior density. Posterior

density at τ ∗ can be estimated as

p̂
(
τ ∗ | μ∗,φ∗, y, p∗, g

) = 1

N

N∑

i=1

g∏

k=1

p
(
τ ∗
k | μ∗,φ∗,π (i), y, z(i), p∗, g

)
. (27)

Estimation of p̂
(
�∗ | �∗, �∗, �∗, y, p∗, g

)

Run a reduced chain of length N . At each iteration i , generate draws z(i),π (i). Set
π∗ = (

π1, . . . , πg
)
, the parameter vector of highest posterior density. Posterior density

at π∗ can be estimated as

p̂
(
π∗ | τ ∗,μ∗,φ∗, y, p∗, g

) = 1

N

N∑

i=1

g∏

k=1

p
(
π∗
k | y, z(i), p∗, g

)
. (28)

3.7 Label switching andmarginal likelihood

We discuss here the possible effect of incorrect label switching on the methodology
in Sect. 3.6 for calculation of the marginal likelihood of the data. Recall the formula:

p (y | x) = L
(
θ∗ | x) p (

θ∗)

p
(
θ∗ | y, x)

where θ∗ is a point of high density (ideally of highest density) according to its posterior
distribution.

For mixture models, we have that the likelihood function L
(
θ∗ | x) is a product

of sums. For simplicity, suppose the model is a mixture of two components, and
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θ = (θ1, θ2). It follows that the conditional likelihood is

L
(
θ∗ | x) =

n∏

i=1

π1 f ( y | θ1) + π2 f ( y | θ2) =
n∏

i=1

π2 f ( y | θ2) + π2 f (y | θ1)

which means that the likelihood will be the same, regardless of the permutation of θ .
Clearly, this holds for any number of components, g.

Under the same example, prior and posterior distributions for θ may somewhat
be affected by label switching. For prior distributions, this will happen when the
practician sets up the experiment with informative priors, as this would bring the risk
of evaluating a parameter under the wrong prior distribution. However, informative
priors have the purpose of creating enough separation so that label switching does
not in fact occur, as they incorporate prior belief on the distribution of the parameters
(see Celeux 2000). In the examples presented here, prior distributions are the same
across all components for corresponing parameters (for instance, all precisions follow
a priori the same Gamma distribution), and therefore label switching will not affect
the result.

Posterior distributions are most affected by label switching. However, we point few
remarks in favor of the effectiveness of Chib (1995) and Chib and Jeliazkov (2001),
even in the case of undetected label switching:

• The authors reassure that the methodology works effectively with a range of
high density values under their respective posterior distributions. Returning to
the two-component mixture example, suppose that there is undetected switching.
The corresponding parameters in the two components, for example π1 and pi2,
will show two modes. These modes will however correspond to the two highest
density values, respectively, of π1 and π2. Therfore, it makes sense to believe that,
ultimately, the choice of π∗

1 and π∗
2 will not change significantly, and high density

values will be selected regardless.
• From the equations in Sect. 3.6, it is clear that undetected label switching could
cause issues in evaluation of the posterior density of θ∗. This brings forward
two considerations: first of all, label switching may occur due to little separa-
tion between the groups, meaning the two posterior distributions shall not be too
dissimilar and a wrong labelling of a few iterations may not affect significantly
the evaluation. Secondly, even when incorrect labelling does have an effect, each
iteration is dampened by a 1/N factor since we take an average over the entire
sample.

• It is important to recall that the algorithm sequentially fixes a set of parameters to
their highest density values. This implies that, after very few parameters are fixed,
label switching will definitely not occur for the remaining parameters. Going back
to the two-component example, it is obvious that once we fix θ∗

1, there can no
longer be label switching, since now we only draw a sample from θ2.

• Finally, wemust take into account that the contribution of the posterior distribution
towards p (y | x) will in general be rather small compared to that of L (θ | y, x),
which is “immune” to label switching.
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Fig. 1 Simulated series from Model A (top) and B (bottom)

While handled correctly throughout every example presented, we suggest that the
effect of label switching could in general be neglectible when it comes to model
selection with marginal likelihood (Figs. 1, 2).

