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Abstract
This paper demonstrates howwe can re-purpose sophisticated algorithms from a range
of fields to help us compute expected permutations and marginal likelihoods. The
results are of particular use in the fields of record linkage or identity resolution, where
we are interested in finding pairs of records across data sets that refer to the same
individual. All calculations discussed can be reproduced with the accompanying R
package expperm.

Keywords Linkage error · Identity resolution · Object tracking · Random
permutation · Matrix permanent

1 Introduction

1.1 Context

The work presented here is motivated by the need to make best use of multiple, poten-
tially inconsistent, data sources pertaining to a common population of individuals.
More specifically, we are concerned with quantifying the probabilities that particular
individuals in one data set correspond with particular individuals in another.

Note that in this document we will use the word ‘match’ to refer to a pair of records
that truly do correspond to the same individual. A ‘link’ or ‘assignment’ refers to a
pairing for records thatwehaveproposed.A ‘linkage solution’ or ‘assignment solution’
refers to a set of proposed pairings of records. Given an initial assignment solution, we
can permute the entries of one of the data sets in order to produce a new assignment

B Ben Powell
ben.powell@york.ac.uk

Paul A. Smith
p.a.smith@soton.ac.uk

1 University of York, York, UK

2 University of Southampton, Southampton, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-019-00901-2&domain=pdf
http://orcid.org/0000-0002-0247-7713
http://orcid.org/0000-0001-5337-2746


872 B. Powell, P. A. Smith

solution. In this way we can identify assignment solutions with permutations. An
‘expected assignment’ refers to a probability-weighted mean of assignments. More
precisely, we will identify an expected assignment with the expected effect of the
corresponding permutation on the rows of an identitymatrix. Although this description
is made precise in Sect. 2, the following example helps us illustrate the concept more
intuitively. Suppose we have a pair of data sets, each containing three records. The first
data set contains records with labels {1, 2, 3} and the second data set has records with
labels {a, b, c}. Suppose also that we initially assign record 1 to record a, record 2 to
record b and record 3 to record c. We can understand this assignment as a bijection
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where the elements of one vector map to corresponding elements in the other. Alter-
native assignments can then be written as assignments to permuted versions of the
initial assignment’s image set, e.g.
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where the matrices of zeros and ones encode the permutations. It is via an expectation
for this permutation matrix that we will encode an expected assignment solution.

The identification and assessment of a good set of assignments between individuals
is awell-studied problem. Indeed, the problemappears inmanydifferent fields of appli-
cation, where the context adds significantly to the manner in which it is approached. In
official, or administrative, statistics, for example, the problem is studied under the title
of record linkage or identity resolution. Fellegi andSunter (1969)was a landmark paper
in this field and established a framework for many further developments, including
Bayesian interpretations and extensions of the methodology (Belin and Rubin 1995).
Herzog et al. (2007) provide an authoritative review of many of these developments
and illustrate their use in several case studies. The data sets involved in the official
statistics setting are often extremely large, but the evidence on which linkage is based
tends to be relatively good. Official statisticians might, for instance, be interested in
linking individuals’ records based on different versions of their name and temporally
fuzzy information on their address. As well as papers on the theory of record linkage,
the literature includes reviews of its practical implementation at National Statistical
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Computing expectations and marginal likelihoods for permutations 873

Institutes around the world including Italy’s Istat (Cibella et al. 2007) and the US
Census Bureau (Yancey 2002).

Another application of record linkage problems arises when researchers find multi-
ple versions of the same paper from an Internet search drawing on multiple databases.
Correcting this failure to match records is known as de-duplication. A review of this
problem is provided by Elmagarmid et al. (2007).

In signal processing, the problem occurs as part of object tracking (see Pasula et al.
1999, for example). In this context we are interested in identifying the same objects in
different images, perhaps recorded at different times or from different locations. Here,
the number of individuals to link is commonly smaller, but the identifying information
is much more variable.

The identification of an optimal, most likely linkage solution is arguably the most
extensively researched aspect of the linkage problem. The relevant optimization prob-
lem can be formulated as a linear program and solved exactly using highly-optimized
routines, namely auction algorithms (see Bertsekas 1981). Around the set of optimal
assignments, however, exist a large number of alternative assignments to whichwe can
attribute varying degrees of likelihood. Given a prior distribution over assignments,
the likelihood induces a posterior distribution encodingmeaningful probabilistic state-
ments about the true but unknown assignment. In particular the posterior distribution
admits the computation of a posterior expectation.

Procedures for computing expected assignments have received less attention than
those for computing optimal assignments. One reason for this is the combinatorial
explosion in the number of possible assignments to average over, the vast majority of
which need never be visited by an optimization algorithm. In this paper we describe
and discuss a range of procedures for computing expected assignments.