4 Application

4.1 Simulation example

For comparative and demonstrative purposes, we show applications of our method
using two simulated datasets from (A)

F(yt |Ft−1) = 0.5�

(
yt + 0.5yt−1

1

)
+ 0.5�

(
yt − yt−1

2

)
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Fig. 2 Trace and density plots of parameters from (A). Sample size is 100,000, after discarding 50,000
draws as burn-in period

and (B)

F(yt |Ft−1) = 0.5�

(
yt + 0.5yt−1 − 0.5yt−2

1

)

+0.3�

(
yt + 0.4yt−1

2

)
+ 0.2�

(
yt − yt−1

4

)
,

respectivelywith 300 and600 observations. Process (A) is similar to the one considered
by Hossain (2012) and Wong and Li (2000), while (B) was chosen to illustrate in
practice how label switching is dealt with. The issue of label switching for (B) can
be seen in Fig. 3, where we show the raw MCMC output with signs of label switch
between components 2 and 3 (green and red lines), and the relabelled output after
applying the algorithm.
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Fig. 3 Comparison of raw output (left) and output adjusted for label switching of mixing weights from (B).
We notice the effectiveness of the relabelling algorithm applied to our MCMC

The algorithm then proceeds as described in Algorithm 1 below.

Algorithm 1
1: for g ← 2, . . . , gmax do
2: RJMCMC and determine p∗

1 , . . . , p∗
k

3: Calculate f ( y | g)
4: Select g∗ = max f ( y | g), g = 2, . . . , gmax
5: Simulate f

(
θ | y, g∗, p∗)

Aswe can see fromTables 1, 2 and 3, and Figs. 2 and 4, the “true”model is chosen in
both cases, as it has the largest marginal log-likelihood. In addition, true values of the
parameters are found in high density regions of their respective posterior distributions
(Tables 4, 5).
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Table 1 Results from simulation
studies

Model (A) Preference Marg. log-lik

MAR(2; 1, 1) 0.7399 −611.8113

MAR(3; 1, 1, 1) 0.1819 −613.0888

MAR(4; 1, 1, 1, 4) 0.0382 −923.1585

Model (B) Preference Marg. log-lik

MAR(2; 2, 1) 0.6258 −1468.628

MAR(3; 2, 1, 1) 0.2937 −1383.061

MAR(4; 2, 1, 2, 1) 0.0491 −1470.543

“Preference” is the proportion of times the model was retained against
all models with same number of components

Table 2 Results of simulation from posterior distribution of the parameters under model (A)

Model A True value Posterior mean Standard error 90% HPDR

φ10 0 0.011 0.0268 (−0.032, 0.055)

φ20 0 − 0.183 3.273 (−5.672, 5.206)

φ11 − 0.5 − 0.449 0.037 (−0.511, −0.389)

φ21 1 0.994 0.079 (0.869, 1.136)

σ1 1 0.992 0.079 (0.862, 1.119)

σ2 2 2.069 0.149 (1.825, 2.311)

π 0.5 0.571 0.046 (0.494, 0.647)

Table 3 Results of simulation from posterior distribution of the parameters under model (B)

Model B True value Posterior mean Standard error 90% HPDR

φ10 0 0.001 0.018 (−0.009, 0.007)

φ20 0 0.005 0.253 (−0.078, 0.091)

φ30 0 0.102 2.133 (−3.145, 3.405)

φ11 − 0.5 − 0.483 0.038 (−0.536, −0.427)

φ12 0.5 0.498 0.034 (0.450, 0.547)

φ21 − 0.4 − 0.461 0.105 (−0.596, −0.327)

φ31 1 0.731 0.264 (0.432, 1.058)

σ1 1 1.035 0.246 (0.804, 1.156)

σ2 2 2.035 0.439 (1.625, 2.522)

σ3 4 4.074 0.341 (3.559, 4.573)

π1 0.5 0.495 0.056 (0.411, 0.568)

π2 0.3 0.293 0.064 (0.207, 0.395)

π3 0.2 0.212 0.041 (0.148, 0.275)
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Fig. 4 Trace and density plots of parameters from (B). Sample size is 100,000, after discarding 50,000
draws as burn-in period

To show consistency of the method, the experiment on model (A) was replicated
several times. Details on that are available in the Appendix.

4.2 The IBM common stock closing prices

The IBM common stock closing prices (Box and Jenkins 1976) is a financial time
series widely explored several times in the literature (see, for instance Wong and Li
2000). It contains 369 observations from May 17th 1961 to November 2nd 1962.
Original and difference series can be seen in Fig. 5.