Note that for the time being we will assume we are given a method for assessing
the plausibility, or likelihood, of any two measurements genuinely corresponding to a
common individual. Typically such likelihoods will be computed as exponentiated and
normalized distances between noisy observations. In the context of official statistics,
for example, the distance could be an edit-distance between character strings, while
in the context of object tracking the distance could actually be a physical distance or
a deviation from a given trajectory.

We will also assume that all individuals have measurements in both data sets.
Although it is commonly appropriate to deviate from the latter assumption, doing so
will distract significantly from the methods we discuss below. We reserve discussion
of this issue for Sect. 5.

To our knowledge there are no existing R packages available for efficient computa-
tion of expected permutations, nor of permanents, whose relevance to the assignment
problem we discuss in Sect. 2. There are, however, packages employing similar
algorithms to those presented below to perform calculations related to permuta-
tion tests. The package pspearman (Savicky 2014), for example, employs Ryser’s
inclusion–exclusionmethod to compute a p-value as part of a hypothesis test for Spear-
man’s rank correlation. Several packages, including permute (Simpson 2016) and
permutations (Hankin 2017), include functions for enumerating all permutations
of a small number of items. These can help us compute expected permutations, but,
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as we will see below, complete enumeration is liable to be an untenably demanding
approach to take for all but the smallest problems.

1.2 The practical value of expected permutations andmarginal likelihoods

An expected assignment, conditioned on observed data, is liable to be of interest to
statisticians in its own right. Although in general not actually describing a single
assignment, it may still be seen as an estimator for the true assignment. Further,
this estimator has the potential, via the use of partial assignments, to convey far more
information about the appropriate degree of confidence to invest in it, thandoes a single,
optimal assignment. The estimator is also liable to be more robust to latching onto
solutions that, while having high likelihood, are supported by very little probability
mass. The expectation for the true assignment also allows us to compute an expectation
for the correct variables from one data set to associate with a measurement in the
other data set. In turn, we can compute expectations for estimators that are linear in
the first variable. Examples of using the expected permutation matrix in this way in
order to estimate regression coefficients in the presence of linkage error can be found
in Scheuren and Winkler (1993), Lahiri and Larsen (2005) and Kim and Chambers
(2012).

The marginal likelihood for any assignment of the records is the average over per-
mutations of the product of likelihoods for each individual assignment. This statistic,
made precise in Eq. (8), quantifies the evidence in support of our modelling assump-
tions. These assumptions include: the appropriateness of the chosen distance, and
corresponding likelihood function, for potentially matching pairs of individuals; and
the idea that all individuals really do have a correct match in the data set. The potential
to quantify the likelihood of the latter assumption holding is particularly important
due to its relevance to data ‘blocking’ or ‘clustering’. At least in the context of official
statistics, sorting large numbers of records into small blocks, in which their true match
is assumed to belong, is important because some statistical procedures for making
inferences in the presence of linkage error are only feasible due the decomposability
blocking brings about. Small, but plausibly correct blocks are also of practical utility
when records lacking a single, definitively most likely assignment are designated for
manual (human) checking. For example, a human is likely to be able to spot quickly
the correct matches in small blocks of records, but small blocks may be less likely
to contain correct matches. A clustering algorithm based on the marginal likelihood
for block membership can be used to make this compromise precise and to compose
blocks optimized for manual checking. Record blocking has motivated its own small
literature, with notable contributions from Michelson and Knoblock (2006), Bilenko
et al. (2006) and Whang et al. (2009).

It is not the purpose of the current paper to formally investigate the relative prop-
erties of optimal and expected assignments. We will pursue neither the assessment
of likelihood functions, nor algorithms for data-blocking. These topics are mentioned
here to motivate the algorithms described below. Our own work on blocking proce-
dures, however, is in progress and indeed makes use of the algorithms.
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2 Mathematical background

To assist in explaining themeaning and significance of variousmathematical quantities
and procedures we find it convenient to refer to a particular idealized assignment
problem. In this problem, individuals have personal records stored on a central database
that has been carefully constructed and well looked after.We imagine that the database
needs to be augmented as a matter of urgency with a new variable. A survey is sent
to all n members of the population requesting that they provide the extra data along
with a binary ID code that will allow their data to be correctly added to their record in
the database. We know, however, that, with a given probability q, an individual will
misremember a digit in their ID code. We thus question our ability to correctly assign
the new data to the old records.