Following previous studies, we consider the series of first order differences. To
allow direct comparison with Wong and Li (2000) and Hossain (2012), we set φk0 =
0, k = 1, . . . , g.
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Table 4 Summary statistics for sample of size 100,000 fromparameter posterior distributions of the selected
model for the log-lynx data

Parameter MLE HDvalue Standard error 90% HPDR

φ10 0.4957 0.4962 1.6897 (−1.2599, 3.4341)

φ20 2.5728 1.6945 1.2663 (−0.0138, 3.8897)

φ11 0.9901 1.0779 0.0667 (0.9893 1.1320)

φ21 1.5042 1.7205 0.1594 (1.4717, 1.9866)

φ22 − 0.8984 − 0.7966 0.1528 (−1.0578, −0.5604)

σ1 0.2313 0.3553 0.1846 (0.2162, 0.6451)

σ2 0.4828 0.6010 0.1006 (0.4933, 0.7478)

π 0.2358 0.3280 0.1247 (0.1536, 0.5555)

Table 5 Summary statistics for sample of size 100,000 fromparameter posterior distributions of the selected
model for the daily temperature range data

Parameter MLE HD value Standard Error 90% HPDR

φ10 2.0554 1.9856 0.1125 (1.4010, 2.7046)

φ20 2.5631 2.5978 0.1084 (2.0934, 3.1083)

φ11 0.4967 0.4956 0.0655 (0.3866, 0.6034)

φ12 0.2784 0.2951 0.0692 (0.1625, 0.3901)

φ21 0.1989 0.2013 0.0544 (0.1161, 0.2939)

σ1 1.8699 1.8772 0.1125 (1.7104, 2.080)

σ2 1.1497 1.1710 0.1084 (1.0129, 1.3678)

π 0.5585 0.5602 0.0698 (0.4359, 0.6656)

With the procedure outlined in Algorithm 1 our method chooses a MAR(3; 4, 1, 1)
to best fit the data, amongst all 2, 3, and 4 component models of maximum order
pk = 5, k = 1, . . . , g. The RJMCMC algorithm selects this model roughly 25% of
the time, ahead of MAR(3; 3, 1, 1) with 13%. The marginal log-likelihood for this
model is −1245.51, which is larger than that of the best 2 and 4 component models, a
MAR(2; 1, 1) and a MAR(4; 1, 1, 1, 1), which respectively have a value of marginal
log-likelihood equal to−1248.921 and−1252.381.We immediately notice that this is
different from the selected model in Wong and Li (2000). Such difference may occur
as the frequentist approach fails to capture the multimodality in the distribution of
certain parameters, which we can clearly see from Fig. 6. In fact, by attempting to fit
a MAR(3; 4, 1, 1) model by EM-Algorithm from several different starting points, we
concluded that this would actually provide a better fit than theMAR(3; 1, 1, 1) chosen
by Wong and Li.

With one of the mixture components having a larger autoregressive order, label
switching could only arise between the two components with autoregressive order 1.
However, no signs of label switching were detected, and therefore no relabelling was
required.
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Fig. 5 Times series of IBM closing prices (top) and series of the first order differences (bottom)

Figure 7 shows once again the time series of first order differences of IBM closing
prices, with the addition of two lines representing prediction intervals. Specifically,
the red lines delimit the 95% highest density region of the average one step prediction
densities, calculated using the sample from the parameter posterior distributions (see
Sect. 5) for each yt for t > 4. The blue lines denote instead the 95%prediction interval,
calculated as the average one step point predictor ± twice the average conditional
standard error recorded for the predictor. Point predictions and corresponding standard
error are defined in (6). It appears from the picture that there is indeed an advantage
in using prediction density over point prediction. While there is not a substantial
difference between the two predictors in periods of relatively low volatility, as the
very start of the series shows, the interval calculated using density prediction seem
to provide more certainty in periods of higher volatility. This can be seen around
observations 250–280, a period of high volatility for the series, where we can see
several spikes, and therefore a large prediction interval, for the blue lines, while density
prediction seems to accommodate well the sudden jumps in the series. Overall, it
appears that, using the highest density region of density forecasts, a MAR model
is able to account for the time-dependent volatility and its persistence in the IBM
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Fig. 6 Posterior distributions of autoregressive parameters from selected model MAR(3; 4, 1, 1), with 90%
HPDR highlighted. We can clearly see multimodality occurring for certain parameters. Sample of 300,000
simulated values post burn-in

difference series. Furthermore, if we decided for a narrower prediction interval, the
density forecast method would allow us to detect presence of multiple modes, so that
the highest density region may no longer be continuous. This feature will be seen in
Sect. 5.