In our example, the degree of correspondence between ID codes in the database
and the ID codes from the survey can be expressed in the form of a distance matrix D
with elements

Di j = |di − s j |0, (1)

where di and s j denote database and survey ID codes and |·|0 denotes a Hamming
distance that simply counts the positions inwhich the codes differ. Given knowledge of
the error process for the survey ID codes of length m and the relative frequencies of the
database ID codes, the distances can be used to specify likelihoods for all potentially
matching pairs,

Ai j = π(s j , di ) = π(s j | di )π(di ) = (1 − q)m−Di j qDi j π(di ). (2)

Looking ahead, wewill see that all likelihoods for assignment solutionswill include
the marginal π(di ) terms via the product

∏n
j=1 π(d j ). This product will disappear

when the posterior induced by the likelihood is normalized. These terms are also
redundant when we treat marginal likelihoods as conditional on the di . This is not
unreasonable since we are generally not interested in the process by which the ID
codes were generated.

Let Pi j be the indicator function for the event ‘database record i truly corresponds
with survey record j’. Collectively, these random variables form the elements of a
permutation matrix P that, when pre-multiplying a column vector of survey data,
reorders them to match up with the data in the database.

The elements of a valid permutation matrix are either zero or one, and their row-
and column-sums are equal to one. They are also orthogonal matrices, satisfying

PT P = I , (3)

where I is the n × n identity matrix. As a consequence, pre-multiplying a column
vector by a permutation matrix and then its transpose returns the original column
vector. In this way the transposed permutation matrix undoes the permutation. This
can be made more explicit by considering the equations
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y′ = Py, y = PT y′, y, y′ ∈ �n, (4)

where a 1 in the i th row and j th column of P means that the permutation matrix
effectively assigns the j th element of y to the i th element of y′. The matrix PT has a
corresponding 1 in its j th row and i th column and sends the i th element of y′, which
is the j th element of y, back to the j th position. A more practical consequence of the
orthogonality of the permutationmatrices is that we can consider permutationmatrices
either to rearrange the survey records to match the database records, or to rearrange
the database records to match the survey records. The latter will just be transposes of
the former.

Note that a general linear combination of permutationmatrices, such as an expected
permutation matrix, is not necessarily itself a permutation matrix since its elements
can be non-binary. It is also not necessarily unitary. Its elements are still non-negative,
however, and it still possesses rows and columns that sum to one.

The likelihood for any particular permutation matrix P is the product of likelihoods
for all the assignments it encodes,

π(D | P) =
n∏

i, j=1

A
Pi j
i j , (5)

where the role of the permutationmatrix here is to pick out likelihood terms tomultiply
together.

In the absence of any extra prior information, the likelihood function induces an
unnormalized joint posterior density over the elements of the true permutation matrix.
We could use this to compute the relative posterior probabilities of two complete sets
of proposed assignments for example. What we cannot do with it, at least directly, is
compute marginal expected values for each element of P .

The difficulty here arises from the fact that while the likelihood for the whole
matrix factorizes conveniently into terms corresponding to each of its elements, the
effective prior, saying that P is a permutation matrix, does not. This is because of the
correlations induced by the sum-to-one constraints for its rows and columns.

Themarginal expectations for the entries of P can bewritten as the ratio ofmarginal
likelihoods

π(Pi j = 1 | D) =
∑

P∈M∩Pi j=1 π(D | P)∑
P∈M π(D | P)

(6)

where we sum over all permutation matrices, denoted M here, and all permutations
such that Pi j = 1 in the denominator and numerator, respectively.

The sums of products of likelihoods that we encounter in Eq. (6) can be identified
with instances of an algebraic device called the permanent. This realization unlocks
a significant literature of theoretical results and numerical experiments for us to draw
on. A particularly nice guide to various statistical problems to which the permanent is
relevant is given in Diaconis et al. (2001).
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The permanent of a matrix is defined as a sum of products of its elements. These
elements are selected from each row and each column according to a particular per-
mutation. The sum is then taken over all permutations. We can write this as

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ (i) =
∑
P∈M

n∏
i, j=1

A
Pi j
i j , (7)

where σ denotes a permutation, Sn denotes the set of permutations of n objects (also
known as the symmetric group) and M denotes the set of all permutation matrices.

We can now see that, given a uniformprior on permutations, themarginal likelihood,
or evidence, for all survey ID codes being assignable to all database ID codes can be
written as a scaled permanent

π(D) = 1

n!
∑
P∈M

n∏
i, j=1

A
Pi j
i j = 1

n!perm(A). (8)

The expectation for an element of P can be written as

π(Pi j = 1 | D) = Ai jperm(A(i, j))

perm(A)
, (9)

where A(i, j) denotes the sub-matrix obtained from deleting the i th row and j th column
of A. The permanent is defined in a similar way to the determinant of a matrix,

det(A) =
∑
σ∈Sn

sign(σ )

n∏
i=1

Ai,σ (i), (10)

but is significantly harder to compute. This statementwas formalizedbyValiant (1979),
who showed that computing permanents exactly is in the class of #P problems.Without
further discussion of this class, it is enough to note here that improving on existing
methods is likely to be highly challenging. What we can do, however, is mine the
literature on permanents for methods to compute marginal likelihoods. This is trivial
since the permanent and marginal likelihood differ only by a known multiplicative
factor. What is more challenging is re-purposing the machinery used to compute
permanents in order to efficiently compute expected permutationmatrices.Wedescribe
novel approaches for doing so below.

3 A selected review of algorithms

3.1 Brute-force enumeration

Our first algorithm involves a naive, brute-force enumeration of all possible assign-
ments. Its computational cost is of order O(n!), and so is only applicable for small
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n < 10. The most pleasing, and the only non-trivial, part of the algorithm is its use of
Heap’s algorithm (Heap 1963) to produce the full set of assignments sequentially and
without repetition. Crucially, a full list of all assignments, which is liable to fill up a
computer’s RAM, need never be constructed.

The following function uses Heap’s algorithm to run through assignments while
keeping track of a running likelihood-weighted mean. Its output is the final value of
this mean, along with the total weight which is equal to the permanent of the matrix
of likelihoods.

brute <- function(A, return.permanent = FALSE) {
n <- nrow(A)
cnt <- rep(0, n)
ind <- 1:n
indmat <- cbind(1:n, ind)
W <- prod(A[indmat])
EP <- diag(n)

i <- 0
while (i < n) {

# The outer parts of this while loop implement
# Heap’s algorithm for
# enumerating permutations.
if (cnt[i + 1] < i) {

if (i%%2 == 0) {
ind[c(1, i + 1)] <- ind[c(i + 1, 1)]

} else {
ind[c(i + 1, cnt[i + 1] +
1)] <- ind[c(cnt[i + 1] + 1, i + 1)]

}
cnt[i + 1] <- cnt[i + 1] + 1
i <- 0

# This part of the code updates the running
# weighted mean of permutation
# matrices.
indmat <- cbind(1:n, ind)
w <- prod(A[indmat])
W <- W + w
EP <- EP * (1 - w/W)
EP[indmat] <- EP[indmat] + w/W

} else {
cnt[i + 1] <- 0
i <- i + 1

}
}
if (return.permanent) {

attr(EP, "permanent") <- W
}
EP

}
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3.2 The Ryser method

The Ryser method, named after its first appearance in Ryser (1963), involves com-
puting the permanent of a matrix using an inclusion–exclusion argument. More
specifically, it cleverly breaks the permanent down into a sum of terms that corre-
spond to intersections of unions of assignments,

perm(A) =
∑
J⊆I

(−1)|I|−|J | ∏
i∈I

∑
j∈J

Ai, j , I = {1, 2, . . . , n}. (11)

The outer sum here is over all 2n ways of selecting a subset of A’s columns. The
summands are products of row-sums of sub-matrices consisting only of the selected
columns. The sign term alternates according to the parity of the number of sets whose
intersection the summand corresponds to.

TheRysermethod effectively reduces the computational cost of the permanent from
O(n!n) toO(2nn2). In one respect this is a huge saving. However, the cost still scales
badly, with the effect that only problems with n < 20 are practical. Enumeration of
the Ryser method’s summands can be achieved efficiently using a Gray code binary
generator such as Knuth’s algorithm L [see page 10 of Knuth (2005)], or a generator
of combinations such as the Cool-lex algorithm (see Ruskey andWilliams 2009). Like
Heap’s algorithm, these algorithms produce one term in a sequence from the preceding
one, avoiding the construction of a full list. We have opted for Knuth’s algorithm L in
our implementation of the Ryser method due to the computational efficiency afforded
by its lack of internal loops.

The same inclusion–exclusion strategy employed by the Ryser method for com-
puting the permanent can be used to compute an expected permutation matrix. As far
as we are aware, this strategy, implemented below, has not been exploited elsewhere
in the literature. The resulting algorithm involves the selection of subsets of columns
of A to set to zero, leading to modified matrices A(k) where k labels the subset. The
modified matrix’s rows are normalized by dividing them by the row sums. We then
add the normalized matrix to a running sum after multiplication by a weight equal to
the product of the row sums.
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ryser <- function(A, return.permanent = FALSE) {
n <- ncol(A)
W <- 0
EP <- matrix(0, n, n)
a <- rep(0, n)
f <- 0:n
p <- (-1)ˆn
while (f[1] < n) {

# This part of the algorithm is Knuth’s algorithm
# L for generating a binary
# Gray code.
p <- -p
j <- f[1]
f[1] <- 0
f[j + 1] <- f[j + 2]
f[j + 2] <- j + 1
a[j + 1] <- 1 - a[j + 1]
Ak <- A

# This part of the algorithm is computing the
# terms of the incl/excl sum in
# the same way as Ryser’s method for computing
# the permanent.
Ak[, a == 0] <- 0
rs <- rowSums(Ak)
w <- p * prod(rs)
if (!(w == 0)) {

Ak <- sweep(Ak, 1, rs, FUN = "/")
W <- W + w
EP <- EP + w/W * (Ak - EP)

}
}
if (return.permanent) {

attr(EP, "permanent") <- W
}
EP

}

3.3 The tridiagonal special case

The class of tridiagonal matrices is very special insofar as having permanents that
can be computed with cost O(n). In terms of the assignment problem, these matrices
correspond to two ordered sets of individuals that can only be assigned to others whose
place in the order differs by at most one.