4.3 The Canadian lynx data

Another dataset widely explored in time series literature, and particularly by Wong
and Li (2000), is the annual record of Canadian lynx trapped in the Mackenzie River
district in Canada between 1821 and 1934. This dataset, listed by Elton and Nicholson
(1942), includes 111 observations.
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Fig. 7 IBM first order differences with 95% prediction interval from (mean) density forecast (red) and point
prediction ± twice the (mean) standard error with fitted MAR(3; 4, 1, 1) model (blue)

Following previous studies, we consider the natural logarithm of the data, which
presents a typical autoregressive correlation structure with 10 years cycles. We notice
the presence of multimodality in the log-data, with two local maxima (see Fig. 8).
This suggest that the series may be in fact generated by a mixture of two components.

In their analysis, Wong and Li (2000) choose a MAR(2; 2, 2) as best model to fit
the data. However, their choice was based on the minimum BIC criterion, which the
authors themselves acknowledge as not always reliable for MAR models, particularly
with small datasets.

Aiming to have a better insight about the data, we apply our Bayesian method.
The selected model is in this case a MAR(2; 1, 2), preferred over a MAR(2; 2, 2) by
the algorithm, and to all 2, 3 and 4 component models with autoregressive order p =
1, 2, 3, 4. In particular, RJMCMC selectsMAR(2; 1, 2) about 38%of the time, against
20% for MAR(2; 2, 2). The marginal log-likelihood for this model is −131.0381,
which is larger than that of other candidate models MAR(3; 1, 2, 2) with −176.4684
and MAR(4; 1, 2, 2, 1) with −154.9989.

We generated a sample of size 100,000 from the posterior distribution of the param-
eters of the selected MAR(2; 1, 2) model. It is noticed that, for most parameters, the
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Fig. 8 Original time series of Canadian lynx (top left), series of natural logarithms (top right), histogram
of log-data (bottom left) and autocorrelation plot of log-data (bottom right). The data presents a typical
autoregressive correlation structure, as well as multimodality

90% credibility region includes the MLEs obtained by Wong and Li (2000). The only
exception stands for the scale parameters, which seem to be slightly larger than such
MLEs. However, this may be due to our model containing one fewer AR parameter.
On the other hand, these results are in line with the estimates obtained by fitting a
MAR(2; 1, 2) using the EM algorithm, since all estimates are well within the corre-
sponding 90% highest posterior density region.

Figure 9 displays the raw output of the sample from the posterior distributions of
the parameters obtained via MCMC simulation. Due to the two mixture components
having different autoregressive order, and the aid of the trace and density plots, we
conclude that label switching has not occured, so that relabelling is not required.
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Fig. 9 Posterior trace plots anddensity of selectedMAR(2; 1, 2)model for the natural logarithmofCanadian
lynx data. For all parameters, the credibility region contains the estimated values fromWong and Li (2000).
Sample size is 100,000, after 50,000 burn-in iterations

4.4 Daily temperature in Manchester city centre

This last example is a dataset of recorded air temperature in Manchester city centre
between January 1st 1985 and April 1st 1986. During each day, temperature was
recorded between 06:00h and 21:00h, and up to a maximum of 4 times between
22:00h and 05:00h of the following day. The data is available on the CEDA Archive
(Met Office 2019).

Here we consider the time series of daily air temperature range, calculated as the
difference between the maximum and minimum recorded temperature within a day.
The result is a series of 456 observations, which by construction contains only positive
values (or equal to 0 as a limit case). The series can be seen in Fig. 10.
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Fig. 10 Time series of daily temperature range in Manchester City Centre

Some interesting dynamics occurred while analysing this dataset, which are worth
pointing out. When attempting to simulate parameters from models with g > 2 mix-
ture components, the mixing weights of all but two of these components eventually
converged towards 0. This suggests that the correct number of mixture components is
g = 2, as virtually no observation is allocated to the remaining g − 2 components.
This is in line with the theoretical properties discussed by Rousseau and Mengersen
(2011) about asymptotic behavior of the posterior distribution of the mixing weights
in a mixture of distributions. The authors derive analytically a results which states that,
under certain choices of hyperparameters on theDirichlet prior for themixingweights,
any redundant mixture components will see their corresponding weights converge to
0, as a sign that the component should not be included in the mixture.

Following the above considerations, we present here analysis for g = 2. RJMCMC
selcted MAR(2; 2, 1), selected around 55% of the time amongst all 2 component
models with maximum autoregressive order p = 5. Full conditional posterior dis-
tributions of the parameters can be seen in Fig. 11. This is the raw output from the
MCMC sampling scheme, which does not show any signs of label switching.