In Brualdi and Gibson (1977), the authors describe the geometric relevance of the
matrix permanent and many of its less obvious properties. Most importantly for us,
they introduce the notion of contractibility, which provides the key to computing the
permanent of a tridiagonal matrix efficiently. The authors define a matrix, A, to be
contractible on column k if column k, denoted A·,k , contains exactly two non-zero
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elements. Say that these two elements reside in rows i and j . The contraction of A
is defined to be a copy of A with its i th row, denoted Ai,·, replaced with A j,k Ai,· +
Ai,k A j,·, and with the j th row and kth column removed. Lemma 3.2 in Brualdi and
Gibson (1977) states that the permanent of A and its contraction are equal. We note
that, in the context of the assignment problem, a contraction can be understood as
marginalizing, or integrating, over the possible assignments for a particular individual.

When presented with a tridiagonal A, we can contract it by taking j = k = 1
and i = 2. We can then repeatedly contract the matrix like this until it is a single
number equal to the permanent of the original matrix. It can be shown that the top-left
elements of the sequence of contracted matrices in fact provide us with the permanents
of submatrices of A. Explicitly, defining the sequence of contracted matrices F (m) ∈
�(n−m)×(n−m) as

F (m) =
{
A m = 0,

C(F (m−1) : j = k = 1, i = 2) m = 1, . . . , n − 1,
(12)

where C(· : j = k = 1, i = 2) denotes the result of the contraction procedure
described above, it is the case that

F (m−1)
1,1 = perm(A1:m,1:m), (13)

where A1:m,1:m is the top-leftm bym submatrix of A. Similarly, we can contract from
the bottom-right to produce the sequence of contractions B(m) ∈ �(n−m)×(n−m) such
that

B(m) =
{
A m = 0,

C(B(m−1) : j = k = n − m, i = n − m − 1) m = 1, . . . , n − 1,
(14)

and

B(m)
n−m,n−m = perm(A(n−m):n,(n−m):n). (15)

The two sequences of permanents can be used, via Eq. (9), to compute the diagonals
of the expected permutation matrix, i.e.

π(Pii = 1 | D) = Aiiperm(A(i,i))

perm(A)
(16)

= Aiiperm(A1:(i−1),1:(i−1)))perm(A(i+1):n,(i+1):n)
perm(A)

. (17)

The off-diagonals can now be calculated by leveraging our knowledge of the row- and
column-sum constraints for the expected permutation matrix, and of its symmetry.
This symmetry follows from the fact that, in the tridiagonal case, the only admissible
permutations are swaps between consecutive pairs. This means that if the i th record in
thefirst data setmatcheswith the (i+1)th record in the seconddata set, then the (i+1)th

123



882 B. Powell, P. A. Smith

record in the first data set must match with the i th record in the second data set. Since
the two matching ‘events’ must happen simultaneously they are essentially the same
event and must therefore have the same probability of occurring. The computational
strategy outlined in this section is implemented with the following function, which
we refer to as the BG algorithm in reference to Brualdi and Gibson, who provided us
with the contraction result.

BG <- function(A, return.permanent = FALSE) {

if (!is.tridiagonal(A)) {

warning("Input is not tridiagonal.

This function only works for tridiagonal matrices!")

}

n <- nrow(A)

# The algorithm begins by computing two sequences of permanents via the BG

# contractions.

Fmat <- A

for (i in 2:n) {

Fmat[i, i:n] <- Fmat[i - 1, i - 1] * Fmat[i, i:n] + Fmat[i, i - 1] *

Fmat[i - 1, i:n]

}

f <- diag(Fmat)

Bmat <- A

for (i in (n - 1):1) {

Bmat[i, 1:i] <- Bmat[i + 1, i + 1] * Bmat[i, 1:i] + Bmat[i, i + 1] *

Bmat[i + 1, 1:i]

}

b <- diag(Bmat)

# The permanents are used to compute the diagonal of EP, the off-diagonals

# are determined by the sum-to-one constraints.

EP <- matrix(0, n, n)

EP[1, 1] <- A[1, 1] * b[2]/b[1]

EP[n, n] <- A[n, n] * f[n - 1]/b[1]

if (n > 2) {

for (i in 2:(n - 1)) {

EP[i, i] <- A[i, i] * f[i - 1] * b[i + 1]/b[1]