In addition to parameter distributions, Fig. 12 also shows the original series together
with three different prediction intervals. The red line is the 95% credibility interval,
which is essentially the region of the highest posterior density region of the conditional
predictive distribution of yt under the assumption of MAR model. The blue line is a
prediction interval for the predictor of yt , calculated as ŷt |t−1 ± 2

√
Var (yt | Ft−1).

Finally, the green line is a prediction interval for the predictor of yt by fitting an AR(3)
model. For the first, one predictive distribution is calculated for each sample from the
posterior distribution of the parameters and for each time t ; in this way we obtain a
sample of the predictive density. We then calculate the “average” density as the mean
of this sample, and finally we extract the highest posterior density region of this. For
the remaining two, one prediction is calculated for each sample from the posterior
distribution of the parameters and for all t , as well as the corresponding conditional
variance. Once again, we ultimately calculate the mean of all predictors and of all
conditional variances at each time t .
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Fig. 11 Trace and density plots of parameter posterior distributions of MAR(2; 2, 1) model for daily
temperature range in Manchester City Centre

Figure 12 shows one of the advantages of using density forecasts to obtain a predic-
tion interval. A density forecast, in fact, automatically rules out values of the predictor
that are not in the domain of the random variable. In this case, we stated at the begin-
ning that, due to its definition, the temperature range is necessarily larger ≥ 0, and
the credibility interval (red dashed line) indeed satisfies this condition. Furthermore,
full conditional predictive distributions are available for each data point, which could
provide additional information on the forecast where necessary. On the contrary, both
the other two intervals considered (blue dashed line for MAR prediction interval and
green dashed line for AR prediction interval) contain values that are smaller than 0,
which of course violates the assumpion.

5 Bayesian density forecasts withmixture autoregressivemodels

Once a sample from the posterior is obtained, it is useful to use it to make predictions
on future (or off-set) observations.

In the context of mixture models, density forecasts are often more attractive than
point predictors and prediction intervals. This is because the qualitative features of a
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Fig. 12 Time series of daily temperature range inManchester City Centre with 95% prediction interval from
(mean) density forecast (red), point prediction ± twice the (mean) standard error with fitted MAR(2; 2, 1)
model (blue) and point prediction ± twice standard error under AR(2) model

predictive distribution, such as multiple modes or skewness, are more intuitive and
useful than just a forecast and its associated prediction interval. Think for example
of the point prediction for a symmetric bimodal density: a point prediction would
fall exactly between the two modes, in a point of lower density, and would therefore
be misleading. In addition, when the predictive distribution is available, prediction
intervals can easily be obtained by extracting the quantiles of interest (Boshnakov
2009; Lawless and Fredette 2005).

Wong and Li (2000) and Boshnakov (2009) respectively introduced a simulation
based and an analytical method for for density forecasts assuming a MARmodel. The
first method relies on Monte Carlo simulations, while the second derives exact h-step
ahead predictive distributions of a given observation.

On one hand, we could estimate density forecasts using the highest posterior density
values (i.e. the peak of the posterior distribution). However, it is better in this case to
exploit the entire simulated sample as follows:
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Fig. 13 Density of 1 and 2 step ahead predictor at t = 258 for the IBM data. The solid black line represents
our Bayesian methodology, with the 90% credible interval identified by the dashed lines. The solid red line
represents the predicted density using parameter values from EM estimation by Wong and Li

1. Label each simulation from 1 to N , e.g. θ (i), i = 1, . . . , N .

2. Calculate density forecast f (i)
(
yt+h | Ft , θ

(i)
)
.

3. Estimate the density forecast

f̂ (yt+h | Ft ) = 1

N

N∑

i=1

f (i)
(
yt+h | Ft , θ

(i)
)

In this way, we obtain a sample from the h-step ahead density forecast of an
observation of interest. We then average the density at each point over its sam-
ple size, to obtain a “mean” density forecast. Furthermore, the fact that we are
using the entire MCMC sample makes this method “immune” to bias due to label
switching. The predictive density is a sum, and therefore commutative, making
the order label permutation irrelevant towards prediction. Thus, detection of label
switching has the sole purpose of providing identifiability and interpretation of the
model.