}

}

for (i in 1:(n - 1)) {

EP[i, i + 1] <- EP[i + 1, i] <- 1 - sum(EP[i, 1:i])

}

if (return.permanent) {

attr(EP, "permanent") <- b[1]

}

EP

}
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3.4 A variational approximation

The computational strategy described in this section leads only to approximations
for the expected permutation and marginal likelihood. It is inspired by Chertkov and
Yedidia (2013), whose interest in permanents is motivated by the object tracking
problem. They suggest that a set of approximate expectations, called beliefs, satisfying
a minimal-energy condition are calculated. For a specific value of its hyperparameter,
their energy function coincides with the Kullback–Leibler divergence between the
beliefs and the likelihood. For this reason we designate the beliefs as variational
approximations to the exact expectations.

Explicitly, we take as our approximation to the expectation the minimizer of

F(P, A) =
n∑

i, j=1

Pi j log

(
Pi j
Ai j

)
(18)

with respect to P , subject to sum-to-one constraints on its rows and columns.
The beliefs minimizing the divergence turn out to be surprisingly easy to com-

pute. They can be found by applying the iterated Sinkhorn operation (see Sinkhorn
1964) to A. This operation simply iterates between normalizing its argument’s rows
and columns. The function below implements the iterated Sinkhorn operation while
keeping track of the products of the row- and column-sums. We can use Corollary 25
of Chertkov and Yedidia (2013) to show that the product of these products serves as
an upper bound on the permanent of A.

sink <- function(A, maxit = 99, return.permanent.bound = FALSE) {
n <- nrow(A)
u <- rep(1, n)
v <- rep(1, n)
its <- 0
rsums <- 0
while (its < maxit) {

its <- its + 1
rsums <- rowSums(A)
u <- rsums * u
A <- sweep(A, 1, rsums, FUN = "/")
csums <- colSums(A)
v <- csums * v
A <- sweep(A, 2, csums, FUN = "/")

}
W <- prod(u, v)
if (return.permanent.bound) {

attr(A, "permanent bound") <- W
}
A

}

The relevance of the iterated Sinkhorn operation to the variational approximation
is made precise in Appendix 6.1. More formal analyses of the operation may be found
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in She and Tang (2018), for example, who refer to it in terms of Iterative Proportional
Scaling or matrix raking.

4 Examples

4.1 Code tests

In this section we report on a set of checks and numerical experiments to test the
algorithms described above. These experiments can be replicated using the expperm
package, which contains implementations of the algorithms in R and C++ as well as
a data file with the experiment inputs. The R code is intended to act as functional
pseudocode to help the reader understand and modify the algorithms for their own
purposes. The C++ code is intended to better demonstrate the speed of the algorithms,
and to provide solutions to real problems.

We begin by testing whether the algorithms actually produce the same output for a
particular seven-by-seven matrix of simulated likelihoods.We observe the elements of
the algorithms’ outputs to differ by less than 5×10−14 here, suggesting that rounding
errors in the manipulations and summations performed by the algorithms are not
significant at this scale. We also observe the column- and row-sums of the outputs to
differ from one by less than 1×10−13. The reader is invited to reproduce these results
using commands such as:

library(expperm)
data(A)
data(triA)
max(abs(ryser(A) - brute(A)))
max(abs(rowSums(ryser(A)) - 1))

In Fig. 1 we examine the differences between an example likelihood matrix A,
a maximum-likelihood permutation [maximizing (5)] and the expected permutation
matrix given A. It is clear that both themaximum-likelihood and expected permutation
matrices allocate high probability to the assignments with high likelihood. This can be
seen from the darker colours appearing mostly in corresponding positions in the heat
maps in each subfigure. It is also clear that there is more than one assignment solution
with appreciable likelihood. This can be seen from the diffuseness of the shades in
Fig. 1c relative to Fig. 1b.

We proceed to investigate the algorithms’ run-times with the help of the
microbenchmark package of Mersmann (2018). Our numerical experiments
involve simulating r = 32 tridiagonal matrices of likelihoods for assignment prob-
lems of increasing size. The time required by each algorithm to compute corresponding
expected permutation matrices is then recorded. The resulting computation times are
plotted in Fig. 2. We expect to see super-exponential scaling for the brute force algo-
rithm, exponential scaling of the Ryser algorithm and the sub-exponential scaling of
the variational and BG algorithms. The boxplots of Fig. 2 cannot be said to verify these
expectations, but appear to be approximately consistent with them. We observe that
the first three algorithms return their outputs at similar speeds for matrices of order
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(a) An example matrix of
likelihoods,

(b) A maximum likelihood
permutation matrix given
A.

0.0
0.2
0.4
0.6
0.8
1.0

1 3 5 7 9

10
8

6
4

2

(c) The expected permuta-
tion matrix given A.

Fig. 1 Heat map plots of matrices used to test the algorithms for computing expected permutations

n ≈ 5. After this point the Ryser algorithm beats the brute-force algorithm, and the
variational algorithm beats the Ryser algorithm. The BG algorithm comfortably beats
all the others, but is applicable only to tridiagonal likelihood matrices. Analogous
experiments on simulated likelihood matrices with nonzero entries in all positions
produced almost identical results for the first three algorithms, so are not presented
here.

4.2 Simulated example

The data examined in this sectionwere produced to facilitate aworkshop on the subject
of record linkage run as part of a European Statistical System network (ESSnet) project
on data integration. The data, which were produced by McLeod et al. (2011) from the
UK’s Office for National Statistics (ONS), consist of three sets of approximately
25,000 fictitious records for individuals, all of which are subject to transcription error.

We consider now small, equally sized subsets of records from two of the data sets.
To introduce more uncertainty, and so better demonstrate the value of the expected
rather than optimal linkage solution, we restrict our attention only to recorded names
and birth years. The data are presented in Table 1.

The subsets are selected by first running a naive, greedy assignment algorithm on
the two data sets. This involves working through the records in the first data set and
assigning them to their closest match in the second data set according to a Damerau–
Levenshtein edit distance (see Damerau 1964), which counts the (minimum) number
of edits required to transform one word into another. All distances are thus integer
valued and ties are broken arbitrarily when identifying the closest match. We select a
subset of n = 18 assigned pairs, which are close to each other according to the edit
distance.

We then produce a matrix of edit distances between the subsets of records. On
the assumption that edits are independent and occur with probability q = 0.2, this
distance matrix is used to induce a matrix of likelihoods according to Eq. (2). The
likelihood matrix is then used to calculate an expected permutation matrix using the
Ryser algorithm. Note that this expectation is conditional on all records in the subset
having a match within the subset.
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(a) Brute force algorithm. (b) Ryser algorithm.

(c) Variational algorithm. (d) BG algorithm.

Fig. 2 Computation times for algorithms computing expected permutationmatrices from simulatedmatrices
of likelihoods. The x-axis corresponds to the number of records to assign and the order of the resulting
matrices. 32 Simulations are made for each order and the resulting distribution of computation times is
summarized using boxplots. Note the log-scaling of the y-axis

The distance matrix, maximum likelihood permutation matrix and the expected
permutation matrix for the subset of records are presented in Fig. 3. We observe that
the maximum likelihood matrix, which is computed using the R package lpSolve
(Berkelaar et al. 2015), does not coincide with the identity matrix. This shows how the
naive assignment procedure described above has failed to find an optimal assignment.
Indeed, the total number of edits between assigned records in the optimal solution is 19
while the total number is 33 for the naive solution. However, the maximum likelihood
solution shows us just one highly likely solution out of many candidates. Uncer-
tainty regarding the true matches is manifested in the intermediate shades appearing
in Fig. 3c. In particular, the rows and columns containing no dark red cells identify
records without a single convincingly most likely assignment.

Weconsider this example to be auseful caricature of genuine record linkagemethod-
ology. As discussed further in Sect. 5, it demonstrates how the results of a naive but
computationally convenient assignment procedure can be analysed and potentially
called into question thanks to our algorithms.
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Table 1 Two subsets of the ESS
data whose matching
probabilities are calculated as
part of Sect. 4.2

PERNAME1 PERNAME2 DOB_YEAR

(a) Example data subset 1

ALEX ANDERSON 1951

ALEX ANDERSON 1952

ALEXIS ANDERSON 1955

LEWIS ANDERSON 1956

LEWIS ANDERSON 1954

LEWIS ANDERSON 1954

LEWIS ANDEBSON 1996

ELISE ANDERSON 1999

LIAM ANDERSON 1999

LIAM ANDERSON 1992

LIAM ANDERSON 1949

LIAM ANDERSON 1954

LIAM ANDEVSON 1947

LILY ANDERSON 1941

LILY ANDEASON 1942

LILY AWDERSOW 1966

BECKY ANDERSON 1916

TUBY ANDERSUN 1913

(b) Example data subset 2

ALEX ANDERSON 1951

ALEX ANDERSON 1951

RLEXIS RNDERSON 1955

LEWIS ANDERSON 1954

LEWIS ANDEVSON 1954

LEWLS ANDERSON 1956

LEWIS ANDERSON 1996

ELISE ANDERSON 1999

LIAM ANDERSON 1999

LIAM ANDERSON 1992

LIAM ANDERSON 1949

LIAM ANDERSON 1949

LILY ANDERSON 1941

LILY ANDERSON 1942

LILY ANDERSON 1966

BELKY ANDERSON 1916

TOBY ANDERSON 1913

RUBY ANDERSON 1956
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(c) The expected permuta-
tion matrix encoding the
matching probabilities for
the records.