We estimate the 1-step and 2-step predictive distributions of the IBMdata at t = 258
using the analytical method by Boshnakov (2009), and compare them to the ones
obtained by EM algorithm (see Fig. 13). The solid red lines represent the density
obtained by Boshnakov (2009) using EM estimates and the exact method. Results
of our method are represented by the solid black lines, with the dashed lines as 90%
credibility region. The figure also shows howquickly the uncertainty on the predictions
grows aswemove further in the future, with the 2-step predictive density lookingmuch
flatter.

We can see that there are no substantial differences in the shape of these predictive
distributions. However, we notice that, particularly for the 2-step predictor, averaging
seems to “stabilise” the density line.

We notice from the plots that, clearly for the 1-step predictor and slighlty for
the 2-step predictor, the density obtained by MCMC attaches higher density to the
observations of interest y259 and y260.
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6 Conclusion

We presented an innovative fully Bayesian analysis of mixture autoregressive models
with Gaussian components, in particular a new methodology for simulation from
the posterior distribution of the autoregressive parameters, which covers the whole
stationarity region, compared to previous approaches that constrained it in one way or
another. Our approach allowed us to better capture presence of multimodality in the
posterior distribution of model parameters. We also introduced a way of dealing with
label switching that does not interfere with convergence to the posterior distribution
of the model parameters. This consisted in using a relabelling algorithm a posteriori.

Simulations indicate that the methodology works well. We presented results for
two simulated data sets. In both cases the “true” model was selected, and posterior
distributions showed high densities regions around the “true” values of the parameters.

The ability of our methodology to explore the complete stationarity region of the
autoregressive parameters allows it to capture better multimodality of distributions.
This was illustrated with the IBM and the Canadian Lynx datasets. In the former (Fig.
6) we saw howmultimodality in the posterior distribution of autoregressive parameters
was captured, aspects which were missed in the analyses of Hossain (2012), see for
example Figures 3.10 and 3.11. For this example, it was also noticed that modes of
posterior distributions of the autoregressive parameters roughly correspond to point
estimates obtained by EM estimation. In the latter (Fig. 9), we found the mode of
φ21 to be quite distant from 0, with values close to 2 lying in the credibility interval.
In this case, the risk with Hossain’s methodology would be to truncate the Normal
proposal at points such that a significant part of the stationarity region of the model is
not covered. Sampietro’s methodology would have failed to detect such a mode, since
it is outside the interval [−1, 1].

Furthermore, we analysed a dataset of daily temperature range in Manchester (UK)
city centre. This example gave us further insights on an alternative way of finding
the best model for the data under particular circumstances. in addition, it allowed
us to show the advantages of using conditional predictive densities to extrapolate
information, such as credibility intervals, about the predictor.

In conclusion, we may say that our algorithm provides accurate and informative
estimation, and therefore may result in more accurate predictions.

Further work could be done to improve the efficiency of our methodogy. Possible
improvements include a different algorithm for sampling of autoregressive parameters.

In particular, acceptance rates for the Random Walk Metropolis moves used for
sampling the autoregressive parameters can be rather low for mixtures of large num-
ber of components or for components with large autoregressive orders, making the
algorithm slow at times, with the added risk of it not being able to explore the complete
parameter space efficiently. A different procedure, such as the Metropolis Adjusted
Langevin Algorithm (MALA), may be considered to improve the efficiency. This
would also help reducing the autocorrelation in the MCMC sample, which was found
to be quite large and persistent in some cases. Notice however that all the examples
displayed run long enough chains to account for this.
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Gaussian mixtures are very flexible but alternatives are worth considering. In par-
ticular, components with standardised t-distribution could allow modelling heavier
tails with small number of components.
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Appendix

We explain here how consistency of the method was assessed, with application to data
generated from Model (A) in Sect. 4.

For this experiment, we simulate 400 different datasets of length n = 300 from the
underlying MAR process in Model (A), and proceeded as follows:

1. For each dataset, we simulate a sample of size 100,000 from the posterior distri-
bution of the parameters, after allowing 10,000 iterations as burn-in period.

2. For each parameter, we find the overall minimum and maximum over the 400
samples, say l and u. From here, we identify a grid of 512 equally spaced values
in the range [l, u], and evaluate the density of such points under each posterior.

3. Finally, we average for each of the points to obtain a unique average density.

Figure 14 summarises results of applying this procedure.Aswecan see, the densities
are well in line with the true values of the parameters.
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Fig. 14 Average densities of the parameters over 400 simulated datasets of length n = 300. Each simulation
is a sample of size 100,000 from the posterior distribution of the parameters
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