Fig. 3 Heat map plots of matrices relating to the example record linkage data of Sect. 4.2. The matrix rows
and columns refer to the records in subsets 1 and 2, respectively

5 Discussion

In the course of the work documented in this paper we have seen how the search
for good assignments between records in a pair of data sets is a rich and demanding
problem. We have seen how the problem relates to numerous subfields of pure and
applied mathematics, and how contributors to those fields have provided us with tools
for constructing sophisticated algorithms for computing expected permutations. The
sophistication of these algorithms does not imply that they are unwieldy. Indeed they
are implemented in tens of lines of code and wrapped up in our R package expperm,
which we encourage readers to take apart and customize.

We have intentionally prioritized the exposition of computational procedures over
the explanation of their role in data analysis problems. Nevertheless, appreciation of
the practical relevance of the computations to the motivating problems, as described
in the introduction, remains important. With this in mind, we now discuss the value
and limitations of the algorithms described above.

We suggest that the algorithms are used as tools for assessing a proposed assignment
solution. As the expected permutations are clearly not themselves permutations, our
algorithms are not tools for finding assignments and are not competingwith algorithms
for finding an optimal assignment. What the expected permutation matrices show very
well is the potential for uncertainty for a true match. Informally, we can say that the
less an expected permutation matrix looks like the maximum likelihood permutation
matrix, the less confidentwe should be that themaximum likelihood estimate is correct.
This sort of evaluation is useful even if it only scales up to moderately large blocks of
proposed assignments, as in the example of Sect. 4.2.

Although of value in their own right, expected permutation matrices are also a vital
component of statistical inference procedures, such as those described in Scheuren and
Winkler (1993), Lahiri and Larsen (2005) and Kim and Chambers (2012). Typically
these inferences are applied given an exchangeable linkage assumption, leading to
expected permutation matrices that, although mathematically convenient, are naive,
since they do not use record similarity measures in their construction. We have
explained how our algorithms can help us compute more appropriate expected permu-
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tation matrices, which we would expect to improve statistical inferences, even if they
were not exact due to the computational demand involved in scaling up to the whole
of a large data set. We might ask, for example, how seriously does specifying the
wrong expectation for linkage error undermine inference? And, how significantly is
this problem improved with a less wrong misspecifation? Answering these questions
will require the investigation of inferential procedures in the presence of parameter
misspecificiation, which is likely to be a considerable task and one that will benefit
from expert knowledge on what a ‘correct’ specification should really look like. This
would make for valuable future work.

We have also assumed that all records to be assigned have a true match in the data
sets available to us. In applications to official statistics this assumption is likely to
be particularly hard to justify. We are currently working on extensions of the meth-
ods described above for which the assumption can be compromised. Specifically, we
are investigating averages over assignment solutions for which some records remain
unassigned or perhaps havemultiple assignments due to accidental record duplication.
Permutations may no longer be the objects to focus on in this new context, but related
combinatorial mathematics remains relevant. As well as pursuing this methodology,
it is also interesting to consider how badly it is needed—how badly deviations from
the matchability assumption can undermine our inferences. We anticipate that the
expected assignment for an unmatchable record will be mostly uninformative. It is not
useful to know, for example, that the record with name ‘George’ is closer to ‘Susan’
than it is to ‘Christobelle’. The degree to which an unmatchable record undermines
the expected assignments for the matchable records is less obvious however. This
robustness issue is another topic for future research.
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6 Appendix

6.1 (Outline) Proof for the iterated Sinkhorn operation leading to the variational
approximation

Consider the objective function combining the Kullback–Leibler divergence with
Lagrange terms encoding sum-to-one constraints

L =
n∑

i, j=1

P̂i j log
P̂i j
Ai j

+
n∑

i=1

λi

(
n∑

k=1

P̂ik − 1

)
+

n∑
j=1

η j

(
n∑

k=1

P̂k j − 1

)
, (19)

where λi and η j are the Lagrange multipliers.
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The derivative of the Lagrangian with respect to P̂i j is

∂L
∂ P̂i j

= log P̂i j + 1 − log Ai j + λi + η j , (20)

which is zero when

P̂i j = ui Ai jvi , (21)

where

ui = exp(−1 − λi ), v j = exp(−η j ). (22)

Equation (21) is telling us that the Lagrangian has a stationary point when P̂ is a
version of A with its rows and columns scaled by factors ui and v j . Further, we know
that these scalings must result in P̂ having unit row- and column-sums. Sinkhorn
(1964) shows us that this can always be done for an A with strictly positive elements.
He also shows us that the iterative process of alternately re-normalizing the rows and
columns of A allows us to approximate P̂ to arbitrary precision.
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